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Abstract

K(π, 1) Spaces in Algebraic Geometry

by

Piotr Achinger

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Arthur Ogus, Chair

The theme of this dissertation is the study of fundamental groups and classifying
spaces in the context of the étale topology of schemes. The main result is the
existence of K(π, 1) neighborhoods in the case of semistable (or more generally
log smooth) reduction, generalizing a result of Gerd Faltings. As an application to
p-adic Hodge theory, we use the existence of these neighborhoods to compare the
cohomology of the geometric generic fiber of a semistable scheme over a discrete
valuation ring with the cohomology of the associated Faltings topos. The other
results include comparison theorems for the cohomology and homotopy types of
several types of Milnor fibers. We also prove an `-adic version of a formula of
Ogus, describing the monodromy action on the complex of nearby cycles of a log
smooth family in terms of the log structure.
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“Proof is hard to come by.”

–Proposition Joe
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Chapter 1

Introduction

Let X be a sufficiently nice topological space — for example, a CW complex or a manifold
(see §2.1.1 for the minimal assumptions we need). Assume that X is connected, and pick
a base point x ∈X . We call X a K(π, 1) space if its higher homotopy groups

πi (X , x), i = 2, 3, . . .

are zero. The homotopy type of such a space is completely determined by its fundamen-
tal group π1(X , x), and in particular the cohomology of X with coefficients in every
local system (a locally constant sheaf of abelian groups) can be identified with the group
cohomology of the corresponding representation of π1(X , x).

Similarly, in the context of algebraic geometry, a connected scheme X with a geo-
metric point x is a called a K(π, 1) scheme if the cohomology of every étale local sys-
tem agrees with the cohomology of the corresponding representation of the fundamental
groupπét

1 (X , x). The importance of this notion was first revealed in the context of Artin’s
proof of the comparison theorem [SGA73b, Exp. XI, 4.4] between the étale cohomol-
ogy of a smooth scheme X over C and the singular cohomology of the associated analytic
space X an. The main step in the proof is the construction of a covering of X by K(π, 1)
open subsets1 by constructing certain “elementary fibrations”.

1More precisely, Zariski open subsets U such that U an are K(π, 1) spaces and each π1(U
an) is a “good

group” (cf. Definition 2.1.13).
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CHAPTER 1. INTRODUCTION

Coverings by K(π, 1) schemes also play an important role in p-adic Hodge theory.
In the course of the proof of the comparison between the p-adic étale cohomology and
Hodge cohomology of a smooth proper scheme over a p-adic field K (called the Hodge–
Tate decomposition, or the CHT conjecture of Fontaine), Faltings showed [Fal88, Lemma
II 2.1] that a smooth scheme X over OK can be covered by Zariski open subsets U whose
geometric generic fibers UK are K(π, 1) schemes. However, to tackle the more difficult
CdR and Cst conjectures this way, one needs an analogous statement for X semistable over
OK . In his subsequent work on Cst, Faltings used a different approach, and remarked
[Fal02, Remark on p. 242] that one could use the K(π, 1) property instead if it was
known to hold in the semistable case. Our main result proves that this is indeed true.

Theorem (Special case of Theorem 3.2.1). Let X be a semistable scheme over OK . Then X
can be covered (in the étale topology) by schemes U such that UK is a K(π, 1) scheme.

In addition, we provide comparison theorems for the homotopy types of several
types of Milnor fibers. Finally, in Theorem 5.4.4, we provide an `-adic version of the
computation of the monodromy action on nearby cycles in the log smooth case due to
Ogus [Ogu13, Theorem 3.3].

? ? ?

We start with a gentle introduction (§1.1) to the relevant concepts, concluding with
an informal statement of the results in §1.1.5. Section 1.2 discusses our main theorem: its
context, corollaries, and the idea of proof (which itself occupies Chapter 3). In §1.3, we
state the remaining results: the comparison theorems for Milnor fibers (Chapter 4) and
the “monodromy formula” (Chapter 5).

1.1 A non-technical outline

The results in this thesis all deal with one-parameter degenerations of algebraic varieties
and the associated notions of Milnor fibers, monodromy, and nearby cycles. We will start
by reviewing these concepts in the classical (complex analytic) setting (§1.1.1), then in the
algebraic setting (§1.1.2). After discussing how these objects behave in the situation when
the degeneration is semistable (§1.1.3), and briefly touching on the topic of p-adic Hodge
theory (§1.1.4), we state the results of this thesis in §1.1.5.

2



1.1. A NON-TECHNICAL OUTLINE

1.1.1 The classical theory over the complex numbers

In the complex analytic picture, one typically takes a small disc

S = {z : |z |<δ} ⊆C

as a base (parameter space) and considers a holomorphic map f : X −→ S from a complex
manifold (or more generally an analytic space) X . We think of f as of a family of spaces
Xt = f −1(t ) parametrized by t ∈ S. Let S∗ = S \ {0} be the punctured disc, X ∗ =
X \ f −1(0) its preimage. We assume that f |X ∗ : X ∗ −→ S∗ is a locally trivial fibration, i.e.
that locally on S∗, f topologically looks like the projection Xt × S∗−→S∗ (in particular all
Xt are homeomorphic for t 6= 0), and that the “special fiber” X0 = f −1(0) is a deformation
retract of X . These assumptions are satisfied for δ� 1 for example if f is proper [GM88,
1.5, 1.7].Usually f ∗ is assumed to be smooth (i.e., a submersion), so that the fibers Xε

(ε 6= 0) are complex manifolds, while X0 acquires some singularities (which is why we call
f a degeneration), as in Figure 1.1.1.

One can study the topological properties of f in the neighborhood of X0, both glob-
ally and locally, using the notions discussed below.

Milnor fibers

In the local situation, the original approach of Milnor [Mil68] is as follows. Suppose that
X ⊆CN , and let x ∈X0. Let Sx(ε) be the intersection of X with a sphere (in the Euclidean
metric on CN ) of radius ε� 1 and center x. Consider the map

ϕx = arg f : Sx(ε) \X0 −→ S∗
arg
−−→ S1,

called the Milnor fibration. Milnor showed that, if X is smooth at x, ϕx is a locally trivial
fibration whose fiber ϕ−1

x (1) (the Milnor fiber) is independent of ε up to homeomorphism
(for ε small enough). These results have been extended to the case of a general X by
Lê [Lê77].

From our point of view, it will be more natural to work with the open ball Bx(ε)
rather than the sphere, and get rid of the argument map. Let eS∗ = {Re(z) < logδ}. The
map exp : eS∗−→S∗ is a universal cover of S∗. One can show (cf. Theorem 4.1.5) that for
ε� 1 the space

Fx,ε = eS
∗×S Bx(ε) (1.1)

3



CHAPTER 1. INTRODUCTION

Figure 1.1.1: A family of hyperbolae x1x2 = t degenerating to the union of coordinate axes
(illustration by Masha Vlasenko)

is independent of ε up to homeomorphism, is homotopy equivalent to the Milnor fiber
ϕ−1

x (1), and the inclusions Fx,ε′ ⊆ Fx,ε are homotopy equivalences for ε′ < ε. We will
henceforth abbreviate Fx,ε to Fx , and call Fx the Milnor fiber of f at x.

Our choice of the universal cover of S∗ allows us to canonically identify the funda-
mental group π1(S

∗) with the group Z(1) = 2πiZ, acting on eS∗ via deck transformations
ζ 7→ ζ +α, α ∈ Z(1). It is clear from our definition of Fx that Z(1) acts on Fx in a natural
way.

Example 1.1.1. In the situation of Figure 1.1.1, the Milnor fiber at x = (0,0) is

Fx = {(x1, x2,ζ ) : |x1|
2+ |x2|

2 < ε2, expζ = x1x2},

4



1.1. A NON-TECHNICAL OUTLINE

Figure 1.1.2: The Milnor fiber

which is homotopy equivalent to S1 for ε � 1 (for example, via the map (x1, x2,ζ ) 7→
arg(x1)).

Example 1.1.2. Suppose that X is a complex manifold of dimension n and that f : X −→
S is a holomorphic map having an isolated singular point x ∈ X . In this case, Milnor’s
bouquet theorem [Mil68] states that Fx has the homotopy type of a wedge of µ(x) spheres
Sn−1, where

µ(x) = dimCOX ,x/

�

∂ f

∂ x1

, . . . ,
∂ f

∂ xn

�

for a choice of local coordinates x1, . . . , xn ∈ OX ,x . Here OX ,x denotes the ring of germs
of holomorphic functions at x. For instance, if X is a neighborhood of x = 0 ∈ Cn and
f (x1, . . . , xn) = x2

1 + . . .+ x2
n, then Fx is homotopy equivalent to Sn−1.

5



CHAPTER 1. INTRODUCTION

The monodromy

Consider the higher direct image sheaf F = Rq( f |X ∗)∗Z on S∗ for some q ≥ 0, which is
the sheaf associated to the presheaf

(U ⊆ S∗) 7→H q( f −1(U ),Z).

As f is a locally trivial fibration over S∗, F is a locally constant sheaf on S∗, and Ft =
H q(Xt ,Z) for t ∈ S∗. If γ : [0,1] −→ S∗ is a path in S∗, the pullback γ ∗F is also locally
constant, and hence constant. Thus γ induces an isomorphism Fγ (0)

∼−→ Fγ (1), which
depends only on the homotopy class of the path γ . In particular, the fundamental group
π1(S

∗, t ) acts on Ft = H q(Xt ,Z). This action is called the monodromy action, and the
action of a chosen generator ofπ1(S

∗, t ) is called the monodromy operator. Note that since
π1(S

∗) = Z(1) = 2πiZ is abelian, we can avoid choosing a base point t of S∗. Similarly,
the action of π1(S

∗) on Fx induces an action on H q(Fx ,Z) for x ∈X0.

Nearby cycles

The topological complexity of the Milnor fiber Fx is an indicator of the singularities of f
around x ∈ X0. To compare X0 and Xt (t 6= 0), one would like to have a global object on
X0 carrying information about all of the Milnor fibers of f . The sheaves of nearby cycles
RqΨ(Z) are sheaves on X0 whose stalks are the cohomology of the Milnor fibers:

(RqΨ(Z))x 'H q(Fx ,Z). (1.2)

Moreover, the monodromy operators on H q(Fx ,Z) can be assembled together to give a
monodromy operator on RqΨ(Z).

To define RqΨ(Z), consider the natural maps2  : eX ∗ =X ×S
eS∗ −→X and i : X0 −→

X , fitting in a cartesian diagram

eX ∗

�� ��



''
eS∗

  

X ∗

��

j
// X

��

X0

��

ioo

S∗ // S 0.oo

2For typesetting reasons, we chose the notation  instead of the commonly used j . The same for ı.

6



1.1. A NON-TECHNICAL OUTLINE

Then define RqΨ(Z) = i ∗Rq ∗Z. It comes with a natural π1(S
∗)-action, deduced from the

π1(S
∗)-action on eX ∗. To check (1.2), observe that

RqΨ(Z)x = (R
q ∗Z)x = lim−→

x∈U

H q( −1(U ),Z) = lim−→
ε

H q( −1(Bx(ε)),Z) =H q(Fx ,Z)

(for the last equality, note that −1(Bx(ε)) equals Fx,ε = Fx ).
One can also consider the total complex RΨ(Z) := i ∗R ∗Z. If f is proper, one has a

natural identification (cf. [SGA73a, Exp. XIV, §1.3.3])

RΓ(X0, RΨ(Z)) = RΓ(X , R ∗Z) = RΓ(X ×S
eS∗,Z) = RΓ(Xt ,Z)

(for t ∈ S∗), compatible with the monodromy operators. This allows one to gain informa-
tion about the global monodromy from the local monodromy operators on H q(Fx ,Z).

Example 1.1.3. Consider the Dwork family of elliptic curves (e.g. [Kat09, Ogu13])

f : X =
¦

(ε, (x0 : x1 : x2)) ∈ S ×P2(C) : ε(x3
0 + x3

1 + x3
2 ) = 3x0x1x2

©

−→ S.

The fibers Xt (t 6= 0) are one-dimensional complex tori (in particular, H 1(Xt ,Z) ' Z2),
while the special fiber X0 is a “triangle”, the union of the three coordinate lines Di =
{xi = 0} in P2(C). The map f is non-submersive at the three “vertices” of that triangle

P0 = (0, (1 : 0 : 0)), P1 = (0, (0 : 1 : 0)), P2 = (0, (0 : 0 : 1)).

The Milnor fiber Fx (x ∈ X0) is homotopy equivalent to S1 if x ∈ {P0, P1, P2}, and is
contractible otherwise. Thus

R0Ψ(Z) = Z (constant sheaf on S), R1Ψ(Z)' ZP0
⊕ZP1

⊕ZP2
,

where ZP denotes the skyscraper sheaf supported at P . We will see how to calculate the
monodromy operator on H 1(Xt ,Z) in Example 1.1.9.

1.1.2 The algebraic theory

In the above section, we defined Milnor fibers, the monodromy action, and nearby cycles
in the complex analytic context. Little of this machinery is lost when passing to the

7



CHAPTER 1. INTRODUCTION

setting of algebraic geometry. Instead of a small disc, one takes the base S to be a trait,
i.e. the spectrum of a discrete valuation ring V . Thus S has only two points: the closed
point s = Spec k, where k is the residue field of V , playing the role of 0, and the generic
point η = SpecK , where K is the fraction field of V , playing the role of S∗. If we pick
an algebraic closure K of K , the corresponding geometric point3 η= SpecK will play the
role of both the universal cover eS∗ and a chosen point t ∈ S∗. Intuitively, S is a germ of a
smooth curve around a point s , and η is a point “infinitely close” to s .

We will always assume that

• V is henselian4,

• charK = 0,

• k is perfect.

Example 1.1.4. Important examples of V as above are

1. V =C{t}, the ring of convergent power series — then one can think of S = SpecV
as the limit of discs of radii going to 0. In this case K is obtained by adjoining roots
of the variable t of all degrees, hence Gal(K/K) = Ẑ(1) := lim←−µn(C),

2. V = C[[t]], the ring of formal power series, corresponding to an “even smaller”
base S (the description of the algebraic closure and the Galois group is the same as
in the preceding example),

3. V = O h
X ,x , the henselization of the local ring of a smooth curve X over a character-

istic zero field k at a point x ∈ X (k) (abstractly, this is always isomorphic to the
algebraic closure of k[x] in k[[x]], and the description of the algebraic closure and
the Galois group is the same as in the preceding examples),

4. V = Zp , the ring of p-adic integers, or more generally the integral closure of Zp

in a finite extension of Qp . This case has a different flavor than the previous three
(in particular, the Galois group Gal(K/K) is much more complicated than in the
previous examples), and is of considerable interest in arithmetic geometry,

3A geometric point is a morphism from the spectrum of a separably closed field.
4A discrete valuation ring V is henselian if for every finite extension L of its fraction field, the integral

closure of V in L is a discrete valuation ring. Complete discrete valuation rings are henselian.

8



1.1. A NON-TECHNICAL OUTLINE

5. V =W (k), the ring of Witt vectors of a perfect field k of characteristic p > 0.

Consider a scheme X of finite type over S. We call Xs :=X ×S s , resp. Xη :=X ×S η,
resp. Xη :=X ×S η the special (or closed), resp. generic, resp. geometric generic fiber of X .

In place of the singular cohomology H q(Y,Z), one considers the `-adic cohomology
H q(Y,Z`), where ` is an auxiliary prime (usually assumed to be invertible on Y ). These
groups are finitely generated Z`-modules if Y is “sufficiently nice.” In case Y is a scheme
of finite type over C, one can consider the associated analytic space Y an, and one has the
following comparison theorem.

Theorem 1.1.5 ([SGA73b, Exp. XI, Theorem 4.4]). The comparison maps

H q(Y,Z`)
∼−−→H q(Y an,Z)⊗Z Z`

are isomorphisms for all q ≥ 0.

In analogy with the classical complex-analytic picture, one has the notions described
below.

Milnor fibers

If x is a geometric point of Xs , the natural analogue of a ball around x of an unspecified
small radius is the scheme X(x), the localization5 of X at x in the étale topology6. Then
the base change

Mx =X(x)×S( f (x))
η (1.3)

is called the Milnor fiber of X at x. Note the similarity between the two definitions (1.1)
and (1.3).

Remark 1.1.6. To avoid confusion, we might call Mx the algebraic Milnor fiber, and the
space Fx defined in §1.1.1 the classical Milnor fiber.

5i.e., the inverse limit of all étale neighborhoods of x
6One could also consider the completion of X at x. We compare the two options in Theorem 4.2.8.

9



CHAPTER 1. INTRODUCTION

The monodromy action

In this setting, the inertia subgroup I of the Galois group Gal(η/η) plays the role of the
fundamental group π1(S

∗), and the monodromy action is just the natural Galois action
on the `-adic cohomology groups H q(Xη,Z`) and H q(Mx ,Z`). However, some complica-
tions appear, as I is much bigger than Z! If char k = 0, then I ' Ẑ(1) is (non-canonically)
isomorphic the profinite completion of Z (there is no canonical choice of a topological
generator). If char k = p > 0, the I has a very large pro- p part P , called the wild inertia.
If moreover `= p, which is the case of interest in p-adic Hodge theory, the restriction of
the monodromy representation to P usually does not factor through a finite quotient.

Nearby cycles

Let V be the integral closure of V in K , S = SpecV , X =X ×S S, and let s be the closed
point of S. We have a cartesian diagram

η

��

// S

��

soo

��
η // S s .oo

Let X = X ×S S, and let  : Xη −→ X and ı : Xs −→ X be the natural maps. As in
1.1.1, one has a cartesian diagram

Xη

�� ��

 // X

��

Xs
ıoo

�� ��
η

��

Xη

��

j
// X

��

Xs

��

i
oo s

��
η // S s .oo

The sheaves RqΨ(Z`) := ı∗Rq ∗Z`, endowed with the natural Gal(η/η)-action, are
called the sheaves of nearby cycles. One also considers RΨ(Z`) := ı∗R ∗Z`. As before, we
have (RqΨ(Z`))x 'H q(Mx ,Z`) almost by definition.
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1.1. A NON-TECHNICAL OUTLINE

If X is proper over S, the proper base change theorem implies that RΓ(Xs , RΨ(Z`))'
RΓ(Xη,Z`). In particular, we have the nearby cycles spectral sequence

E pq
2 =H p(Xs , RqΨZ`) ⇒ H p+q(Xη,Z`). (1.4)

Remark 1.1.7. If char k = p > 0 and ` = p, the sheaves of nearby cycles carry much
more information than usual. They are highly nontrivial even if X is smooth over S!
The problem of describing these p-adic nearby cycles is very closely tied to p-adic Hodge
theory (cf. §1.1.4).

1.1.3 Semistable degenerations

The simplest kind of nontrivial degenerations are the semistable ones. A scheme X over
S is called semistable if X is regular and Xs is a reduced normal crossings divisor on X .
Such an X étale locally looks like

X = SpecV [x1, . . . , xn]/(x1 · . . . · xr −π)

where r ≤ n and π is a uniformizer of V . One has an analogous notion in the complex
analytic picture (replacing “regular” with “complex manifold” and “étale locally” with
“locally”).

Example 1.1.8. In the complex analytic picture, the analogous map

f : X =Cn −→C= S, f (x1, . . . , xn) = x1 · . . . · xr

has Milnor fiber at x ∈ f −1(0) equal to

Fx =

(

(x ′1, . . . , x ′n,ζ ) :
n
∑

i=1

|x ′i − xi |
2 < ε2, expζ = x1 . . . xr

)

which is homotopy equivalent to (S1)mx−1, where mx = #{i ≤ r : xi = 0}. In particular,

(RqΨ(Z))x '
q
∧

Zmx−1. (1.5)

11
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Motivated by this simple example, we would like to give formula (1.5) an intrinsic
global meaning. Suppose that X is semistable and that Xs =D1∪ . . .∪Dm where the divi-
sors Di are irreducible and have no self-intersections. We introduce the sheavesM

gp

S = Zs

(skyscraper sheaf Z supported at the closed point s of S) and M
gp

X =
⊕

ZDi
(the sheaf

of divisors supported on Xs ). (The complicated notation is motivated by logarithmic
geometry, as to be explained later.) We have a natural map

f ∗(M
gp

S ) = ZXs
−→M

gp

X

sending the generator 1 to the sum of the generators 1 ∈ ZDi
. Finally, let M

gp

X /S be its
cokernel (i.e., the sheaf of divisors supported on Xs modulo Xs itself), so that we have an
extension

0−→ f ∗(M
gp

S )−→M
gp

X −→M
gp

X /S −→ 0 (1.6)

In these terms, the global version of (1.5) is

RqΨ(Z`)'
q
∧

(M
gp

X /S ⊗Z`(−1)) (1.7)

(here (−1) denotes the Tate twist, the twist by the inverse of the `-adic cyclotomic charac-
ter). Moreover, the construction of (1.7) shows that the monodromy action on RqΨ(Z`)
(but not on RΨ(Z`)!) is trivial. Again, one has an analogous description in the classical
setting.

The main reason one is interested in semistable families is as follows. A given smooth
and proper Xη over η might not extend to a smooth and proper X over S. If it does, we
say that Xη has good reduction. One obstruction to good reduction is the non-triviality of
the action of the inertia subgroup I of Gal(η/η) on H q(Xη,Z`) (for ` 6= char k). However,
one can often find a semistable X after replacing η by a finite extension η′ (and Xη by Xη′).
In such case we say that Xη′ has semistable reduction. It is known that every Xη admits a
semistable reduction after a finite extension of η in the following situations:

• if char k = 0 (using resolution of singularities) [KKMSD73, Thm. p.53], or

• if Xη is a curve [Abb00, Théorème 1.1] or an abelian variety [SGA72, XI], [Abb00,
Théorème 5.4],

and conjecturally always (granted resolution of singularities in the arithmetic setting).

12



1.1. A NON-TECHNICAL OUTLINE

Figure 1.1.3: René Magritte “The Voice of the Winds”, reproduction by Wolfgang Schmalz.
The configuration of spheres resembles the special fiber X0 of the Dwork family of elliptic
curves, if one imagines that the three spheres touch.

Example 1.1.9. The families in Examples 1.1.1 and 1.1.3 are semistable. We will com-
pute the monodromy action on H 1(Xt ,Z) for the Dwork family 1.1.3. Let us abbreviate
H 1(X ,Z) to H 1(X ). The exact sequence (1.6) takes the form

0−→ Z−→
⊕

ZDi
−→

⊕

ZPi
−→ 0 (1.8)

where [Di] is mapped to [Pi+1] − [Pi−1] (indices mod 3). Here we implicitly fix an
orientation of the nontrivial loop L on X0. Using (1.7), we now have R0ΨZ = Z and

13
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Figure 1.1.4: The Dwork family of elliptic curves at t−→0 (illustration by Dorka Budacz)

R1ΨZ=
⊕

ZPi
. The E2-page of the spectral sequence (1.4) takes the form













H 0(X0, R1ΨZ)
∂

,,

H 1(X0, R1ΨZ) H 2(X0, R1ΨZ)

H 0(X0) H 1(X0) H 2(X0)













=











Z3

∂

''
Z Z Z3











.

The spectral sequence therefore induces an exact sequence

0−→H 1(X0)
i−−→H 1(Xt )

p
−−→H 0(X0, R1ΨZ) ∂−−→H 2(X0)−→H 2(Xt )−→ 0

of π1(S
∗)-modules. Let K ⊆ H 0(X0, R1ΨZ) denote the image of the map p. Because

H 1(Xt ) ' Z2, H 1(X0) ' Z, and H 0(X0, R1ΨZ) is torsion-free, we have K ' Z. As ex-
plained earlier, the monodromy action on R1ΨZ is trivial. If T is a generator of π1(S

∗),
the map

1−T : H 1(Xt )−→H 1(Xt )

factors as
H 1(Xt )

p
−−→K

α−−→H 1(X0)
i−−→H 1(Xt )

for a certain map α. Let m ≥ 0 be such that cokerα ' Z/mZ. If we choose for a
basis of H 1(Xt ) a generator of H 1(X0) and an element mapping to a generator of K , the
monodromy operator T will take the form

T =





1 m
0 1



 .
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1.1. A NON-TECHNICAL OUTLINE

We will show that m = 3. Let

α : H 0(X0, R1ΨZ) =
⊕

Z[Pi]−→ Z[L] =H 1(X0)

be the connecting homomorphism of the cohomology exact sequence of (1.8). We easily
check that α([Pi]) = [L]. On the other hand, as will see later in Example 5.5.3 using
the “monodromy formula”, α is the restriction of α to K up to a sign depending on the
choice of T (that is, the diagram

H 1(Xt )

1−T
��

p // H 0(X0, R1ΨZ)

α
��

H 1(Xt ) H 1(X0)i
oo

commutes up to sign). Let Z/3Z act on X by permuting the coordinates xi cyclically.
Since the maps above are obviously Z/3Z-invariant, the subgroup K of

⊕

Z[Pi] has to
be invariant under cyclic permutation. Since K ' Z, K must be generated by a multiple
of [P1] + [P2] + [P3]. On the other hand, since H 0(X0, R1ΨZ)/K injects into H 2(X0)
which is torsion-free, K is in fact generated by [P1]+ [P2]+ [P3]. Since

α([P1]+ [P2]+ [P3]) = 3[L],

we deduce that m = 3, as desired.

Remark 1.1.10. For many reasons, semistable families are not the most natural notion:
for instance, unlike smoothness, semistability is not preserved upon base change. The
“right” generalization of semistability is one of the major achievements of logarithmic ge-
ometry. There one studies logarithmic schemes, which are pairs (X ,MX )with X a scheme
andMX a certain (étale) sheaf of commutative monoids on X endowed with a map to
OX . The fundamental insight of log geometry is that certain maps of schemes behave like
smooth maps if the source and target are given the correct log structure.

1.1.4 K(π, 1) neighborhoods and p-adic Hodge theory

While classical Hodge theory deals with the cohomology H n(X ,C) of a compact Kähler
manifold X , together with its extra structure (the Hodge structure), its p-adic counterpart

15
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studies the p-adic étale cohomology H n(XK ,Qp) of a smooth projective variety X over a
field K which is a finite extension of Qp . The extra structure in this case is the action of
the Galois group Gal(K/K). The p-adic analogue of the Hodge decomposition

H n(X ,C)'
⊕

i+ j=n

H i (X ,Ω j
X )

(where Ω j
X is the sheaf of holomorphic j -forms) is the Hodge–Tate decomposition.

Theorem 1.1.11 (Hodge–Tate decomposition [Fal88]). Let CK be the completion of K
with respect to the p-adic norm. There exists a canonical isomorphism of Gal(K/K)-modules

H n(XK ,Qp)⊗Qp
CK '

⊕

i+ j=n

H i (X ,Ω j
Y )⊗K CK(− j ),

where CK(− j ) is CK tensored with the j -th power of the inverse of the p-adic cyclotomic
character.

When studying differentiable manifolds, one benefits from the fact that the underly-
ing topological space is locally contractible. This is not the case in algebraic geometry: a
smooth complex algebraic variety, e.g. a curve of positive genus, often does not admit a
Zariski open cover by subvarieties which are contractible in the classical topology. On
the other hand, as noticed by Artin in the course of the proof of the aforementioned com-
parison theorem (Theorem 1.1.5), one can always cover such a variety by Zariski opens
which are K(π, 1) spaces.

The notion of a K(π, 1) space has a natural counterpart in algebraic geometry, de-
fined in terms of étale local systems. In a similar way as in Artin’s comparison theo-
rem, coverings by K(π, 1) play a role in Faltings’ approach to p-adic comparison theo-
rems [Fal88, Fal02, Ols09]. Faltings shows the following analogue of Artin’s result.

Theorem 1.1.12 ( [Fal88, Lemma II 2.1]). Let S = SpecV as in §1.1.2, and let X be a
smooth scheme over S. Then there exists a covering of X by Zariski open subsets U for which
Uη is a K(π, 1) scheme.

1.1.5 Summary of the results

In brief, this thesis contains the following original results:

16



1.1. A NON-TECHNICAL OUTLINE

R1. If X semistable over S, then X can be covered (in the étale topology) by schemes U
such that Uη is a K(π, 1) scheme. In particular, the Milnor fibers Mx = X(x)×S( f (x))

η

are K(π, 1) schemes (cf. Theorem 3.2.1).

R2. If V = C{t}, so that one can speak about the classical Milnor fibers Fx , the étale
homotopy type of the algebraic Milnor fiber Mx is the profinite completion of the
homotopy type of Fx (cf. Theorem 4.2.9). This means that the categories of local
systems of finite groups are canonically equivalent, and that the cohomology groups
of corresponding local systems are canonically isomorphic.

R3. In the definition of the algebraic Milnor fiber Mx , one can replace henselization by
formal completion, i.e., consider the scheme (Spec ÔX ,(x))η instead, without changing
the fundamental group or the cohomology of local systems (in characteristic zero,
cf. Theorem 4.2.8).

R4. If char k = 0 and X is semistable over S, it is known that the monodromy action on
RΨ(Z`) induces the trivial action on the associated cohomology sheaves, and hence
defines for every γ ∈ I certain maps in the derived category

1− γ : RqΨ(Z`)−→ Rq−1Ψ(Z`)[1].

We provide an explicit description of these maps via the isomorphism (1.7) in terms
of the extension (1.6) (cf. Theorem 5.4.4).

If V = C{t}, the classical Milnor fibers are products of circles as in Example 1.1.8,
hence K(π, 1) spaces, and we can deduce from R2 that Mx is a K(π, 1). But in mixed
characteristic, the Milnor fibers are complicated even for X smooth (Remark 1.1.7). Thus
R1 extends Theorem 1.1.12 to the semistable case, which helps simplify Faltings’ proof
of the Cst conjecture of Fontaine [Fal02], a deep result which in particular implies the
Hodge-Tate decomposition (Theorem 1.1.11).

Results R1 and R4 hold more generally for X log smooth and saturated over S.

The last result R4 is an `-adic analogue of a result of Ogus which treats the complex
analytic case, using Kato-Nakayama spaces.
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1.2 Discussion of the main result

1.2.1 The Fontaine conjectures in p-adic Hodge theory

We continue using the setup and notation of §1.1.2, but assume that the residue field k is
of positive characteristic p. We denote by K0 the fraction field of the ring of Witt vectors
W (k). It is a subfield of K in a natural way, and is endowed with a natural Frobenius
σ : K0 −→K0. For a representation M of Gal(η/η), we denote by M (n) the twist of M by
the n-th power of the p-adic cyclotomic character. Finally, CK stands for the completion
of K with respect to the p-adic metric.

p-adic cohomology theories

Let X be a proper scheme over S whose generic fiber Xη is smooth. One of the principal
aims of p-adic Hodge theory is to relate the p-adic étale cohomology H n(Xη,Qp) — a
finite dimensional Qp -vector space endowed with a Gal(K/K)-action — to the following
invariants of X :

1. the de Rham cohomology

H n
dR(Xη) = (H

n(Xη,Ω
•
Xη/η
),Hodge filtration),

the hypercohomology of the de Rham complex with its Hodge filtration — a finite
dimensional filtered K -vector space,

2. the Hodge cohomology

H n
Hdg(Xη) = gr H n

dR(Xη/η) =
⊕

i+ j=n

H j (Xη,Ω
i
Xη/η
),

a finite dimensional graded K -vector space,

3. (if X is smooth over S) the crystalline cohomology

H n
cris(X ) = (H

n
cris(Xs/W (k))⊗W (k)K0, ϕ, ρ∗(Hodge filtration))

18
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which is a finite dimensional K0-vector space endowed with a σ -linear endomor-
phism

ϕ : H n
cris(X )−→H n

cris(X )

induced by the absolute Frobenius map of X , and a filtration on H n
cris(X )⊗K0

K , in-
herited from the Hodge filtration on H n

dR
(Xη) via the Berthelot–Ogus isomorphism

ρ : H n
cris(X )⊗K0

K ∼−→H n
dR(Xη).

4. (if X is semistable over S) the log-crystalline (Hyodo-Kato) cohomology

H n
log−cris(X ) = (H

n
log−cris(Xs/W (k))⊗W (k)K0, ϕ, ρ∗

π
(Hodge filtration), N )

an object of the same type as H n
cris(X ), together with a linear endomorphism N (the

monodromy operator) satisfying Nϕ = pϕN . Here Xs is endowed with the natural
log structure, and the filtration is inherited from the Hodge filtration on H n

dR
(Xη)

via the Hyodo–Kato isomorphism

ρπ : H n
log−cris(X )⊗K0

K ∼−→H n
dR(Xη)

(depending on the choice of a uniformizer π of V ). See [HK94, 3.4] for the defini-
tion of the monodromy operator N .

Note that HdR and HHdg depend only on the generic fiber, while Hcris (without its
filtration) depends only on the special fiber. The log-crystalline cohomology Hlog−cris

(again without the filtration) depends only on the special fiber with its log structure, which
in turn depends only on X⊗V V /π2. The filtrations on H n

cris and H n
log−cris

are thus needed
to include some information about the lifting of Xs .

The p-adic period rings

The p-adic period rings, defined by Fontaine [Fon82], are certain rings endowed with a
Gal(η/η)-action:

1. BdR, a discrete valuation field with residue field CK ,

2. BHT = grBdR'
⊕

n∈Z CK(n), a graded K -algebra,
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3. Bcris ⊆ BdR, a K0-algebra with a σ -linear homomorphism ϕ : Bcris −→ Bcris,

4. Bst ⊇ Bcris, a Bcris-algebra together with an extension of ϕ and an operator N satisfy-
ing Nϕ = pϕN .

Moreover, a choice of a uniformizer π of V induces an injective Bcris-algebra homo-
morphism Bst−→BdR. This in turns gives a filtration on Bst, the restriction of the valuation
filtration on BdR.

The p-adic comparison theorems

The following result, due to Faltings [Fal02] and Tsuji [Tsu99], lies at the heart of p-adic
Hodge theory.

Theorem 1.2.1 (The Cst conjecture of Fontaine). Let X be a proper semistable scheme over
S. There exists a Gal(η/η)-equivariant isomorphism

H n(Xη,Qp)⊗Qp
Bst 'H n

log−cris(X )⊗K0
Bst,

compatible with ϕ, N , and the filtrations after tensoring with BdR.

Here we regard H n(Xη,Qp) as having N = 0 and ϕ = i d . Moreover, we use the
same uniformizer π in the Hyodo-Kato isomorphism and in the choice of the injection
Bst−→BdR.

As N = 0 on Bcris, in the smooth case this specializes to the following result.

Theorem 1.2.2 (Ccris). Let X be a smooth proper scheme over S. There exists a Gal(η/η)-
equivariant isomorphism

H n(Xη,Qp)⊗Qp
Bcris 'H n

cris(X )⊗K0
Bcris,

compatible with ϕ and the filtrations after tensoring with BdR.

In case we are given only the generic fiber Xη, we can use alterations to reduce to the
semistable case and deduce the following theorem.
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Theorem 1.2.3 (CdR). Let Xη be a smooth proper scheme over η. There exists a Gal(η/η)-
equivariant isomorphism

H n(Xη,Qp)⊗Qp
BdR'H n

dR(Xη)⊗K BdR,

compatible with the filtrations.

Passing to the associated graded vector spaces and using the degeneration of the Hodge
to the Rham spectral sequence, we can then deduce the Hodge-Tate decomposition (The-
orem 1.1.11, also called the CH T conjecture).

1.2.2 Faltings’ topos and coverings by K(π, 1)’s

Let Y be a connected scheme with a geometric point y. If F is a locally constant con-
structible abelian sheaf on Yét, the stalkFy is a representation of the fundamental group
π1(Y, y), and we have natural maps

ρq : H q(π1(Y, y),Fy)−→H q(Yét,F ).

Definition 1.2.4. We call Y a K(π, 1) if for every n invertible on Y , and every F as
above with n ·F = 0, the maps ρq are isomorphisms for all q ≥ 0.

(See Section 2.1.2 for a slightly more general definition and a discussion of this notion.)
Let Xη be a smooth and proper scheme over η. As a step towards CHT and Cst, under

the assumption that there is a smooth proper model X over S, Faltings defines an inter-
mediate cohomology theoryH •(X ) as the cohomology of a certain topos eE . Following
Abbes and Gros [AG11], we call it the Faltings’ topos. This is the topos associated to a
site E whose objects are morphisms V −→ U over XK −→ X with U −→ X étale and
V −→ UK finite étale (see 3.6.1 for the definition). The association (V −→ U ) 7→ V
induces a morphism of topoi

Ψ : XK ,ét −→ eE .

To compare H n(XK ,Qp) and H n(X ), the first step is to investigate the higher direct
images RqΨ∗. Then the existence of coverings by K(π, 1)’s (Theorem 1.1.12) implies that
RqΨ∗F = 0 for q > 0 and every locally constant constructible abelian sheafF on XK . It is
these two results that we are going to generalize.
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For a scheme X over S and an open subscheme X ◦ ⊆X , we denote by eE the Faltings’
topos of X ◦

η
−→ X (see Definition 3.6.1), and by Ψ : X ◦

η,ét
−→ eE the morphism of topoi

3.6.1(c). Consider the following four statements:

(A) X has a basis of the étale topology consisting of U for which U ×X X ◦
η

is a K(π, 1),

(B) for every geometric point x ∈X , Mx ⊗X X ◦ is a K(π, 1),

(C) RqΨ∗F = 0 (q > 0) for every locally constant constructible abelian sheafF on X ◦
η
,

(D) for every locally constant constructible abelian sheafF on X ◦
η

, the natural maps

H q( eE ,Ψ∗(F ))−→H q(X ◦
η,ét,F ).

are isomorphisms for all q ≥ 0.

Then (A) ⇒ (B) ⇒ (C ) ⇒ (D), and the aforementioned theorem of Faltings (1.1.12)
states that (A) holds if X is smooth over S (and X ◦ =X ). Faltings has also shown [Fal88,
Lemma II 2.3] that (B) is true if X is smooth over S and X ◦ is the complement of a normal
crossings divisor relative to S.

1.2.3 K(π, 1) neighborhoods in the log smooth case

It is natural to ask whether these results remain true if we do not require that X be
smooth over S (we still want Xη, or at least X ◦

η
, to be smooth over η). In general, the

answer is no, even for X regular (see Section 3.3 for a counterexample).

The most natural and useful generalization, hinted at in [Fal02, Remark on p. 242],
and brought to our attention by Ahmed Abbes, seems to be the case of X log smooth
over S, where we endow S with the “standard” log structureMS −→ OS , i.e. the com-
pactifying log structure induced by the open immersion η ,→ S. Our first main result
confirms this expectation:

Theorem (3.2.1). Assume that char k = p > 0. Let (X ,MX ) be a log smooth log scheme
over (S,MS) such that Xη is smooth over η. Then (A) holds for X ◦ =X .
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Note that in the applications, in the above situation one usually cares about the case
X ◦ = (X ,MX )tr (the biggest open on which the log structure is trivial). While the theo-
rem deals with X ◦ =X , we are able to deduce corollaries about the other case as well (see
below).

The strategy is to reduce to the smooth case (idea due to R. Lodh) by finding an étale
neighborhood U ′ of x in X and a map

f : U ′ −→W ′

to a smooth S-scheme W ′ such that fη : U ′
η
−→W ′

η
is finite étale. In such a situation, by

Faltings’ result, there is an open neighborhood W of f (x) (x being the underlying point
of x) in W ′ such that Wη is a K(π, 1). Then U = f −1(W ) is an étale neighborhood of x,
and since Uη −→Wη is finite étale, Uη is a K(π, 1) as well.

The proof of the existence of f makes use of the technique of Nagata’s proof of the
Noether normalization lemma, combined with the observation that the exponents used
in that proof can be taken to be divisible by high powers of p (see §3.1.1). Therefore our
proof applies only in mixed characteristic. While we expect the result to be true regardless
of the characteristic, we point out an additional difficulty in equal characteristic zero in
§3.2.4.

We also treat the equicharacteristic zero case and the case with boundary. More pre-
cisely, we use Theorem 3.2.1 and log absolute cohomological purity to prove the follow-
ing:

Theorem (3.6.5+3.6.6). Let (X ,MX ) be a log smooth log scheme over (S,MS) such that Xη

is smooth over η, and let X ◦ = (X ,MX )tr be the biggest open subset on whichMX is trivial.
If char k = 0, assume moreover that (X ,MX ) is saturated. Then (B)–(D) above hold for X
and X ◦.

1.3 Other results

1.3.1 Comparison theorems for Milnor fibers

In the situation of §1.1.2, suppose that V = C{t}. Let X be an S-scheme of finite type
and x ∈X0(C) a point in the special fiber. We would like to compare the homotopy type
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of the classical Milnor fiber Fx with its algebraic version Mx = (X(x))η. For this, we need
a notion of “homotopy equivalence after profinite completion”.

Definition 1.3.1 (cf. [AM69]). A morphism f : X −→ Y of topoi is a \-isomorphism if
for every locally constant sheaf F of finite sets (resp. finite groups, resp. finite abelian
groups) on Y , the pullback map

f ∗ : H q(Y,F )−→H q(X , f ∗F )

is an isomorphism for q = 0 (resp. for q = 0,1, resp. for q ≥ 0).

For a map of schemes f : X −→ Y , the induced map of étale topoi is a \-isomorphism
if and only if its induces an isomorphism of the profinite completions of their étale homo-
topy types. Moreover, for a scheme X of finite type over C, the natural map X an −→Xét

is a \-isomorphism [AM69, 12.9]. We extend this to Milnor fibers as follows:

Theorem (4.2.9). The topoi Fx and Mx are canonically \-isomorphic (meaning that there
exists a canonical chain of \-isomorphisms of topoi connecting the two).

At first, this seems quite unlike the comparison between X an and Xét for X of finite
type over C, as Mx does not admit an analytification, and Fx is not an analytic space (and
is only well-defined up to homotopy). But in fact, the difficulty of defining the chain of
\-isomorphisms aside, this result can almost be deduced from [SGA73b, Exp. XVI, 4.1]
and [SGA73a, Exp. XIV, 2.8]. We give two proofs, whose intermediate results may be of
independent interest. The first one (Theorem 4.3.1) uses [SGA73b, Exp. XVI, 4.1] in the
key step. The second one (Theorem 4.2.9) derives the theorem from the following result:

Theorem (4.2.2). Let R be a normal Noetherian henselian local Q-algebra and let I ⊆ R be
an ideal. Let X = Spec(R)\V (I ), Y = Spec(R̂)\V (I · R̂) where R̂ is the completion of R at
the maximal ideal. Then Yét −→Xét is a \-isomorphism.

The proof uses resolution of singularities and logarithmic geometry (the Kummer
étale topology).
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1.3.2 The monodromy formula

The following is an `-adic version of the “monodromy formula” of Ogus [Ogu]. See the
introduction to Chapter 5 for more context.

Let f : (X ,MX ) −→ (S,MS) be a log smooth and saturated morphism, where
MS−→OS is the standard log structure, let ` be a prime invertible on S, and let Λ be
either Z/`hZ for some h ≥ 1, Z`, or Q`.We assume moreover that f is vertical, i.e., the
log structureMX is the compactifying log structure associated to the inclusion Xη ⊆ X .
The purity theorem implies that we have natural isomorphisms

q
∧

(M
gp

X /S ⊗Λ(−1)) ∼−−→ RqΨ(Λ). (1.9)

The naturality of (1.9) implies that monodromy action of the inertia subgroup I ⊆
Gal(η/η) on RΨ(Λ) is trivial on the cohomology sheaves RqΨ(Λ), and hence induces
for each γ ∈ I a morphism in the derived category

1− γ : RqΨ(Λ)−→ Rq−1Ψ(Λ)[1]. (1.10)

Using the fundamental extension

0−→ f ∗(M
gp

S )−→M
gp

X −→M
gp

X /S −→ 0,

we construct for every γ ∈ I a natural map

q
∧

(M
gp

X /S ⊗Λ(−1))−→
q−1
∧

(M
gp

X /S ⊗Λ(−1))[1] (1.11)

and prove that, under the above identification, it corresponds to (1.10).

Theorem (5.5.1). Under the above assumptions, the diagram
∧q(M

gp

X /S ⊗Λ(−1))
(1.11) //

(1.9)
��

∧q−1(M
gp

X /S ⊗Λ(−1))[1]

(1.9)
��

RqΨ(Λ)
(1.10)

// Rq−1Ψ(Λ)[1]

commutes.

We also provide a version over a standard log point (Theorem 5.4.4), as well as a new
proof of the original result of Ogus.
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CHAPTER 1. INTRODUCTION

1.4 Conventions and notation

For future reference, we record our basic setup. Unless stated otherwise, V is a discrete
valuation ring with perfect residue field k and fraction field K of characteristic zero. We
choose an algebraic closure K of K , and define

S = SpecV , s = Spec k , η= SpecK , η= SpecK .

Moreover, we endow S with the compactifying log structure MS−→OS induced by
the open immersion η−→S.

For a scheme X over S, we call Xs := X ×S s , resp. Xη := X ×S η, resp. Xη := X ×S η

the special (or closed), resp. generic, resp. geometric generic fiber of X . If x is a geometric
point of X , we denote by X(x) the henselization of X at x.
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Chapter 2

Preliminaries

2.1 K(π, 1) spaces

This section recalls the definition of a K(π, 1) space in algebraic topology and algebraic
geometry, establishes some basic properties that apparently do not appear in the litera-
ture, and states the theorems of Artin and Faltings which assert the existence of coverings
of smooth schemes by K(π, 1)’s.

2.1.1 K(π, 1) spaces in algebraic topology

Let us start by recalling the classical theory of the fundamental group seen through cov-
ering spaces (cf. e.g. [Spa81]). Let X be a path connected, semi-locally 1-connected1

topological space. A choice of a base point x ∈ X allows us to define the category
of pointed covering spaces (X ′, x ′) over (X , x). This category has an initial object
p : ( eX ,ex)−→ (X , x) called the (pointed) universal cover of (X , x), and the group π1(X , x)
of automorphisms of eX (without the base point) over X is called the fundamental group
of (X , x). This group can be identified with the automorphism group of the fiber functor,
which is the functor sending a covering space f : X ′ −→ X of X to the fiber f −1(x).
Thus π1(X , x) acts on any such f −1(x) (say on the right), and the fiber functor induces

1this means that every x ∈X is in an open U ⊆X for which π1(U , x)−→π1(X , x) is trivial.
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an equivalence between the category of covering spaces of X and the category of right
π1(X , x)-sets. Under this equivalence, eX corresponds to π1(X , x) with action by mul-
tiplication on the right. Thus eX is a principal π1(X , x)-bundle over X . For a discrete
group G, the functor X 7→ (isomorphism classes of principal G-bundles on X ) is rep-
resented by (the homotopy type of) a space BG (also denoted K(G, 1)) with a principal
G-bundle EG −→ BG (called the universal G-bundle). Therefore there is a map (unique
up to homotopy) ρ : X −→ Bπ1(X , x) to the classifying space of the fundamental group
for which eX is the pullback of the universal π1(X , x)-bundle.

We now turn to describing local systems on X . There is a functor

ρ∗ :π1(X , x)-sets−→ Sheaves(X )

associating to a π1(X , x)-set F a locally constant sheaf F with Fx = F . It can be con-
structed as follows: the constant sheaf F on eX associated to F carries a π1(X , x) action
compatible with the π1(X , x)-action on eX . We define F as the subsheaf of π1(X , x)-
invariants of p∗F . This functor is fully faithful and its essential image is the subcategory
of locally constant sheaves on X . In fact, ρ∗ can be identified with pullback of locally
constant sheaves along ρ : X −→ Bπ1(X , x).

We have Γ(X ,ρ∗(−))' (−)G, hence from the “universal δ-functor” formalism we get
for every π1(X , x)-module M a system of maps

ρq : H q(π1(X , x), M )−→H q(X ,ρ∗(M )).

Even though ρ∗ is exact, these maps do not have to be isomorphisms because ρ∗ does not
always send injective π1(X , x)-modules to acyclic sheaves (e.g. X = 2).

Proposition 2.1.1. The following are equivalent:

(a) we have πi (X ) = 0 for i > 1,

(b) the universal cover eX is weakly contractible,

(c) for every locally constant sheafF on X , the pullback maps H q(X ,F )−→H q( eX , p∗F )
are zero for q > 0.

(d) for every locally constant sheafF on X and any class ω ∈ H q(X ,F ), q > 0 there exists
a covering f : X ′ −→X such that f ∗ω = 0 in H q(X ′, f ∗F ).

28



2.1. K(π, 1) SPACES

(e) the natural transformation i d −→ Rρ∗ρ
∗ is an isomorphism,

(f ) the maps ρq are isomorphisms for any G-module M ,

(g) the map ρ : X −→ Bπ1(X , x) is a weak homotopy equivalence.

Proof. The map ρ : X −→ Bπ1(X , x) is an isomorphism on π1 and πi (Bπ1(X , x)) = 0
for i > 0, hence (g) and (a) are equivalent. They are equivalent to (b) by looking at the
fibration exact sequence of p. Condition (b) implies (c) because H q( eX , f ∗F ) = 0 for
i > 0 as f ∗F is locally constant. Conversely, using F = Z we see that (c) implies that
H q( eX ,Z) = 0 for q > 0. The universal coefficient theorem for cohomology then implies
that Ext1(Hi ( eX ,Z),Z) = 0 and Hom(Hi ( eX ,Z),Z) = 0 for i > 0, thus Hi ( eX ,Z) = 0
for i > 0. By the Hurewicz theorem, πi ( eX ) = 0 for i > 0, i.e., eX is weakly con-
tractible. Naturally (c) is equivalent to (d), as p factors through every f : X ′ −→ X
with X ′ connected. Since the sheaves Rqρ∗F are formed by sheafifying the presheaf
(X ′−→X ) 7→H q(X ′, f ∗F ), we see that (e) is equivalent to both (d) and (f).

Definition 2.1.2. We call a space X satisfying the equivalent conditions of Proposition
2.1.1 a K(π, 1) space.

Because of condition (g), a K(π, 1) space is determined by its fundamental group up
to weak homotopy equivalence.

Example 2.1.3. While for every groupπ there exists a CW complex X which is a K(π, 1),
it is difficult to find finite dimensional examples of K(π, 1) spaces. Some examples of
interest are:

(1) the circle S1, tori (S1)n,

(2) 2-dimensional manifolds other than S2,

(3) hyperbolic manifolds (complete Riemannian manifolds of constant negative sectional
curvature), by the Cartan–Hadamard theorem,

(4) complements of hyperplane arrangements in Cd which are complexifications of sim-
plicial arrangements in Rd [Del72].
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CHAPTER 2. PRELIMINARIES

2.1.2 K(π, 1) spaces in algebraic geometry

We will often consider schemes X satisfying the following condition:

X is coherent and has finitely many connected components (2.1)

(see [AG11, 9.6] for some criteria). A scheme is called coherent if it is quasi-compact and
quasi-separated.

Let Y be a scheme satisfying (2.1). We denote by Fét(Y ) the full subcategory of
the étale site Ét(Y ) consisting of finite étale maps Y ′ −→ Y , endowed with the induced
topology, and by Yfét the corresponding topos (cf. [AG11, 9.2]). Note that the maps
in Fét(Y ) are also finite étale. The inclusion functor induces a morphism of topoi (cf.
[AG11, 9.2.1])

ρ : Yét −→ Yfét.

The pullback ρ∗ identifies Yfét with the category of sheaves on Yét equal to the union
of their locally constant subsheaves (cf. [Ols09, 5.1], [AG11, 9.17]). If Y is connected
and y −→ Y is a geometric point, we have an equivalence of topoi Yfét ' Bπ1(Y, y).
Here, for a profinite group G, BG denotes the classifying topos of G, i.e., the category of
continuous left G-sets.

Definition 2.1.4 ([SGA73b, Exp. IX, Définition 1.1]). Let ℘ be a set of prime numbers,
let T be a topos,F a sheaf of abelian groups on T . We say thatF is a ℘-torsion sheaf if
the canonical morphism

lim−→
n

nF −→F

is an isomorphism, where n ranges over all integers n with ass n ⊆ ℘, ordered by divisi-
bility, and where nF = ker(n :F −→F ).

Proposition 2.1.5. Let ℘ be a set of prime numbers, Y be a scheme satisfying (2.1). The
following conditions are equivalent.

(K a) For every ℘-torsion abelian sheaf F on Yfét, the adjunction map

F −→ Rρ∗ρ
∗F

is an isomorphism.
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2.1. K(π, 1) SPACES

(K b) For every ℘-torsion lcc abelian sheafF on Yét, we have Rqρ∗F = 0 for q > 0.

(K c) For every ℘-torsion lcc abelian sheaf F on Yét, every finite étale ( f : X −→ Y ) ∈
Fét(Y ), and every ζ ∈H q(X , f ∗F ) (q > 0), there exists a cover

{gi : ( fi : Xi −→ Y )−→ ( f : X −→ Y )}i∈I in Fét(Y )

such that f ∗i ζ = 0 ∈H q(Xi , g ∗i f ∗F ) =H q(Xi , f ∗i F ).

(K d) For every ℘-torsion lcc abelian sheaf F on Yét, and every class ζ ∈ H q(Y,F ) with
q > 0, there exists a finite étale surjective map f : Y ′ −→ Y such that f ∗(ζ ) = 0 ∈
H q(Y ′, f ∗F ).

(K e) For every ℘-torsion lcc abelian sheafF on Yét, the maps

ρ∗ : H q(Yfét,ρ∗F )−→H q(Yét,F )

are isomorphisms for all q ≥ 0.

(K f ) For every geometric point y of Y and every ℘-torsion lcc abelian sheaf F on Yét, the
maps

H q(π1(Y, y),Fy)−→H q(Yét,F )

are isomorphisms for all q ≥ 0.

Moreover, these conditions are equivalent to the analogous conditions (K a’)—(K f’) where
“℘-torsion sheaf” is replaced by “sheaf of Z/pZ-modules for some p ∈℘”.

Proof. The equivalence of (K a) and (K b) is [AG11, 9.17]. Conditions (K b) and (K c) are
equivalent because Rqρ∗F is the sheaf associated to the presheaf

( f : X −→ Y ) 7→ H q(X , f ∗F ).

We show that (K c) implies (K d). In case Y is connected, each gi with Xi nonempty
is finite étale surjective, and we get (K d)) by considering Y ′ = Y . The general case of this
implication follows by considering the connected components of Y separately (as (2.1)
implies that Y is the disjoint union of its connected components).
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We prove that (K d) implies (K c). In the situation of (K c), letF0 = f ∗F for brevity,
and consider the sheaf f∗F0. As f is finite étale, f∗F0 is locally constant constructible
and R j f∗F0 = 0 for j > 0, therefore the natural map (2.8)

µ : H q(Y, f∗F0)−→H q(X ,F0), (2.2)

is an isomorphism. Let ζ ′ ∈ H q(Y, f∗F ) map to ζ under (2.2). By (K d), there exists
a finite étale surjective map g : Y ′ −→ Y with g ∗ζ ′ = 0 ∈ H q(Y ′, g ∗ f∗F0). Form a
cartesian diagram

X ′
g ′ //

f ′
��

X

f
��

Y ′ g
// Y.

Then g ′ is finite étale and surjective. Moreover, by Proposition 2.3.1, the diagram

ζ ′ � //

∈

ζ

∈

ζ ′_

��

∈ H q(Y, f∗F0)

g ∗

��

µ // H q(X ,F0)

g ′∗

��
0 ∈ H q(Y ′, g ∗ f∗F0) µ′

// H q(X ′, g ′∗F0)

commutes, hence g ′∗ζ = 0.
Clearly (K b) implies (K e) and (K e) implies (K d). Finally, (K e) and (K f) are equiva-

lent because Y is the disjoint union of its connected components, and if Y is connected
then Yfét can be identified with Bπ1(Y, y).

By the same reasoning, conditions (a’)–(g’) are equivalent, and obviously (a) implies
(a’) etc. We show that (b’) implies (b). By the Chinese remainder theorem, a sheaf as in
(b) is a direct sum of sheaves of Z/p hZ-modules for various p ∈ ℘ and h ≥ 1. Thus it is
sufficient to prove (b) for sheaves of Z/p hZ-modules. We prove this by induction on h,
the case h = 1 being (b’). For h ≥ 2, we consider the extension

0−→ pF −→F −→F/pF −→ 0.

Here both pF andF/pF are both sheaves of Z/p h−1Z-modules, and hence the assertion
of (b) holds for them. Considering the long exact sequence for Rqρ∗ shows that the same
is true forF .
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Definition 2.1.6 (cf. [Ols09, Definition 5.3]). Let℘ be a set of prime numbers. A scheme
Y satisfying (2.1) is called a K(π, 1) for ℘-torsion coefficients if the equivalent conditions
of Proposition 2.1.5 are satisfied. If ℘ is the set of primes invertible on Y , we simply call
Y a K(π, 1).

Lemma 2.1.7. The assertions of (K b)–(K f) are always satisfied for q = 1.

Proof. Let us check (K d). A class ζ ∈ H 1(Y,F ) corresponds to an isomorphism class of
an F -torsor f : Y ′ −→ Y . The pullback Y ′×Y Y ′ −→ Y ′ has a section, and hence is a
trivial f ∗F -torsor, thus the corresponding class f ∗ζ ∈H 1(Y ′, f ∗F ) is zero.

Proposition 2.1.8. Let ℘ be a set of prime numbers, and let Y be a scheme satisfying 2.1.

(a) Let f : X −→ Y be a finite étale surjective map. Then X satisfies 2.1, and Y is a K(π, 1)
for ℘-adic coefficients if and only if X is.

(b) Suppose that Y is of finite type over a field F and that F ′ is a field extension of F . Denote
X = YF ′ . Then X satisfies 2.1, and Y is a K(π, 1) if and only if X is.

Proof. (a) If X is a K(π, 1), Y is a K(π, 1) as well by condition (K d). Suppose that
Y is a K(π, 1) and let F0 be a locally constant constructible ℘-torsion sheaf on Xét,
ζ ∈ H q(X ,F0) (q > 0). Apply the same reasoning as in the proof of Proposition 2.1.5,
equivalence of (K c) and (K d).

(b) If F ′/F is a finite separable extension, this follows from (a) as then X −→ Y is
finite étale and surjective. If F ′ is a separable closure of F , the assertion follows from the
characterization in (a) and usual limit arguments. If F ′/F is finite and purely inseparable,
X −→ Y induces equivalences Xét ' Yét and Xfét ' Yfét, so there is nothing to prove. If
F ′ and F are both algebraically closed, the assertion follows from [SGA73b, Exp. XVI,
1.6]. If F ′/F is arbitrary, pick an algebraic closure F

′
and let F be the algebraic closure of

F in F
′
. We now have a “path” from F to F ′ of the form

F ⊆ F sep ⊆ F ⊆ F
′
⊇ (F ′)sep ⊇ F ′

and the assertion follows from the preceding discussion.

Theorem 2.1.9 (M. Artin, follows from [SGA73b, Exp. XI, 3.3], cf. [Ols09, Lemma
5.5]). Let Y be a smooth scheme over a field of characteristic zero, y a point of Y . There exists
an open neighborhood U of y which is a K(π, 1).
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Theorem 2.1.10 (Faltings, [Fal88, Lemma 2.1], cf. [Ols09, Theorem 5.4]). Let S be as in
1.4, let Y be a smooth S-scheme, and let y be a point of Y . There exists an open neighborhood
U of y for which Uη is a K(π, 1).

Example 2.1.11. The following are examples of K(π, 1) schemes:

(1) Spec k for a field k,

(2) a scheme of cohomological dimension ≤ 1 (Lemma 2.1.7),

(3) a smooth connected curve X over a field k such that Xk is not isomorphic to P1
k
,

(4) an abelian variety over a field.

Example 2.1.12. Let p be a prime. Then every connected affine Fp -scheme X is a K(π, 1)
for p-torsion coefficients. We check condition (K d’). LetF be an lcc Z/pZ-sheaf on X ,
and let ζ ∈ H q(X ,F ) (q > 0). We need to find a finite étale cover X ′ −→ X killing ζ .
First, we can assume thatF is constant, as there exists a finite étale cover X ′ −→X such
that the pullback of F to X ′ is constant, with X ′ affine and connected. Second, we can
reduce to the caseF = Fp . In this case, the Artin–Schreier sequence on Xét

0−→ Fp −→OX
1−F−−→OX −→ 0

together with Serre vanishing (H q(Xét,OX ) = H q(X ,OX ) = 0 for q > 0) shows that
H q(X ,Fp) = 0 for i > 1. Thus is q > 1, we are done. If q = 1, then ζ corresponds
to an Fp -torsor on Xét, which again can be made trivial by a finite étale X ′ −→X .

This example has been recently used by Scholze [Sch13, 4.9] to show that any Noethe-
rian affinoid adic space over Spa(Qp ,Zp) is a K(π, 1) for p-adic coefficients.

2.1.3 Complements and examples

Definition 2.1.13 ([Ser63, §2.6]). Let G be a discrete group, and let ι : G−→Ĝ denote its
pro-finite completion. We call G a good group if for every finite Ĝ-module M , the maps

ι∗ : H q(Ĝ, M )−→H q(G, M )

are isomorphisms for all q ≥ 0.
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Example 2.1.14. Some examples of good groups:

(1) finite groups,

(2) finitely generated free groups and finitely generated free abelian groups,

(3) iterated extensions of groups of type (1) and (2),

(4) braid groups (a special case of (3)),

(5) the Bianchi groups P SL(2,Od ), where Od is the ring of integers in an imaginary
quadratic number field Q(

p
−d ) [GJZZ08, Theorem 1.1].

Arithmetic groups are not good in general (e.g. Sp(2n,Z) is not a good group for
n > 1 [GJZZ08]). It is not known whether the mapping class groups Γg ,n (the orbifold
fundamental group ofMg ,n) are good groups [LS06, 3.4].

Proposition 2.1.15. Let X be a connected scheme of finite type over C, X an the associated
analytic space, and x ∈X (C). Consider the following three conditions.

(1) X is a K(π, 1) scheme.

(2) X an is a K(π, 1) space.

(3) The fundamental group π1(X
an, x) is a good group.

Then (1)&(2)⇒ (3) and (2)&(3)⇒ (1).

Proof. Denote by ε the natural map of topoi X an −→ Xét. Pullback by ε induces an
equivalence of categories of locally constant sheaves of finite abelian groups on Xét and
X an and identifies π1(X , x) with the profinite completion of π1(X

an, x). LetF be an lcc
sheaf on Xét, and let q ≥ 0. We have a commutative diagram

H q(π1(X
an, x),Fx) // H q(X an,ε∗F )

H q(π1(X , x),Fx) //

OO

H q(Xét,F ).

OO

The map ε∗ : H q(Xét,F ) −→ H q(X an,ε∗F ) is an isomorphism by [SGA73b, Exp. XVI
Théoreme 4.1]. Thus out of the three remaining maps, if two are isomorphisms, so is the
third.
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Note that we do not get (1)&(3)⇒ (2), as neither (1) nor (3) gives us any information
about the cohomology of X an with non-torsion coefficients. Still, we see that (1)&(3)
implies that X an is a “K(π, 1) for local systems of finite groups”.

Remark 2.1.16. We expect the same statement to hold for Deligne–Mumford stacks
of finite type over C, with their orbifold fundamental groups. In particular, the open
question whether Γg ,n is a good group [LS06, 3.4] would be equivalent to the question
whether the stackMg ,n is a K(π, 1) in the algebraic sense. Similarly, as the orbifold fun-
damental group ofAg is Sp(2g ,Z), while the orbifold universal cover ofAg is the Siegel
upper-half space (which is contractible), the stackAg (g > 1) gives a probable example of
a smooth Deligne–Mumford stack which is a K(π, 1) in the analytic sense but not in the
algebraic sense.

2.2 Logarithmic geometry

In this section, we review the relevant facts from log geometry and investigate the local
structure of a log smooth S-scheme (with the standard log structures on X and S). We
also state the logarithmic version of absolute cohomological purity, used in the remaining
chapters.

2.2.1 Conventions about log geometry

If P is a monoid, P denotes the quotient of P by its group P ∗ of invertible elements, and
P −→ P gp is the universal (initial) morphism form P into a group. P is called fine if it
is integral (i.e., P −→ P gp is injective) and finitely generated. A face of a monoid P is
a submonoid F ⊆ P satisfying x + y ∈ F ⇒ x, y ∈ F . For an integral monoid P and
face F , the localization of P at F is the submonoid PF of P gp generated by P and −F . It
satisfies the obvious universal property. If Q is a submonoid of an integral monoid P , the
quotient P/Q is defined to be the image of P in P gp/Qgp. A monoid P is called saturated
if it is integral and if whenever nx ∈ P for some n > 0, x ∈ P gp, we have x ∈ P .

For a monoid P , AP = Spec(P −→ Z[P]) is the log scheme associated to P ; for
a homomorphism θ : P −→ Q, Aθ : AQ −→ AP is the induced morphism of log
schemes. A morphism (X ,MX )−→ (Y,MY ) of log schemes is strict if the induced map
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f [ : f ∗MY −→ MX is an isomorphism. A strict map to some AP is called a chart. A
log scheme is fine if étale locally it admits a chart with target AP for a fine monoid P .
If j : U −→ X is an open immersion, the compactifying log structure on X associated to
U is the preimage of j∗O ∗U under the restriction map OX −→ j∗OU . For a log scheme
(X ,MX ), we denote by (X ,MX )tr the complement of the support ofM X . It is an open
subset of X if (X ,MX ) is fine, the biggest open subset on which MX is trivial. Refer-
ences: [Kat89, Ogu, ACG+13].

We recall Kato’s structure theorem for log smooth morphisms (which for our pur-
poses might as well serve as a definition):

Theorem 2.2.1 (cf. [Kat89, Theorem 3.5]). Let f : (X ,MX )−→ (S,MS) be a morphism
of fine log schemes. Assume that we are given a chart π : (S,MS) −→ AQ with Q a fine
monoid. Then f is log smooth if and only if, étale locally on X , there exists a fine monoid P , a
map ρ : Q −→ P such that the kernel and the torsion part of the cokernel of ρgp : Qgp −→ P gp

are finite groups of order invertible on S, and a commutative diagram

(X ,MX ) //

f %%

AP,ρ,π
//

��

AP

Aρ

��
(S,MS) π

// AQ ,

where the square is cartesian (in the category of log schemes) and (X ,MX )−→AP,ρ,π is strict,
and étale (as a morphism of schemes).

2.2.2 Charts

Suppose that f : (X ,MX ) −→ AP is a chart with P a fine monoid, and x−→X is a ge-
ometric point. Let F ⊆ P be the preimage of 0 under the induced homomorphism
P −→M X ,x . Then F is a face of P , and P injects into the localization PF . Moreover, the
induced map P/F −→M X ,x is an isomorphism.

As P is finitely generated, F is finitely generated as a face, hence the natural map
APF
−→ AP is an open immersion: if F is generated as a face by an element a ∈ P , then
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APF
=D(a). Let us form a cartesian diagram

(U ,MX |U )

��

// APF

��
(X ,MX ) f

// AP .

Then U = D( f ∗a) and x lies in U because f ∗a is an invertible element of OX ,x by the
construction of F .

It follows that any chart f : (X ,MX )−→AP as above can be locally replaced by one
for which the homomorphism P −→ M X ,x is an isomorphism, without changing the
local properties of f (e.g. without sacrificing étaleness if f is étale).

2.2.3 Absolute cohomological purity

We will need the following result (cf. [Nak98, Proposition 2.0.2]): let (X ,MX ) be a
regular [Kat94, Definition 2.1] (in particular, fine and saturated) log scheme such that X
is locally Noetherian. Let X ◦ = (X ,MX )tr be the biggest open subset on whichMX is
trivial, and let j : X ◦ −→ X be the inclusion. Let n be an integer invertible on X . Then
for any q ≥ 0, we have a natural isomorphism

Rq j∗(Z/nZ)'
∧q
M

gp

X ⊗Z/nZ(−1). (2.3)

We will have a closer look at how these isomorphisms are constructed in Chapter 5.

2.2.4 Saturated morphisms

Before defining saturated morphisms (a notion introduced by K. Kato and developed by
T. Tsuji [Tsu97]), let us discuss a certain simple phenomenon related to fiber products in
log geometry. We will need the assumption that a morphism of log schemes is saturated
on several occasions, for a reason closely related to this phenomenon.

Let (X ,MX ) = AN ⊗C, which is the affine line A1 over C equipped with the log
structure induced by inclusion of U = A1 \ {0}. The double cover V = A1 \ {0}−→U ,
z 7→ z2, extends to a Kummer étale map (Y,MY ) =AN⊗C−→(X ,MX ). Note that V is
an étale Z/2Z-torsor over U , and hence V ×U V has a section over V (in particular, it
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is disconnected). Since (Y,MY )/(X ,MX ) should behave like V /U , we shall investigate
the fiber product (Z ,MZ) := (Y,MY )×(X ,MX )

(Y,MY ) in the category of log schemes.
The scheme Z is the union of two copies of A1 glued together transversally at the

origins, and the log structureMZ is trivial away from the origin. The stalk ofM Z at the
origin is the pushout

N 2 //

2
��

N

��

N //M Z ,0.

This is the submonoid of N× Z/2Z generated by (1,0) and (1,1). It is therefore non-
saturated, as (0,1)+ (0,1) = (0,0) ∈M Z ,0 while (0,1) /∈M Z ,0.

If the fiber product is taken in the category of fs log schemes instead, (Z ,MZ) is
replaced by its saturation (Z ′,MZ ′), where Z ′ is the disjoint union of two affine lines AN.
The moral of this is that it is more natural to take fiber products in the category of fs log
schemes. Saturated morphisms are morphisms for which there is no distinction between
the two types of fiber product.

Definition 2.2.2. A morphism f : (X ,MX )−→(S,MS) of fs log schemes is called
saturated if for every map (S ′,MS ′)−→(S,MS) of fs log schemes, the fiber product
(X ′,MX ′) = (X ,MX )×(S,MS )

(S ′,MS ′) (in the category of log schemes) is an fs log scheme.

This definition is equivalent to the original definition [Tsu97, Definition II 2.10] for
morphisms of fs log schemes. This follows from [Tsu97, Proposition II 2.13(2)] and
[Kat89, 4.3.1].

The situation of interest for us will be that of a smooth log scheme over a standard
log point or log trait. In these situations, one has a simple characterization of saturated
morphisms.

Theorem 2.2.3 (cf. [IKN05, Remark 6.3.3]). Let (S,MS) be a trait with the standard log
structure (resp. a standard log point), and let f : (X ,MX )−→(S,MS) be a smooth morphism
of fs log schemes. Then f is an integral morphism [Kat89, 4.3]. Furthermore, the following
conditions are equivalent:

(1) f is saturated,
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(2) Xs is reduced (resp. X is reduced),

(3) M
gp

X /S is torsion-free.

Proof. That f is integral follows from [Kat89, Corollary 4.4(ii)]. The equivalence of (1)
and (2) is [Tsu97, Theorem II 4.2] (see also [Ogu, Theorem 4.8.14]). The equivalence
of (1) and (3) follows from Kato’s structure theorem Theorem 2.2.1 and [Ogu, Theorem
4.8.14].

2.3 Functoriality of cohomology pullback maps

This section checks a certain functoriality property of cohomology of topoi, needed in
Section 2.1.2. The result we need (Proposition 2.3.1) states that given a commutative
diagram of topoi

X ′
g ′ //

f ′
��

X

f
��

Y ′ g
// Y

(2.4)

and a sheafF on X , there exist certain natural commutative diagrams (2.9)

H q(Y, f∗F )

��

// H q(X ,F )

��
H q(Y ′, g ∗ f∗F ) // H q(X ′, g ′∗F )

for all q ≥ 0.

2.3.1 Base change morphisms

Suppose we are given a commutative diagram of morphisms of topoi as in (2.4), that is, a
diagram of morphisms together with a chosen isomorphism

ι : f∗ g
′
∗ ' g∗ f ′∗ . (2.5)

By adjunction, this also induces an isomorphism (also denoted ι)

ι : f ′∗ g ∗ ' g ′∗ f ∗. (2.6)
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Applying f∗ to the unit η : i d −→ g ′∗ g
′∗ and composing with (2.5) yields a map

f∗ −→ f∗ g
′
∗ g
′∗ ' g∗ f ′∗ g ′∗,

which (using the adjunction between g ∗ and g∗) gives us a map

ϕ : g ∗ f∗ −→ f ′∗ g ′∗ (2.7)

called the base change morphism.
Similarly, applying g ′∗ to the counit ε : f ∗ f∗ −→ i d , and composing with (2.6) yields

a map
f ′∗ g ∗ f∗ ' g ′∗ f ∗ f∗ −→ g ′∗,

which (using the adjunction between f ′∗ and f ′∗ ) gives us another map g ∗ f∗ −→ f ′∗ g ′∗ that
is equal to (2.7) by [SGA73b, Exp. XVII, Proposition 2.1.3].

2.3.2 Cohomology pullback morphisms

Recall that if f : X −→ Y is a morphism of topoi, there is a natural map of δ-functors
from the category of abelian sheaves on Y to the category of abelian groups:

f ∗ : H q(Y,−)−→H q(X , f ∗(−)).

Indeed, the right hand side is aδ-functor because f ∗ is exact, the transformation is defined
for q = 0, and H q(Y,−) is a universal δ-functor.

The formation of this map is compatible with composition, that is, if g : Z −→ X is
another map, the diagram (of δ-functors of the above type)

H q(Y,−) f ∗ //

( f g )∗

��

H q(X , f ∗(−))
g ∗

��
H q(Z , ( f g )∗(−)) H q(Z , g ∗ f ∗(−))

commutes.
Applying this to the situation of 2.3.1 and composing with the map induced by the

counit ε : f ∗ f∗ −→ i d , we get a system of natural transformations

µ : H q(Y, f∗(−))
f ∗
−−→H q(X , f ∗ f∗(−))

ε−−→H q(X ,−). (2.8)

These coincide with the edge homomorphisms in the Leray spectral sequence for f by
[Gro61, 0I I I 12.1.7].
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2.3.3 Compatibility of base change and pullback

In the situation of the previous subsection, let µ′ be the following composition

µ′ : H q(Y ′, g ∗ f∗(−))
ϕ
−→H q(Y ′, f ′∗ g ′∗(−))

f ′∗
−→H q(X ′, f ′∗ f ′∗ g ′∗(−)) ε

′

−→H q(X ′, g ′∗(−)),

where ε′ : f ′∗ f ′∗ −→ i d is the counit. The goal of this section is to prove the following
compatibility.

Proposition 2.3.1. The diagram

H q(Y, f∗(−))
g ∗

��

µ // H q(X , (−))
g ′∗

��
H q(Y ′, g ∗ f∗(−)) µ′

// H q(X ′, g ′∗(−))

(2.9)

commutes.

Proof. The assertion will follow from the commutativity of the following diagram

H q(Y, f∗(−))

g ∗ (I)

��

f ∗ // H q(X , f ∗ f∗(−))
g ′∗ (III)
��

ε // H q(X ,−)
g ′∗

��
H q(X ′, g ′∗ f ∗ f∗(−))

ι
g ′∗(ε)

// H q(X ′, g ′∗(−))

H q(Y ′, g ∗ f∗(−))

ϕ (II)
��

f ′∗ // H q(X ′, f ′∗ g ∗ f∗(−))

f ′∗(ϕ)
��

(IV)

H q(Y ′, f ′∗ g ′∗(−))
f ′∗
// H q(X ′, f ′∗ f ′∗ g ′∗(−)).

ε′

<<

Square (I) commutes by the functoriality of f ∗ (2.3.2). Squares (II) and (III) commute
simply because f ∗ is a natural transformation.

It remains to prove that (IV) commutes. This in turn will follow from the commuta-
tivity of

f ′∗ g ∗ f∗
ι

f ′∗(ϕ)
��

g ′∗ f ∗ f∗
g ′∗(ε)
��

f ′∗ f ′∗ g ′∗
ε′

// g ′∗.
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By the discussion of 2.3.1, the composition g ′∗(ε)◦ι above is adjoint (under the adjunction
between f ′∗ and f ′∗ ) to the base change map ϕ : g ∗ f∗ −→ f ′∗ g ′∗. It suffices to show that
ε ◦ f ′∗(ϕ) is also adjoint to the base change map. This follows precisely from the triangle
identities for the adjunction between f ′∗ and f ′∗ .
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Chapter 3

K(π, 1) neighborhoods
and p-adic Hodge theory

Recall the setting of §1.4. The goal of this chapter is to prove the main result of this thesis.

Theorem (3.2.1). Assume that char k = p > 0. Let (X ,MX ) be a log smooth log scheme
over (S,MS) such that Xη is smooth over η. Then there exists an étale cover of X by schemes
U such that Uη is a K(π, 1).

Corollary (3.6.6). Let (X ,MX ) be a log smooth log scheme over (S,MS) such that Xη is
smooth over η, and let X ◦ be the biggest open subset on which MX = O ∗X . If char k = 0,
assume moreover that (X ,MX ) is saturated. Let eE denote the Faltings’ topos of X ◦

η
−→ X

(cf. Definition 3.6.1), Ψ : X ◦
η
−→ eE the natural morphism of topoi. Then for every locally

constant constructible abelian sheafF on X ◦
η

, the natural maps

H q( eE ,Ψ∗(F ))−→H q(X ◦
η,ét,F )

are isomorphisms for all q ≥ 0.
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3.1 η-étale maps and Noether normalization

This section contains the key technical point used in the proof of Theorem 3.2.1. First,
we prove a (slightly spiced-up) relative version of the Noether Normalization Lemma
(Proposition 3.1.3). Then we study η-étale maps f : X −→ Y over S, that is, maps
which are étale in an open neighborhood of the closed fiber Xs of X . The main result
is Proposition 3.1.8, which asserts that in mixed characteristic we can often replace an
η-étale map f ′ : X −→Ad

S by a quasi-finite η-étale map f : X −→Ad
S .

3.1.1 Relative Noether normalization

Lemma 3.1.1. Let F be a field, and let a ∈ F [x1, . . . , xn] be a nonzero polynomial. For large
enough m, the polynomial

a(x1− x m
n , x2− x m2

n , . . . , xn−1− x mn−1

n , xn),

treated as a polynomial in xn over F [x1, . . . , xn−1], has a constant leading coefficient.

Proof. Standard, cf. e.g. [Mum99, §1] or [Sta14, Tag 051N].

Definition 3.1.2. Let f : X −→ Y be a map of schemes over some base scheme S. We
call f fiberwise finite relative to S if for every point s ∈ S, the induced map Xs −→ Ys is
finite.

Let V , S, . . . be as in 1.4 (the assumptions on K and k are unnecessary here). The
following is a relative variant of Noether normalization. In the applications we will take
N to be a high power of p.

Proposition 3.1.3. Let X = Spec R be a flat affine S-scheme of finite type, let d ≥ 0 be an
integer such that dim(X /S) ≤ d , and let x1, . . . , xd ∈ R. For any integer N ≥ 1, there exist
y1, . . . , yd ∈ R such that the following conditions hold.

(i) The map f = ( f1, . . . , fd ) : X −→Ad
S , fi = xi + yi , is fiberwise finite relative to S.

(ii) The yi belong to the subring generated by N-th powers of elements of R.
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Proof. Write R = V [x1, . . . , xd , xd+1, . . . , xn]/I . The proof is by induction on n − d . If
n = d , then the map (x1, . . . , xd ) : X −→Ad

S is a closed immersion, and we can take yi = 0.
Suppose that n > d .

Let a ∈ V [x1, . . . , xn] be an element of I with nonzero image in k[x1, . . . , xn]. Such
an element exists, for otherwise Xs is equal to An

s , hence cannot be of dimension ≤ d as
n > d .

For an integer m ≥ 1, consider the elements

zi = xi + x (N m)i

n , i = 1, . . . , n− 1,

and let R′ ⊂ R be the V -subalgebra generated by z1, . . . , zn−1. By Lemma 3.1.1 applied to
the image of a in K[x1, . . . , xn] (with F =K) resp. k[x1, . . . , xn] (with F = k), there exists
an m such that the images of xn in R⊗K , resp. R⊗ k will be integral over R′⊗K , resp.
R′ ⊗ k. As xi = zi − x (N m)i

n , the other xi will have the same property, which is to say,
Spec R−→ Spec R′ is fiberwise finite over S.

We check that it is possible to apply the induction assumption to X ′ = Spec R′ and
z1, . . . , zd ∈ R′. Since R′ is a subring of R and R is torsion-free, R′ is torsion-free as well,
hence flat over V . As R′⊗V K −→ R⊗V K is finite and injective, we have dimX ′

η
= dimXη.

Since R′ is flat over V , we have dimX ′s ≤ dimX ′
η
, so dimX ′s ≤ d as well. Finally, R′ is

generated as a V -algebra by n− 1 elements with z1, . . . , zd among them.
By the induction assumption applied to X ′ = Spec R′ and z1, . . . , zd ∈ R, there ex-

ists a fiberwise finite map f ′ = ( f1, . . . , fd ) : Spec R′ −→ Ad
S with fi = zi + y ′i , where

the y ′i belong to the subring of R′ generated by N -th powers of elements of R′. As
the composition of fiberwise finite maps is clearly fiberwise finite, the composition
f = ( f1, . . . , fn) : X = Spec R −→ Ad

S is fiberwise finite (i). We have fi = xi + yi ,
yi = y ′i +(x

N i−1 m i

n )N , so (ii) is satisfied as well.

It would be interesting to have a generalization of this result to a general Noetherian
local base ring V .

3.1.2 η-étale maps

We now assume that char k = p > 0. Let f : X −→ Y be a map of S-schemes of finite
type.

47



CHAPTER 3. K(π, 1)NEIGHBORHOODS AND P -ADIC HODGE THEORY

Definition 3.1.4. We call f η-étale at a point x ∈ Xs if there is an open neighborhood
U of x in X such that fη : Uη −→ Yη is étale. We call f η-étale if it is η-étale at all
points x ∈ Xs , or equivalently, if there is an open neighborhood U of Xs in X such that
fη : Uη −→ Yη is étale.

We warn the reader not to confuse “ f is η-étale” with “ fη is étale” (the latter is a
stronger condition).

Lemma 3.1.5. Consider the following properties.

(i) The map f is η-étale.

(ii) There exists an n ≥ 0 such that (pnΩ1
X /Y )|Xs

= 0 (pullback as an abelian sheaf ).

(iii) There exists an n ≥ 0 such that (pnΩ1
X /Y )⊗V k = 0.

Then (i)⇒ (ii)⇔ (iii), and the three properties are equivalent if Xη and Yη are smooth of the
same relative dimension d over S.

Proof. The equivalence of (ii) and (iii) follows from Nakayama’s lemma.
Suppose that f is η-étale, and let U ⊆ X be an open subset containing Xs such that

f |Uη is étale. In particular, f |Uη is unramified, hence Ω1
X /Y |Uη = 0.

Recall that if F is a coherent sheaf on a Noetherian scheme U and a ∈ Γ(U ,OU ),
then F|D(a) = 0 if and only if anF = 0 for some n ≥ 0. Applying this to F = Ω1

X /Y |U
and a = p (noting that Uη = D(p)), we get that (pnΩ1

X /Y )|U = 0, hence in particular
(pnΩ1

X /Y )|Xs
= 0.

Suppose now that (pnΩ1
X /Y )|Xs

= 0 for some n ≥ 0. By Nakayama’s lemma,
(pnΩ1

X /Y )x = 0 for every x ∈ Xs , hence there is an open subset U containing Xs such
that (pnΩ1

X /Y )|U = 0. As p is invertible on Uη, we get that Ω1
X /Y |Uη = 0, that is, f |Uη is

unramified. If Xη and Yη are smooth of the same dimension over S, this is enough to
guarantee that f |Uη is étale.

Lemma 3.1.6. Suppose that f is closed and η-étale. There exists an open neighborhood W of
Ys in Y such that f : f −1(W )η −→Wη is étale.

Proof. Let Z ⊆ Xη be the locus where fη is not étale. Then Z is closed in X . Since f is a
closed, f (Z) is closed in Y , and of course f (Z)∩Ys =∅. Take W = Y \ f (Z).
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We now consider the case Y =Ad
S .

Lemma 3.1.7. Suppose that f ′ : X −→Ad
S is such that (pnΩ1

f ′
)|Xs
= 0 and that y1, . . . , yd ∈

Γ(X ,OX ) are polynomials in pn+1-powers of elements of Γ(X ,OX ). If f = f ′+ (y1, . . . , yd ),
then (pnΩ1

f
)|Xs
= 0 as well.

Proof. Let Sn = SpecV /pn+1V , Xn =X ×S Sn. The presentations

O d
X

d f ′i−−→Ω1
X /S −→Ω

1
f ′
−→ 0, O d

X

d fi−−→Ω1
X /S −→Ω

1
f −→ 0

give after base change to Sn the short exact sequences

O d
Xn

d f ′i−−→Ω1
Xn/Sn

−→Ω1
f ′
/pn+1 −→ 0, O d

Xn

d fi−−→Ω1
Xn/Sn

−→Ω1
f /pn+1 −→ 0.

By the assumption on the yi , we have d yi ∈ pn+1Ω1
X /S , therefore the two maps O d

Xn
−→

Ω1
Xn/Sn

above are the same. It follows that Ω1
f
/pn+1 ' Ω1

f ′
/pn+1. The assumption that

(pnΩ1
f ′
)|Xs
= 0 means that pnΩ1

f ′
/π pnΩ1

f ′
= 0 for a uniformizerπ of V . As p = uπe for a

unit u ∈V and e ≥ 1 an integer, we have pnΩ1
f ′
/pn+1Ω1

f ′
= 0. SinceΩ1

f
/pn+1 'Ω1

f ′
/pn+1,

the same holds for Ω1
f
. We thus have (pnΩ1

f
)|Xn
= 0, hence (pnΩ1

f
)|Xs
= 0.

Proposition 3.1.8. Assume that X affine and flat over S, that Xη is smooth of relative
dimension d over S, and that f ′ : X −→Ad

S is η-étale. There exists an f : X −→Ad
S which

is η-étale and fiberwise finite over S.

Proof. By Lemma 3.1.5, there exists an n such that (pnΩ1
f ′
)|Xs
= 0. Apply Proposition

3.1.3 to xi = f ′i and N = pn+1, obtaining a fiberwise finite f : X −→ Ad
S which differs

from f ′ by some polynomials in pn+1-powers. Then f is η-étale by Lemma 3.1.7 and
Lemma 3.1.5.

3.2 Existence of K(π, 1) neighborhoods

3.2.1 Charts over a trait

In the situation of §1.4, let f : (X ,MX ) −→ (S,MS) be a log smooth morphism. Ap-
plying Theorem 2.2.1 to a chart π : (S,MS) −→ AN given by a uniformizer π of V , we
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conclude that, étale locally on X , there exists a strict étale g : (X ,MX )−→AP,ρ,π where

AP,ρ,π = Spec

�

P −→
V [P]

(π−ρ)

�

(3.1)

for a fine monoid P and a non-invertible element ρ ∈ P with the property that (P/ρ)gp

is p-torsion free.
Assume that Xη is smooth over η. Localizing P , we can assume that the scheme un-

derlying (AP,ρ,π)η is smooth over η as well. But (AP,ρ,π)η is isomorphic to Spec(P/ρ−→
K[P/ρ]). Note that for a fine monoid M , SpecK[M ] is smooth over K if and only if M is
a free monoid. It follows that P/ρ is free, and therefore the stalks ofMX /S :=MX/ f [MS

are free monoids. Moreover, every geometric point x of X has an étale neighborhood U
such that (Uη,MX |Uη)tr is the complement of a divisor with strict normal crossings on
Uη.

3.2.2 Proof of the main theorem

Theorem 3.2.1. Assume that char k = p > 0. Let (X ,MX ) be a log smooth log scheme over
(S,MS) such that Xη is smooth over η, and let x −→X be a geometric point. There exists an
étale neighborhood U of x such that Uη is a K(π, 1).

Proof. If x is contained in Xη, the existence of such a neighborhood follows from Theo-
rem 2.1.9. We are therefore going to restrict ourselves to the case where x is a geometric
point of the closed fiber Xs . The question being étale local around X , we are allowed to
shrink X around x if needed.

Let π be a uniformizer of V , inducing a chart (S,MS)−→ AN. By the discussion of
3.2.1, in an étale neighborhood of x there exists a fine monoid P , an element ρ ∈ P such
that P/ρ is a free monoid, and an étale map

g : X −→AP,ρ,π = Spec

�

P −→
V [P]

(π−ρ)

�

over S.
We can replace X by an étale neighborhood of x for which the above data exist.

Shrinking X further, we can also assume that X is affine.
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Let us denote by P[ρ−1] the submonoid of P gp generated by P and ρ−1, and by P/ρ
the quotient of P[ρ−1] by the subgroup generated by ρ. Since P[ρ−1] = P/ρ is free, there
is an isomorphism P[ρ−1] ' P[ρ−1]∗⊕ P[ρ−1]. Picking an isomorphism P[ρ−1] 'Nb

and a decomposition of P[ρ−1]∗, we can write P[ρ−1] ' T ⊕Z⊕Za ⊕Nb where T is
a finite abelian group and ρ corresponds to an element of the Z summand. Dividing by
ρ, we obtain an isomorphism P/ρ ' T ⊕ Za ⊕Nb . Let d = a + b , and let χ0 : Nd =
Na ⊕Nb −→ T ⊕Za ⊕Nb ' P/ρ be the map implied by the notation. As the source of
χ0 is free and P −→ P/ρ is surjective, we can choose a lift χ : Nd −→ P of χ0:

Nd

χ0
��

χ

xxP // // P/ρ.

Then χ induces a map h : AP,ρ,π −→Ad
S over S.

I claim that hη is étale. Note first that hη is the pullback under π : η −→ AZ of the
horizontal map in the diagram

AP[ρ−1]

""

Aρ⊕χ // AZ×ANd

zz
AZ

We want to check that the horizontal map becomes étale after base change to Q. Since
the base is AZ =Gm and the map is Gm-equivariant, it suffices to check this on one fiber.
If we set ρ= 1, the resulting map is none other than the map induced by

Nd =Na ⊕Nb ,→ Za ⊕Nb ,→ T ⊕Za ⊕Nb ' P/ρ= P[ρ−1]/ρ,

which is étale after adjoining 1/#T .

Let f ′ = h ◦ g : X −→ Ad
S . This map is η-étale, therefore by Proposition 3.1.8, there

exists a map f : X −→Ad
S which is η-étale and fiberwise finite over S (hence quasi-finite).

As f is quasi-finite, we can perform an étale localization at x and y which will make it
finite. More precisely, we apply [Gro67, Théorème 18.12.1] (or [Sta14, Tag 02LK]) and
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conclude that there exists a commutative diagram

x

��

// U ′

f
��

// X

f
��

y //W ′ // Ad
S

with U ′ −→X ′ and W ′ −→Ad
S étale and f : U ′ −→W ′ finite. It follows that f : U ′ −→

W ′ is also η-étale.

By Lemma 3.1.6 applied to f : U ′ −→W ′, we can shrink W ′ around y (and shrink
U ′ accordingly to be the preimage of the new W ′) so that U ′

η
−→W ′

η
is finite étale.

Since W ′ is smooth over S, by Faltings’ theorem (2.1.10) there is an open neighbor-
hood W of y in W ′ such that Wη is a K(π, 1). Let U be the preimage of W in U ′ under
f : U ′ −→W ′. The induced map fη : Uη −→Wη is finite étale, hence Uη is a K(π, 1) as
well by Proposition 2.1.8(a).

3.2.3 Relatively smooth log structures

A reader familiar with the notion of a relatively smooth log structure (cf. [NO10, Defi-
nition 3.6], [Ogu09]) might appreciate the fact that the above proof applies to relatively
smooth X /S as well. Recall that we call (X ,F )/(S,MS) relatively log smooth if, étale
locally on X , there exists a log smooth log structure (X ,M )/(S,MS) and an inclusion
F ⊆ M as a finitely generated sheaf of faces, for which the stalks of M /F are free
monoids. We can then apply Theorem 3.2.1 to (X ,M ) instead of (X ,F ).

Important examples of relatively log smooth X /S appear in the Gross–Siebert pro-
gram in mirror symmetry [GS06, GS10, GS11] as so-called toric degenerations. Degener-
ations of Calabi–Yau hypersurfaces in toric varieties are instances of such. For example,
the Dwork families

X = ProjV [x0, . . . , xn]
.

 

(n+ 1)x0 · . . . · xn −π ·
n
∑

i=0

xn+1
i

!

(with the standard compactifying log structure) are relatively log smooth over S if n+ 1
is invertible on S, but not log smooth for n > 2 ( [Ogu09, Proposition 2.2]).
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3.2.4 Obstacles in characteristic zero

The need for the positive residue characteristic assumption in our proof of Theorem 3.2.1
can be traced down to the application of Proposition 3.1.8: one can perform relative
Noether normalization on an η-étale map f ′ : X −→ Ad

S without sacrificing η-étaleness.
One might think that this is too crude and that one could replace that part with a Bertini-
type argument. After all, we only need η-étaleness at one point! Unfortunately, this is
bound to fail in characteristic zero even in the simplest example, that of a semistable
curve:

Proposition 3.2.2 (cf. [Ste06]). Let X be an open subset of SpecV [x, y]/(xy −π) ⊆ A2
S

containing the point P = (0,0) ∈A2
k

and let f : X −→A1
S be an S-morphism. If fη : Xη −→

A1
η

is étale, then d f is identically zero on one of the components of Xs . In particular, if
char k = 0, then f has to contract one of the components of Xs , hence is not quasi-finite.

Proof. Let Z be the support of Ω1
X /A1

S

. As fη is étale, Z ⊆ Xs . On the other hand, the

short exact sequence

O 2
X











fx y
fy x











−−−−−−→O 2
X

�

d x d y
�

−−−−−−−→Ω1
X /A1

S
−→ 0

shows that Z is the set-theoretic intersection of two divisors in A2
S (given by the equations

xy =π and x fx − y fy = 0), each of them passing through P , for if g ·Ω1
X /A1

S

= 0, then





fx y
fy x



 ·C =




g 0
0 g





for some matrix C , hence g 2 = (x fx − y fy) · det(C ) ∈ (x fx − y fy). Since A2
S is regular, by

the dimension theorem we know that each irreducible component of Z passing through
P has to be of positive dimension. Therefore Z has to contain one of the components of
Xs .
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3.3 A counterexample

The following is an example of an X /S where X is regular, but for which K(π, 1) neigh-
borhoods do not exist. We use the notation of 1.4.

Proposition 3.3.1. Suppose the characteristic of k is 0. Let π be a uniformizer of V and let
X ⊆A3

S be given by the equation xy = z2−π. Let P = (0,0,0) ∈ Xk and let U be an open
neighborhood of P in X . Then Uη is not a K(π, 1).

Out proof of Proposition 3.3.1 relies on a number of claims (Remark 3.3.5) regarding
the étale topology of rigid analytic spaces. Unfortunately, proofs for at least some of
these claims seem to be missing from the literature. We provide a complete proof of a
similar statement over C in §3.3.2 (cf. Proposition 3.3.7), using complex analytic rather
than rigid analytic methods.

Remark 3.3.2. This is example not too surprising. Let us consider an analogous analytic
family. It is easy to see that the Milnor fiber [Mil68] at 0 of the function

f : C3 −→C, f (x, y, z) = z2− xy,

(which is x2+ y2+ z2 after a change of variables) is homotopy equivalent to the 2-sphere.
Moreover, its inclusion into X \ f −1(0) induces an isomorphism on π2. It follows that for
any open U ⊆C3 containing 0, for some Milnor fiber the above isomorphism will factor
throughπ2(U \ f −1(0)), therefore U \ f −1(0) cannot be K(π, 1). The proof of Proposition
3.3.1 given below is an algebraic analog of this observation.

On the other hand, for f : Cn −→ C given by a monomial x1 . . . xr , the Milnor fiber
at 0 is homotopy equivalent to a torus (S1)r , which is a K(π, 1). This explains why one
should expect Theorems 3.2.1 and 3.4.1 to be true.

3.3.1 Proof via rigid geometry

Lemma 3.3.3. There is an isomorphism P1
K(
p
π)
×P1

K(
p
π)
\ (diagonal)−→XK(

p
π).

Proof. Let the coordinates on P1×P1 be ((a : b ), (c : d )). The diagonal in P1×P1 is defined
by the equation δ := ad − b c = 0. Let f ((a : b ), (c : d )) =

p
π(2ac/δ, 2b d/δ, (b c +
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ad )/δ). The inverse map is given by g (x, y, z) = ((x : z−
p
π), (z−

p
π : y)) on {z 6=

p
π}

and g (x, y, z) = ((z +
p
π : y), (x : z +

p
π)) on {z 6=−

p
π}.

Let C be the completed algebraic closure of K . Denote by B the tube of P in XC :

B = {(x, y, z) : xy = z2−π, |x|< 1, |y|< 1, |z |< 1} ⊆X an
C ,

which we treat as a rigid analytic space over C . Since P ∈U , we have B ⊆U an
C . We denote

by p : B −→ P1,an
C the restriction to B of the composition of g : X an

C −→ P1,an
C × P1,an

C

defined in the proof of Lemma 3.3.3 with the first projection P1
C×P1

C −→ P1
C . Explicitly,

p(x, y, z) =







(x : z −
p
π) if z 6=

p
π,

(z +
p
π : y) if z 6=−

p
π.

Our goal is to prove that p : B −→ P1,an
C is a fibration in open discs. If we were work-

ing with manifolds, we would deduce that p is a homotopy equivalence which factors
through U , hence P1 is a homotopy retract of U , and deduce that U is not a K(π, 1)
(in the usual sense of algebraic topology), because π2(U ) contains π2(P

1) ' Z as a direct
summand. In the rigid analytic setting, we do not have such tools at our disposal, but it
is enough to show that B is simply connected and that p is injective on the second étale
cohomology groups (see Corollary 3.3.6 below).

Let U+ = {(a : b ) ∈ P1,an
C : |a| ≤ |b |}, U− = {(a : b ) ∈ P1,an

C : |a| ≥ |b |}. This is an
admissible cover of P1,an

C . Let B+ = p−1(U+), B− = p−1(U−). Explicitly,

B+ =
¦

(x, y, z) : xy = z2−π, |x|< 1, |y|< 1, |z |< 1, |x| ≤ |z −
p
π|, |z +

p
π| ≤ |y|

©

,

B− =
¦

(x, y, z) : xy = z2−π, |x|< 1, |y|< 1, |z |< 1, |x| ≥ |z −
p
π|, |z +

p
π| ≥ |y|

©

.

This is an admissible cover of B . Let U0 =U+ ∩U− and B0 = B+ ∩B− = p−1(U0).

Lemma 3.3.4. There are isomorphisms

h+ : U+×{x : |x|< 1} ∼−→ B+,

h− : U−×{y : |y|< 1} ∼−→ B−,

and h0 : U0×{z : |z |< 1} ∼−→ B0,

commuting with the projection p.
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Proof. Let

h+((a : b ), x) =
�

x,
a

b

� a

b
x + 2

p
π
�

,
a

b
x +
p
π
�

,

h−((a : b ), y) =
�

b

a

�

b

a
y − 2

p
π

�

, y,
b

a
y −
p
π

�

,

h0((a : b ), z) =
�

b

a

�

z −
p
π
�

,
a

b

�

z +
p
π
�

, z
�

.

Their inverses are given by p × x, p × y, p × z, respectively.

Remark 3.3.5 (Étale topology of rigid analytic spaces). We will need the following facts
(under the char k = 0 assumption):

• the closed disc is simply connected [Ber93, 6.3.2],

• the open disc is simply connected (by the above and a limit argument),

• a product of (closed and open) discs has no nontrivial finite étale covers,

• the closed disc has trivial cohomology with Z/` coefficients ( [Ber93, 6.1.3] com-
bined with [Ber93, 6.3.2]),

• the open disc has trivial cohomology with Z/` coefficients (by [Ber93, 6.3.12] ap-
plied to the above),

• étale cohomology of rigid analytic spaces satisfies the Künneth formula.

Corollary 3.3.6. Suppose that char k = 0. Then B is simply connected and the map

p∗ : H 2(P1,an
C ,ét

,Z/`)−→H 2(Bét,Z/`)

is an isomorphism for any prime number `.

Proof. Since B+ and B− are both the product of an open disc and a closed disc and char k =
0, they are simply connected. Their intersection B0 is connected, hence their union B is
simply connected (consider the sheaf of sections of a covering B ′ −→ B).
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Consider the two Mayer–Vietoris sequences for the étale cohomology of Z/`with re-
spect to the two open covers {U+, U−} and {B+,B−}. Since the latter cover is the pullback
by p of the former, p induces a morphism of Mayer–Vietoris sequences

. . . // H 1(U+,ét,Z/`)⊕H 1(U−,ét,Z/`) //

p∗

��

H 1(U0,ét,Z/`) //

p∗

��

H 2(P1,an
C ,ét

,Z/`)

p∗

��

// . . .

. . . // H 1(B+,ét,Z/`)⊕H 1(B−,ét,Z/`) // H 1(B0,ét,Z/`) // H 2(Bét,Z/`) // . . .

Because H i (U±,ét,Z/`) = H i (B±,ét,Z/`) = 0 for i = 1,2, the above diagram gives us a
commutative diagram whose horizontal maps are isomorphisms

H 1(U0,ét,Z/`)
∼ //

p∗

��

H 2(P1,an
C ,ét

,Z/`)

p∗

��
H 1(B0,ét,Z/`)

∼ // H 2(Bét,Z/`).

But B0 is the product of U0 with a disc, hence the left vertical map is an isomorphism. We
conclude that the right map is an isomorphism as well.

We can now prove Proposition 3.3.1:

Proof of Proposition 3.3.1. By Proposition 2.1.8(b), it suffices to show that UC is not a
K(π, 1). Let U ′ −→ UC be a finite étale morphism and let B ′ −→ B be the induced
covering space of B . Pick a prime number ` and consider the diagram of pullback maps

H 2(B ′
ét

,Z/`) H 2(U ′an
ét

,Z/`)oo

H 2(Bét,Z/`)

OO

H 2(U an
ét

,Z/`)

OO

oo H 2(P1,an
C ,ét

,Z/`).oo

Because B is simply connected, B ′ is a disjoint union of copies of B , hence
H 2(Bét,Z/`) −→ H 2(B ′

ét
,Z/`) is injective. Because H 2(P1,an

C ,ét
,Z/`) −→ H 2(Bét,Z/`) is

an isomorphism, we conclude that H 2(P1,an
C ,ét

,Z/`)−→ H 2(U ′an
ét

,Z/`) is injective. As the
spaces involved are smooth over C , by the rigid-étale comparison theorem [dJvdP96,
Theorem 7.3.2], H 2(P1

C ,ét
,Z/`)−→ H 2(U ′

ét
,Z/`) is also injective. This shows that UC is

not a K(π, 1), because we cannot kill the image of H 2(P1
C ,ét

,Z/`)' Z/` in H 2(UC ,ét,Z/`)
by a finite étale U ′ −→UC .
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3.3.2 Proof via complex geometry

Proposition 3.3.7. Let k =C, S0 =A1
k

with coordinate π, and let

X0 = Spec k[π, x0, . . . , xn]/(π− f ), f = x2
0 + . . .+ x2

n (n > 1).

Let S be the henselization of S0 at 0, η its generic point, η a geometric point above η. Finally
let X = X0 ×S0

S and x = (0,0, . . . , 0) ∈ X . Then (X(x))η is not a K(π, 1). In particular,
there does not exist a basis of étale neighborhoods of x in X whose generic fibers are K(π, 1).
However, X is regular.

Proof. Note that X(x) = (X0)(x), (X(x))η = (X0)(x) \ {π= 0}. It is enough to show that

(1) H n((X(x))η, Z/`)' Z/`,

(2) The scheme (X(x))η is simply connected.

Fact (1) follows from the computation of vanishing cycles [SGA73a, XV 2.2.5].
For (2), it suffices to prove that (X(x))η−→η induces an isomorphism on fundamental
groups, or equivalently on H 1(−,G) for every finite group G. By the comparison theo-
rem [SGA73b, XVI 4.1] applied to the inclusion j : X0 \{π= 0} ,→X0, q = 1 and a finite
group G, we have

H 1((X(x))η,G)' (R1 jét∗G)x ' (R
1 jc l∗G)x ' lim−→

ε

H 1(B(ε) \ f −1(0),G)

where B(ε) = {(x0, . . . , xn) ∈Cn :
∑

|xi |2 < ε}. But by the Milnor fibration and bouquet
theorems [Mil68] (see Example 1.1.2), the homotopy fiber of

f : B(ε)−→D(ε) := {z ∈C : |z |< ε}

has type Sn and hence is simply connected as n > 1. The long exact sequence of homo-
topy groups of that fibration shows that π1(B(ε))'π1(S

1), hence H 1(B(ε)\ f −1(0),G)'
H 1(S1,G)'H 1(D(ε) \ {0},G). Because the diagram

H 1((X(x))η,G) // lim−→ε
H 1(B(ε) \ f −1(0),G)

H 1(η,G) //

OO

lim−→ε
H 1(D(ε) \ {0},G)

OO

commutes, we conclude that H 1(η,G)−→ H 1((X(x))η,G) is an isomorphism as claimed.
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3.4 The equicharacteristic zero case

Theorem 3.4.1. Let (X ,MX ) be a regular (cf. [Kat94, Definition 2.1]) log scheme over Q
such that X is locally Noetherian, and let x −→ X be a geometric point. Let F be a locally
constant constructible abelian sheaf on X ◦ := (X ,MX )tr, the biggest open subset on which
MX is trivial, and let ζ ∈H q(X ◦,F ) for some q > 0. There exists an étale neighborhood U
of x and a finite étale surjective map V −→U ◦ such that ζ maps to zero in H q(V ,F ).

Proof. In proving the assertion, I claim that we can assume thatF is constant. Let Y −→
X ◦ be a finite étale surjective map such that the pullback of F to Y is constant. By
the logarithmic version of Abhyankar’s lemma [GR04, Theorem 10.3.43], Y = X ′◦ for
a finite and log étale f : (X ′,MX ′) −→ (X ,MX ). Then (X ′,MX ′) is also log regular
(by [Kat94, Theorem 8.2]). Choose a geometric point x ′ −→ X ′ mapping to x, and let
F ′ = f ◦∗F , which is a constant sheaf on X ′◦.

Suppose that we found an étale neighborhood U ′ of x ′ and a finite étale surjective
map V ′ −→ U ′◦ killing ζ ′ := f ◦∗(ζ ) ∈ H q(X ′◦,F ′). Let X ′′ be the normalization of U ′

in V ′, and choose a geometric point x ′′ mapping to x ′. By [Gro67, Théorème 18.12.1]
(or [Sta14, Tag 02LK]), there exists a diagram

x ′′

��

// V

��

// X ′′

��
x // U // X

with U −→X and V −→X ′′ étale and V −→U finite. It follows that V ◦ −→U ◦ is also
étale, and that the pullback of ζ to V ◦ is zero.

In proving the theorem, we can therefore assume thatF ' Z/nZ for some integer n,
by considering the direct summands.

The question being étale local around x, we can assume that there exists a chart g :
(X ,MX )−→AP for a fine saturated monoid P , which we use to form a cartesian diagram

(X ′,MX ′)
f //

g ′

��

(X ,MX )
g
��

AP A·n
// AP .

(3.2)
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Then (X ′,MX ′) is log regular, f is finite, and f : X ′◦ −→X ◦ is étale. Choose a geometric
point x ′ −→X ′ mapping to x. We have a commutative diagram

M
gp

X ,x

f ∗ //M
gp

X ′,x ′

P

OO

·n
// P

OO

where the vertical maps are surjections induced by the strict morphisms g and g ′. We
conclude that the map

f [⊗Z/nZ :M
gp

X ,x ⊗Z/nZ−→M
gp

X ′x ′ ⊗Z/nZ (3.3)

is zero.
Denote the inclusion X ◦ ,→ X (resp. X ′◦ ,→ X ′) by j (resp. j ′). By log absolute

cohomological purity (2.3), there is a functorial isomorphism

Rq j∗(Z/nZ)'
∧q
(M

gp

X ⊗Z/nZ(−1)).

In our situation, this means that there is a commutative diagram

H q(X ′◦,Z/nZ)
spx′ // Rq j ′∗(Z/nZ)x ′

∼ //
∧q(M

gp

X ′,x ′ ⊗Z/nZ)

H q(X ◦,Z/nZ) spx
//

f ∗

OO

Rq j∗(Z/nZ)x
∼ //

f ∗

OO

∧q(M
gp

X ,x ⊗Z/nZ)

∧q (3.3)

OO

where the rightmost map is zero for q > 0 because (3.3) is zero.
It follows that ζ maps to zero in Rq j ′∗(Z/nZ)x ′ , hence there exists an étale neighbor-

hood U ′ of x ′ such that ζ maps to zero in H q(U ′◦,Z/nZ). Applying once again the
argument of the second paragraph yields an étale neighborhood U of x and a finite étale
map V −→U killing ζ , as desired.

3.5 Abhyankar’s lemma and extension of lcc sheaves

In the proof of Theorem 3.6.5, we will need the following standard argument (Proposi-
tion 3.5.2).
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Proposition 3.5.1. Let X be an integral normal scheme, j : U −→ X an open immersion,
F an lcc étale sheaf on U . The following conditions are equivalent.

(i) The sheaf j∗F is locally constant.

(ii) There exists an lcc étale sheafF ′ on X and an isomorphism j ∗F ′ 'F .

(iii) There exists a finite group G and a G-torsor f : V −→ U over U such that f ∗F is
constant and the normalization of X in V is étale over X .

Proof. This is clear if U is empty. Assume U non-empty and pick a geometric point x
of U . Clearly (i) implies (ii). For the converse, note that the isomorphism j ∗F ′ −→F
defines by adjunction a map F ′ −→ j∗F of lcc sheaves which induces an isomorphism
on stalks at x, and hence an is isomorphism. We prove that (ii) implies (iii). BecauseF ′ is
lcc, there exists a finite group G and a G-torsor g : Y −→ X such that g ∗F ′ is constant.
Then the restriction f = g |V : V −→ U of g to V = g−1(U ) is a G-torsor such that
f ∗F = g ∗F ′|V is constant. Moreover, since U is dense in X , Y is normal, and g is finite,
Y coincides with the normalization of X in V . Finally, we deduce (ii) from (iii). Let
g : Y −→ X be the normalization of X in V . Then the action of G on V extends to an
action on Y , making g : Y −→ X a G-torsor. If M =Fx , then F is represented by the
quotient of V ×U M by the diagonal action of G. We can then defineF ′ to be the sheaf
represented by the analogous quotient of Y ×X M .

Proposition 3.5.2. Let X be a regular integral scheme, D =D1∪. . .∪Dr ⊆X a divisor with
simple normal crossings, U = X \D its complement, F an lcc abelian sheaf on U , tamely
ramified along D. There exists an integer n such that for every finite morphism g : Y −→X ,
such that the restriction f = g |V : V −→ U to V = f −1(U ) is étale, tamely ramified along
D and with ramification indices along the Di divisible by n, the pullback f ∗F extends to an
lcc sheaf on Y .

Proof. Let ηi be the generic point of Di , ηi a geometric point over ηi . For each i , the sheaf
F defines a representation Mi = Fηi

of the Galois group Gi = Gal(ηi/ηi ). By assump-
tion, there is an open subgroup I ′i ⊆ Ii of the inertia group, containing the wild inertia
subgroup, acting trivially on Mi . Let ni denote its index, and let n = lcm(n1, . . . , nr ).
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Let g : Y −→ X be as described, let v : V −→ Y be the inclusion, and let G = f ∗F .
By Proposition 3.5.1, we only need to prove that v∗G is lcc. This question is local on Y .
Let y be a geometric point of Y , x = f (y). Let X ′ be the strict henselization of X at x,
D ′i = Di ×X X ′, U ′ = U ×X X ′,F ′ the preimage ofF on X ′, g ′ : Y ′ = Y ×X X ′ −→ X ′

the pullback of g , f ′ : V ′ =V ×X X ′ −→U ′. Since g is quasi-finite, Y ′ coincides with the
strict henselization of Y at y. The preimage of G in Y ′ coincides with G ′ = ( f ′)∗F ′. By
Abhyankar’s lemma [SGA03, Exp. XIII, Appendice I, Proposition 5.2, Corollaire 5.3],
there exist equations fi ∈ Γ(X ′,OX ′) for D ′i and integers mi invertible on X such that
Y ′ ' SpecOX ′[Ti]/(T

mi
i − fi ). By assumption, each mi is divisible by n, and hence by ni .

By definition of the ni , the pullback ofF ′ to Z ′ = SpecOX ′[Ti]/(T
ni

i − fi ) extends along
the Di , and hence to all of Z ′ by Zariski–Nagata purity. Since Y ′ −→X ′ factors through
Z ′ −→X ′, G ′ extends to an lcc sheaf on Y ′.

3.6 The comparison theorem

In [AG11], Abbes and Gros have developed a theory of generalized co-vanishing topoi, of
which the Faltings’ topos is a special case. This topos has first been introduced in [Fal02],
though the definition of [AG11] is different. For reader’s convenience, let us recall the
definitions, adapting them to our setup.

Definition 3.6.1. Let f : Y −→X be a morphism of schemes.

(a) The Faltings’ site E associated to f is the site with

• OBJECTS morphisms V −→ U over f : Y −→ X with U −→ X étale and
V −→U ×X Y finite étale,

• MORPHISMS commutative squares over f : Y −→X ,

• TOPOLOGY generated by coverings of the following form:

– (V, for vertical) {(Vi −→U )−→ (V −→U )} with {Vi −→V } a covering,

– (C, for cartesian) {(V ×U Ui −→ Ui ) −→ (V −→ U )} with {Ui −→ U } a
covering.

(b) The Faltings’ topos eE is the topos associated to E .
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(c) We denote by Ψ : Yét −→ eE the morphism of topoi induced by the continuous map
of sites (V −→U ) 7→V : E −→ É t /Y .

Lemma 3.6.2. If dim H 0(Xét,F`) is finite then X has a finite number of connected compo-
nents.

Proof. The projection α : Xét−→X induces an injection F`−→α∗F`, so H 0(X ,F`) is finite
as well. Since the map sending a clopen subset to its characteristic function is injective,
the set of clopen subsets of X must be finite. If x is a point in X , let Ux be the intersec-
tion of all the clopen sets containing x. Then Ux is open and closed. Furthermore it is
connected, so it must be the connected component of X containing x. Hence every con-
nected component of X is clopen, and X has finitely many connected components.

Proposition 3.6.3. In the notation of 1.4, let X be a scheme of finite type over S. Let X ◦ ⊆X
be an open subset such that the inclusion u : X ◦ ,→X is an affine morphism, and let Y =X ◦

η
.

Finally, let ℘ be a set of prime numbers. The following conditions are equivalent:

(a) for every étale U over X and every ℘-torsion locally constant constructible abelian sheaf
F on U ×X Y , we have RiΨU∗F = 0 for i > 0, where ΨU : U ×X Y −→ eEU is the
morphism 3.6.1(c) for U ×X Y −→U ,

(b) for every étale U over X , every ℘-torsion locally constant constructible abelian sheaf F
on U ×X Y , every class ζ ∈ H i (U ×X Y,F ) with i > 0, and every geometric point
x −→ U , there exists an étale neighborhood U ′ of x in U and a finite étale surjective
map V −→U ×X Y such that the image of ζ in H i (V ,F ) is zero.

(c) for every geometric point x −→ X , (X(x) ×S( f (x))
η)×X X ◦ is a K(π, 1) for ℘-adic coeffi-

cients.

Proof. The equivalence of (a) and (b) follows from the fact that RiΨ∗F is the sheaf as-
sociated to the presheaf (V −→ U ) 7→ H i (V ,F ) on E and the argument in Proposi-
tion 2.1.8(a). Note that (X(x)×S( f (x))

η)×X X ◦ is affine, therefore coherent. In case x ∈Xs ,
the finiteness of the number connected components follows from Lemma 3.6.2 and the
finiteness of Γ((X(x) ×S( f (x))

η)×X X ◦,F`), which is the stalk at x of the 0-th nearby cy-
cle functor of u∗F` [Del77, Th. finitude 3.2]. If x ∈ Xη, this follows similarly from
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the constructibility of u∗F`. The equivalence of (b) and (c) is then clear in the view of
Proposition 2.1.8.

Corollary 3.6.4. Suppose that X has a basis for the étale topology consisting of U for which
U ×X Y is a K(π, 1) for ℘-adic coefficients. Then the conditions of Proposition 3.6.3 are
satisfied.

Theorem 3.6.5. Let (X ,MX ) be a log smooth log scheme over (S,MS) such that Xη is
smooth over η, and let X ◦ = (X ,MX )tr. If char k = 0, assume moreover that (X ,MX ) is
saturated. Then for every geometric point x of X , (X(x)×S( f (x))

η)×X X ◦ is a K(π, 1).

Proof. We should first note that (X(x)×S( f (x))
η)×X X ◦ satisfies condition 2.1 by the argu-

ment used in the proof of Proposition 3.6.3.
In case char k = 0, as (X ,MX ) is regular by [Kat94, Theorem 8.2], Theorem 3.4.1

implies condition (b) of Proposition 3.6.3, hence X(x)×X X ◦
η

is a K(π, 1) (note that X ◦ ⊆
Xη). As (X(x)×S( f (x))

η)×X X ◦ is a limit of finite étale covers of X(x)×X X ◦
η
, it is a K(π, 1)

as well.
We will now assume that char k = p > 0 and follow [Fal88, Lemma II 2.3] (see also

[Ols09, 5.10–5.11]). As before, if x ∈Xη, this follows from Theorem 3.4.1 applied to Xη,
so let us assume that x ∈Xs . For simplicity, we can also replace S by S( f (x)) and X by the
suitable base change. By Theorem 3.2.1 and Corollary 3.6.4, we know that Z := (X(x))η
is a K(π, 1). Since Xη is smooth, Z is regular and Z◦ = X(x)×X X ◦

η
is obtained from Z by

removing divisor with strictly normal crossings D = D1 ∪ . . .∪Dr . Let F be a locally
constant constructible abelian sheaf on Z◦, and pick a ζ ∈H q(Z◦,η) (q > 0). We want to
construct a finite étale cover of Z◦ killing ζ .

By Proposition 3.5.2, there is an integer n such that if f : Z ′ −→ Z is a finite cover
with ramification indices along the Di nonzero and divisible by n, then f ◦∗F extends
to a locally constant constructible sheaf on Z ′. I claim that we can choose Z ′ which
is a K(π, 1). By the previous considerations, it suffices to find Z ′ equal to (X ′

(x ′)
)η for

some X ′/S ′ satisfying the same assumptions as X . We can achieve this by choosing a
chart X −→ AP around x as before and taking a fiber product as in (3.2) (and S ′ =
SpecV [π′]/(π′n −π)).

Now that we can assume that F = j ∗F ′ where F ′ is locally constant constructible
on Z and j : Z◦ ,→ Z is the inclusion, we choose a finite étale cover g : Y −→ Z , Galois
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with group G, for which g ∗F ′ is constant.
Let f : Z ′ −→ Z be a finite cover with ramification indices along the Di nonzero and

divisible by some integer n. I claim that for any b ≥ 0, the base change map

f ∗Rb j∗F −→ Rb j ′∗( f
◦∗F ) (3.4)

is divisible by nb . In caseF is constant, this follows once again from logarithmic absolute
cohomological purity (2.3), and in general can be checked étale locally, e.g. after pulling
back to Y , whereF becomes constant. Consider the Leray spectral sequence for j :

E a,b
2 =H a(Z , Rb j∗F ) ⇒ H a+b (Z◦,F ),

inducing an increasing filtration F b on H q(Z◦,F ). Let b (ζ ) be the smallest b ≥ 0 for
which ζ ∈ F b . We prove the assertion by induction on b (ζ ). If b (ζ ) = 0, then ζ is in the
image of a ζ ′ ∈ H q(Z , j∗F ), and since j∗F is locally constant and Z is a K(π, 1), we can
kill ζ ′ by a finite étale cover of Z . For the induction step, let n be an integer annihilating
F , and pick a ramified cover f : Z ′ −→ Z as in the previous paragraph, such that again
Z ′ = (X ′

(x ′)
)η for some X ′/S ′ satisfying the assumptions of the theorem. Note that since

(3.4) is divisible by n, it induces the zero map on E a,b
2 for b > 0, hence b ( f ∗ζ ) < b (ζ )

and we conclude by induction.

Corollary 3.6.6. Let (X ,MX ) be as in Theorem 3.6.5, and let X ◦ = (X ,MX )tr. Consider
the Faltings’ topos eE of X ◦

η
−→X and the morphism of topoi

Ψ : X ◦
η,ét −→ eE .

Let F be a locally constant constructible abelian sheaf on X ◦
η

. Then RqΨ∗F = 0 for q > 0,
and the natural maps (2.8)

µ : H q( eE ,Ψ∗(F ))−→H q(X ◦
η,ét,F )

are isomorphisms.
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Chapter 4

Milnor fibers

This chapter grew out of the author’s desire to sort out the rather confusing multitude
of possible “Milnor fiber-like objects”. Let S be a henselian trait, f : X −→ S a scheme
of finite type over S, and x a geometric point in the special fiber Xs (we preserve the
notation of §1.4). Each of the following geometric objects might in a certain context be
called the Milnor fiber of f at x:

1. the scheme Mx = X(x)×S f (x)
η, where X(x) is the localization of X at x, the algebraic

Milnor fiber,

2. the scheme M̂x = (X̂(x))η, where X̂(x) = Spec ÔX ,(x) (completion of the local ring for
the étale topology),

3. (if S = SpecC{t}) the classical Milnor fiber Fx (which itself has several definitions,
cf. Theorem 4.1.5),

4. (if S is complete) the rigid analytic tube of x:

Bx = {y ∈X (K̂) : sp(y) = x},

considered as a rigid analytic space over K̂ .
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Our goal is to compare their fundamental groups and cohomology groups of local sys-
tems. The comparison between 1. and 3. follows quite easily from the comparison the-
orem [SGA73b, Exp. XVI Théoreme 4.1]; we take extra care to compare the homotopy
types. The comparison of 1. and 2. (possible in characteristic zero only) uses resolution
of singularities and log étale topology. We refrain from discussing the the comparison
between 1. and 4., which is follows from the Gabber–Fujiwara theorem [Fuj95].

4.1 Preliminaries

4.1.1 Classical Milnor fibers

Let X ⊆ CN be a locally closed analytic set, let f : X −→ C be a holomorphic function,
and let x ∈ X be a point with f (x) = 0. For ε > 0, we denote by Bx(ε) (resp. Sx(ε)) the
intersection of X with an open ball (resp. sphere) in the Euclidean metric on CN with
radius ε and center x. Let X0 = f −1(0).

Definition 4.1.1. For a topological space Y , we define the open cone

C ◦(Y ) = Y × [0,1)/Y ×{0}.

We call the point corresponding to Y ×{0} the vertex and denote by d : C ◦(Y )−→ [0,1)
the function “distance from the vertex” (y, t ) 7→ t .

Theorem 4.1.2 (“Conic structure lemma” [BV72, 3.2], [GM88, 1.4]). There exists an
ε > 0 and a homeomorphism of triples

u : (Bx(ε),Bx(ε)∩X0, x) ∼−→ (C ◦(Sx(ε)),C ◦(Sx(ε)∩X0), vertex)

with the additional property that for y ∈ Bx(ε), dist(x, y) = ε · d (u(y)).

Remark 4.1.3. In the situation of the theorem, if ε′ < ε, then the compatibility of the
homeomorphism u with the distance function implies that the restriction of u to Bx(ε

′)
induces a homeomorphism of triples

u ′ : (Bx(ε
′),Bx(ε

′)∩X0, x) ∼−→ (C ◦(Sx(ε
′)),C ◦(Sx(ε

′)∩X0), vertex).

In particular, the assertion of the theorem holds for any ε′ < ε.
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Consider the map p : Y −→X fitting inside a cartesian diagram

Y
p //

��

X
f
��

C exp
// C.

The map exp is a Z(1)-torsor over C∗ ⊆ C (recall that Z(1) = 2πiZ), and hence the map
p factors through a Z(1)-torsor over X \X0. We will show that, for ε� 1, the pullback
of p : Y −→X to Bx(ε),

Fx,ε := Y ×X Bx(ε)

does not depend on ε up to homeomorphism. Moreover, we will see that for ε′ < ε, the
inclusion Fx,ε′ ,→ Fx,ε is a homotopy equivalence. Choose ε and a homeomorphism u as
in Theorem 4.1.2. Let S = Sx(ε) \X0, F = Y ×X S−→S the induced Z(1)-torsor. Then u
induces a homeomorphism u ′ : Bx(ε) \X0 ' S × (0,1) satisfying

d (x, y) = ε · (second coordinate of u ′(y)).

Since S × (0,1)−→S induces an isomorphism on fundamental groups, there exists an iso-
morphism (of Z(1)-torsors on Bx(ε) \X0) between Fx,ε−→Bx(ε) \X0 and the pullback of
F × (0,1)−→S× (0,1) under u ′. Under this isomorphism, Fx,ε′ ⊆ Fx,ε (for ε′ < ε) is identi-
fied with F × (0,ε′/ε)⊆ F × (0,1).

Definition 4.1.4. We call the space Fx,ε for ε� 1 defined above the (classical) Milnor fiber
of f at x. It is independent of the choice of ε up to homeomorphism.

The following result relates our definition of the Milnor fiber to the more common
definitions of [Mil68, Lê77, CMSS09].

Theorem 4.1.5. (a) For η� ε� 1, the map

f : B x(ε)∩ f −1(Dη \ {0})−→Dη \ {0},

where B x(ε) is the closed ball of radius ε and Dη = {z ∈ C : |z | < η}, is a topological
fibration, whose fiber is homotopy equivalent to Fx,ε.
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(b) For ε� 1, the map

arg( f ) : Sx(ε) \X0
f
−−→C∗

arg
−−→ S1

is a topological fibration, whose fiber is homotopy equivalent to Fx,ε.

(c) The space Fx,ε has the homotopy type of a finite CW complex.

Proof. The maps in (a) and (b) are fibrations with homotopy equivalent fibers by [Lê77].
To compare the fiber of (b) with Fx,ε, we first note that the fiber F of a fibration X−→S1 is
homotopy equivalent to the fiber product X ×S1 eS1, where eS1−→S1 is a universal cover of
S1. The latter is isomorphic to the space F = Y ×X S defined in the preceding discussion,
and we showed using the conic structure lemma that Fx,ε ' F × (0,1).

To show (c), we use the description (a) of the Milnor fiber. The map in (a) is a proper
map whose fibers are compact manifolds with boundary, and hence have the homotopy
type of finite CW complexes by [KS69, Theorem III].

4.1.2 Milnor fibers in the étale topology

Let S = SpecV be a henselian trait. We preserve the notation of §1.4. Let f : X −→ S a
morphism of finite type, and let x be a geometric point of X lying in the closed fiber.

Definition 4.1.6. We call the scheme Mx = X(x)×S f (x)
η the algebraic Milnor fiber of f at

x.

Proposition 4.1.7. The scheme Mx satisfies condition 2.1.

Proof. Since Mx is affine, it is coherent. The finiteness of the number connected compo-
nents follows from Lemma 3.6.2 and the finiteness of Γ((X(x)×S( f (x))

η)×X X ◦,F`), which
is the stalk at x of the 0-th nearby cycle functor of u∗F` [Del77, Th. Finitude 3.2].

In fact, we can show more:

Theorem 4.1.8. Let X be a V -scheme of finite type, x ∈ X (k). Then the Milnor fiber Mx is
a Noetherian scheme.
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Proof (Following an idea due to Will Sawin). Without loss of generality, we can assume
that V is strictly henselian and that X = SpecA for a V -algebra A of finite type. The
geometric point x corresponds to a surjective V -algebra homomorphism A−→ k whose
kernel we denote by m. Let B be the henselization of A at m, so that X(x) = SpecB and
Mx = Spec(B ⊗V K).

The proof is by induction on n = dimB − 1. If n = −1, Mx is empty and there is
nothing to prove. For the induction step, suppose that the assertion is true whenever
dimB ≤ n. By Noether normalization, there exists a finite map B ′ −→ B where B ′ is
the henselization of V [x1, . . . , xn] at the ideal mV +(x1, . . . , xn). Then B ⊗V K is of finite
type over B ′⊗V K , and hence is Noetherian if B ′⊗V K is. We can therefore assume that
A=V [x1, . . . , xn] and m=mV +(x1, . . . , xn).

Let f ∈ B ⊗V K be a nonzero element. By definition, there exists an étale A-algebra
A′ of finite type, an extension A′ −→ k of x : A −→ k (equivalently, an ideal m′ of
A′ whose intersection with A equals m), and a finite Galois extension L of K such that
f ∈A′⊗V L. Considering the L/K -norm NL/K( f ) = f ·

∏

σ 6=1σ( f ), we see that there exists
a g ∈A′⊗V L such that 0 6= f g ∈A′⊗V K . Since A′⊗V K =A′[ 1

π
] where π is a generator

of mV , there exists an n such that 0 6= f gπn ∈A′. Let h = f gπn, and let A′′ =A′/(h), and
denote by B ′′ the henselization of A′′ at the image of m′. Note that B ′′ = B ′/(h) = B/(h).
Then dimB ′′ = n, hence by the induction assumption B ′′ ⊗V K is Noetherian. Since f
divides h, (B⊗V K)/( f ) is a quotient of B ′′⊗V K , hence is Noetherian as well. We conclude
that the ring B ⊗V K has the property that its quotient by any nonzero principal ideal is
Noetherian. By Lemma 4.1.9 below, B ⊗V K is Noetherian, as desired.

Lemma 4.1.9. Let R be a ring such that for every nonzero element f ∈ R, the ring R/( f ) is
Noetherian. Then R is Noetherian.

Proof. Let I ⊆ R be an ideal. We wish to show that I is finitely generated. If I = (0),
there is nothing to show. If I 6= (0), let f ∈ I be any nonzero element. Then R/( f ) is
Noetherian, hence the image of I in R/( f ) is generated by elements x1, . . . , xn ∈ R/( f ).
Let yi ∈ R be elements mapping to xi ∈ R/I . Then I = ( f , y1, . . . , yn).
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4.1.3 The completed Milnor fibers

In the situation of the previous paragraph, suppose furthermore that the residue field k of
V is algebraically closed, that V is complete, and that x ∈X (k). We denote the schematic
point underlying x by x.

Definition 4.1.10. We call the scheme M̂x = Spec(ÔX ,x ⊗V K) the completed Milnor fiber
of f at x.

Note that ÔX ,x is the completion of the local ring OX ,x at its maximal ideal, as opposed
to the ideal mV · OX ,x .

4.2 Algebraic vs completed Milnor fibers

The following definition provides an analogue of homotopy equivalence in algebraic ge-
ometry.

Definition 4.2.1. A morphism f : X −→ Y of topoi is a \-isomorphism if for every
locally constant sheafF of finite sets (resp. finite groups, resp. finite abelian groups) on
Y , the pullback map

f ∗ : H q(Y,F )−→H q(X , f ∗F )

is an isomorphism for q = 0 (resp. for q = 0,1, resp. for q ≥ 0).

The goal of this section is to prove the following result.

Theorem 4.2.2. Let A be a henselian Noetherian local ring over Q, X = SpecA, let Z ⊆X
be a closed subscheme, U =X \Z. Let Â be the completion of A, X̂ = Spec Â, Û =U ×X X̂ .
Then the natural map

Ûét −→Uét

is a \-isomorphism.

Theorem 4.2.3 (Proper Base Change). Let X be a proper scheme over SpecA where A is a
henselian local ring with residue field k and completion Â. Let X0 = X ⊗A k, X̂ = X ⊗A Â,
and letX be the formal completion of X along X0. Then the three natural morphisms

(X0)ét −→Xét −→ X̂ét −→Xét
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are \-isomorphisms.

Theorem 4.2.4 (Cohomological Descent, cf. [SV96, §10], [Bei12, §2]). Let X• −→ X be
an h-hypercover. Then the induced map

(X•)ét −→Xét

is a \-isomorphism.

We will need some logarithmic versions of these statements. The “correct” analog of
Xét for a fs log scheme (X ,MX ) is the Kummer étale topos (X ,MX )két. See [Ill02a] for a
survey of the Kummer étale topology.

Definition 4.2.5. (i) A morphism f : (Y,MY )−→ (X ,MX ) of fs log schemes is Kum-
mer étale if it is étale and the cokernel of f ∗M

gp

X −→M
gp

Y is torsion.

(ii) A family { fi : (Yi ,MYi
) −→ (X ,MX )} is a Kummer étale cover if the maps fi are

Kummer étale and jointly surjective.

(iii) The Kummer étale topos (X ,MX )két is the topos associated to the site of Kummer
étale fs log schemes over (X ,MX ), endowed with the topology induced by the Kum-
mer étale covers.

Theorem 4.2.6 (Log Purity [Fuj02], [Nak98, 2.0.1,2.0.5]). Let (X ,MX ) be a regular fs
log scheme over Q, and let U = (X ,MX )tr. Then the natural map

Uét = (U ,MX |U )két −→ (X ,MX )két

is a \-isomorphism.

Theorem 4.2.7 (a variant of Log Proper Base Change [Ill02a, Proposition 6.3]). Let X
be a proper scheme over SpecA where A is a henselian local ring with residue field k and
completion Â. Let X0 = X ⊗A k, X̂ = X ⊗A Â, and let X be the formal completion of X
along X0. LetMX −→OX be a fs log structure on X . Then the three natural morphisms

(X0,MX |X0
)két −→ (X ,MX |X )két −→ (X̂ ,MX |X̂ )két −→ (X ,MX )két

are \-isomorphisms.
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Proof of Theorem 4.2.2. By Hironaka (or de Jong), there exists a proper hypercover
X• −→X such that the Xn are regular and Zn = Z ×X Xn are divisors with normal cross-
ings. Let Un = Xn \Zn = U ×X Xn. Let X̂n, Ẑn, Ûn denote the base changes −×X X̂ . By
Theorem 4.2.4, the maps (U•)ét −→ Uét and (Û•)ét −→ Ûét are \-isomorphisms. Thus it
suffices to show that the maps (Ûn)ét −→ (Un)ét are \-isomorphisms. Let x be the closed
point of X . Endow each Xn with the compactifying log structure MUn/Xn

. We get a
diagram

(Ûn)ét

��

// (X̂n,MX̂n
)két

��

((X̂n,MX̂n
)×X̂ x)két

oo

(Un)ét
// (Xn,MXn

)két ((Xn,MXn
)×X x)két

oo

in which the horizontal arrows are \-isomorphisms by Theorems 4.2.6 and 4.2.7.

For the following corollaries we use the notation of §1.4:

Theorem 4.2.8. Assume that char k = 0 and k is algebraically closed. Let X be an S-scheme
of finite type, and let x ∈X (k). Let X̂(x) = Spec ÔX ,x . Then the natural maps

(X̂(x))η,ét −→ (X(x))η,ét

and

(M̂x)ét −→ (Mx)ét

are \-isomorphisms.

Theorem 4.2.9. In the situation of Theorem 4.2.8, assume that V = C{t} and x ∈ X (C).
Let O hol

X ,x be the ring of germs of holomorphic functions at x and let X hol
(x) = SpecO hol

X ,x . Then
the natural maps

(X̂(x))η,ét −→ (X
hol
(x) )η,ét

are \-isomorphisms, so in particular (X hol
(x) )η,ét and (X(x))η,ét are \-isomorphic.

Proof. Apply Theorem 4.2.2 to both A= O h
X ,x and A= O hol

X ,x , and note that Ô h
X ,x = Ô

hol
X ,x .
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4.3 Classical vs algebraic Milnor fibers

Let S =A1
C = SpecC[z], S∗ = S \{0} . For an integer n ≥ 1, let S∗n =A1

C \{0}, considered
as an S∗-scheme via the map z 7→ zn. If m divides n, the map z 7→ zn/m defines a map
of S∗-schemes S∗n −→ S∗m. Altogether, these define a diagram S∗• : P −→ (Schemes/S∗)
where P is the poset of positive integers ordered by divisibility. We denote by η its limit
limn S∗n = SpecC[zQ].

Let eS∗ = C considered as a space over S∗(C) via the map exp(z). For any n ≥ 1,
z 7→ exp(z/n) defines a map eS∗ −→ S∗n(C) of analytic spaces over S∗(C). These maps
assemble into a cone eS∗ −→ S∗• (C) over the diagram S∗• (C) : P −→ (An. Spaces/S∗(C)) .

For an S-scheme (resp. an S(C)-analytic space) Y , we denote by Y ∗ the base change
to S∗ (resp. S∗(C)), and by Y ∗n (resp. eY ∗) the base change Y ×S S∗n (resp. Y ×S(C)

eS∗). We
denote by Y0 the preimage of 0 ∈ S.

Let X be a locally closed subscheme of AN
S = AN+1

C , x ∈ X0(C) a point. For ε > 0,
let B(ε) be the intersection of X (C) with the open ball in CN+1 of radius ε centered at x.
Note that Fx,ε = eB

∗(ε) (ε� 1) is the classical Milnor fiber (Definition 4.1.4). Similarly,
Mx = (X(x))η is the algebraic Milnor fiber (Definition 4.1.6) of the base change of X to S(0)
(the henselization of S at 0).

Our goal is to compare the homotopy types of Fx,ε and its algebraic counterpart Mx .
Recall the definition of the Verdier functor [AM69, §9]

Π : (locally connected sites)−→ pro-H

whereH is the homotopy category of CW complexes. In a locally connected site C , ev-
ery object X is a coproduct of a well-defined and functorial set of connected objects. This
defines the “connected components” functor π : C −→ Set. Thus if X• is a hypercovering
in C , the composition π(X•) is a simplicial set, and we can consider the homotopy type
of its geometric realization, which we also denote π(X•). The hypercoverings of C form
a co-filtering category H R(C ), and the functor Π associates to C the pro-object

Π(C ) = {π(X•)}X•∈H R(C ).

This definition is naturally extended to projective systems of locally connected sites:

Π({Ci}i∈I ) := {π(X•)}i∈I ,X•∈H R(Ci )
.
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For a topological space (resp. a scheme) Y , we denote also by Y the associated site
of local homeomorphisms (resp. étale morphisms) U −→ Y with the usual topology. It
is locally connected if Y is locally connected (resp. locally Noetherian). If Y is a CW
complex, we have a canonical isomorphism Y 'Π(Y ).

In order to compare Π(Fx,ε) to Π(Mx), we will consider the following projective sys-
tems of sites:

1. eC = { eU ∗}U cl ' {eB∗(ε)}ε,

2. Cn = {U ∗
n }U cl ' {B∗n(ε)}ε,

3. Ĉ = {Cn}n = {U ∗
n }n,U cl ' {B∗n(ε)}n,ε,

4. Cn,alg = {U ∗
n }U ét,

5. Ĉalg = {Cn,alg}= {U ∗
n }n,U ét.

Here U cl (resp. U ét) stands for the system of all local homeomorphisms U −→ X (C)
(resp. étale maps U −→ X ) with a chosen point mapping to x. The sites Fx,ε and Mx are
interconnected by the following maps:

1. αε : eC −→ Fx,ε, the projection eC ' {t i l d eB∗(ε′)}ε′<ε −→ eB∗(ε) = Fx,ε,

2. β : eC −→ Ĉ , induced by the maps U ×S(C) exp(z/n) : eU ∗ −→U ∗
n ,

3. γ : Ĉ −→ Ĉalg, induced by the “change of topology” maps ε : U ∗
n (C)−→U ∗

n ,

4. δ : Mx −→ Ĉalg induced by the projection maps (X(x))η −→U ∗
n .

Applying the Verdier functor Π, we get a chain of maps

Π(Mx)

δ
��

Π( eC )
β //

αε
��

Π(Ĉ )
γ // Π(Ĉalg)

Π(Fx,ε)
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Theorem 4.3.1. The maps β,γ ,δ induce isomorphisms on profinite completions Π̂. More-
over, the map αε : Π( eC )−→ Π(Fx,ε)' Fx,ε is an isomorphism for ε� 1. Thus the profinite
completions of the homotopy type of Fx,ε and the étale homotopy type of Mx are canonically
isomorphic for ε� 1. In particular, if X ∗ is normal in a neighborhood of x, we have

F̂x,ε
∼−−→Π(Mx) for ε� 1.

We prove Theorem 4.3.1 at the end of this section. The main ingredient is the (rela-
tive) comparison theorem from SGA4 (Theorem 4.3.6 below).

Let C = {Ci}i∈I be a projective system of sites. If i ∈ I and F is a sheaf on Ci the
pullbacks of F to Ci ′ via the maps induced by i ′ ∈ I/i induce a projective system of
sheaves {Fi ′}i ′∈I/i over the system {Ci ′}i ′∈I/i . As I/i −→ I is cofinal, the latter system
is naturally isomorphic to C . We define H q(C ,F ) = colimi ′−→i H q(Ci ′ ,Fi ′) for q = 0
(resp. q = 0,1, resp. q ≥ 0) ifF is a sheaf of sets (resp. of groups, resp. of abelian groups).

Lemma 4.3.2. Let C = {Ci}i∈I and D = {D j } j∈J be projective systems of locally connected
sites, and let f : D −→C be a morphism. Suppose that

(1) there exists an integer d ≥ 0 such that for every i ∈ I (resp. j ∈ J ) and every locally
constant sheafF of finite abelian groups on Ci (resp. D j ), we have H q(Ci ,F ) = 0 (resp.
H q(D j ,F ) = 0) for q > d ,

(2) for every finite group G, the pullback map

H 1(C ,G)−→H 1(D ,G)

is an isomorphism,

(3) for every locally constant sheaf of abelian groups F on Ci , j 7→ i , inducing systems
{Fi ′}i ′∈I/i and { f ∗F j ′} j ′∈J/ j , the pullback maps

H q(C ,F )−→H q(D , f ∗F )

are isomorphisms for q ≥ 0.

Then the induced map Π̂( f ) : Π̂(D)−→ Π̂(C ) is an isomorphism.
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Proof. This follows from [AM69, 4.3] and [AM69, 12.5].

Lemma 4.3.3. Let Y be a topological space, eY −→ Y a Z-covering space,

Yn = eY ×Z (Z/nZ)−→ Y

the induced Z/nZ-covering space. Suppose that eY has the homotopy type of a finite CW
complex. Then for every locally constant sheafF of finite abelian groups on Y , the pullback
maps

lim−→
n

H q(Yn,F )−→H q( eY ,F )

are isomorphisms for q ≥ 0. Here for a Y space f : Y ′ −→ Y we abbreviate H q(Y ′, f ∗F ) to
H q(Y ′,F ). The same statement holds for H 1 of locally constant sheaves of finite groups.

Proof. To avoid confusion, let G = Z denote the structure group of eY , and let T be a
generator of G. Let us treat the abelian case first. Note that in this case we have a spectral
sequence

E p,q
2 =H p(G, H q( eY ,F )) ⇒ H p+q(Y,F ).

But for a G-module M , we have H 0(G, M ) = M G, H 1(G, M ) = MG = M/(1−T )M , and
H p(G, M ) = 0 for p > 1. Thus the spectral sequence reduces to short exact sequences

0−→H q−1( eY ,F )G −→H q(Y,F )−→H q( eY ,F )G −→ 0.

The same is true if we replace Y by Yn and G by Gn = nZ⊆G. Moreover, whenever m
divides n, the diagram

0 // H q−1( eY ,F )Gm
//

1+T m+...+T n−m

��

H q(Ym,F ) //

��

H q( eY ,F )Gm //

��

0

0 // H q−1( eY ,F )Gn
// H q(Yn,F ) // H q( eY ,F )Gn // 0

commutes. Taking inductive limit, we get a short exact sequence

0−→ lim−→
n

H q−1( eY ,F )Gn
−→ lim−→

n

H q(Yn,F )−→
⋃

n

H q( eY ,F )Gn −→ 0. (4.1)

But, since eY has the homotopy type of a finite CW complex andF is a locally constant
sheaf of finite groups, H q−1( eY ,F ) and H q( eY ,F ) are finite groups, and hence there exists
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an m ≥ 1 such that Gm acts trivially on them. Therefore lim−→n
H q−1( eY ,F )Gn

= 0 (remem-
ber that the transition maps are 1+T m+ . . .+T n−m, which equals n/m if T m = i d ), and
⋃

n H q( eY ,F )Gn =H q( eY ,F ).
Now let G be a locally constant sheaf of finite groups on Y . In this case, H 1(Y,G )

and H 1( eY ,G ) classify G -torsors. Moreover, descent theory identifies H 1(Yn,G ) with
isomorphism classes of Gn-linearized G -torsors on eY , under which identification the
pullback map H 1(Yn,G )−→H 1( eY ,G ) corresponds to forgetting the Gn-structure. Thus
H 1(Yn,G ) −→ H 1( eY ,G )Gn is surjective, and hence lim−→n

H 1(Ym,G ) −→ H 1( eY ,G ) is

surjective as H 1( eY ,G ) is a finite set. In fact, in analogy with the abelian case, we have a
“short exact sequence”

lim−→
n

H 0( eY ,G )−→ lim−→
n

H 1(Yn,G )−→
⋃

n

H 1( eY ,G )Gn −→∗

(meaning that the first term acts on the second term — by changing the Gn-structure —
and the third term is the orbit space), obtained by taking inductive limit of the system

H 0( eY ,G ) //

β
��

H 1(Ym,G ) //

��

H 1( eY ,G )Gm //

��

∗

H 0( eY ,G ) // H 1(Yn,G ) // H 1( eY ,G )Gn // ∗,

where β(g ) = g · (T m g ) · . . . · (T n−m g ). We conclude as before.

Remark 4.3.4. As the example Y = S1∨S2, eY = (universal cover of Y ) shows (cf. [AM69,
Example 6.11]), the finiteness assumption on eY (rather than Y ) in Lemma 4.3.3 is nec-
essary. In general, the proof shows that without the finiteness assumptions on eY andF
one always has the short exact sequence (4.1). In particular, the image of lim−→n

H q(Yn,F )
in H q( eY ,F ) is the subgroup of elements of H q( eY ,F ) with finite orbit under the action
of Z by deck transformations.

Proposition 4.3.5. Let W be a compact topological space, W0 ⊆W a closed subspace. Let x
be the vertex of the open cone X :=C ◦(W ). Suppose we are given a Z-covering space

eX ∗ −→X ∗ :=C ◦(W ) \C ◦(W0).
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For any integer n ≥ 1, denote by X ∗n =
eX ∗×Z (Z/nZ) −→ X ∗ the induced Z/nZ-covering

space. Suppose that eX ∗ has the homotopy type of a finite CW complex. Then the pullback
maps

lim−→
U3x,n

H q(U ∗
n ,F )−→ lim−→

U3x

H q( eU ∗,F )−→H q( eX ∗,F )

are isomorphisms for every locally constant sheaf of finite abelian groupsF on eX ∗. The same
for H 1 of a locally constant sheaf of finite groups.

Proof. Let W ∗ =W \W0. As X ∗ 'W ∗×(0,1), there exists a Z-covering space fW ∗ −→W ∗

and an isomorphism eX ∗ ∼−→π∗fW ∗ over X , where

π : X ∗ =W ∗× (0,1)−→W ∗

is the natural projection. Moreover, F is a pullback from W ∗ (being locally constant).
Noting that the sets Uε = {y ∈X : d (y)< ε} constitute a basis of neighborhoods of x in
X , we can replace the limits over U 3 x by limits over Uε. Note that eX ∗ and fW ∗× (0,1)
are isomorphic over X , and that the preimage of Uε in fW ∗ × (0,1) is fW ∗ × (0,ε). It
follows that the transition maps in {H q(U ∗

ε,n,F )}ε (for a fixed n) and {H q( eU ∗
ε

,F )} are
isomorphisms, which in particular implies that the second map in the assertion is an
isomorphism. By Lemma 4.3.3, for every ε the maps

lim−→
n

H q(U ∗
ε,n,F )−→H q( eU ∗

ε
,F )

are isomorphisms. Passing to the limit with ε, we get the desired assertion.

Theorem 4.3.6 (cf. [SGA73b, Exp. XVI Théorème 4.1]). Let f : X −→ S be a finite type
morphism of schemes locally of finite type over SpecC, and let F be a constructible sheaf of
sets (resp. of finite groups, resp. of finite abelian groups) on X . Denote by ε : Xc l −→Xét and
ε : Sc l −→ Sét the comparison maps. Then the base change morphisms

ϕ : ε∗Rq f∗F −→ Rq f∗ε
∗F

are isomorphisms for q = 0 (resp. for q = 0,1, resp. for q ≥ 0).
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Proof of Theorem 4.3.1. (α) Let ε and u be as in Theorem 4.1.2, and let S(ε) denote the
sphere of radius ε centered at x ∈CN+1. The transition maps in the system {eB∗(ε′)}ε′≤ε '
eC are isomorphic via u to the inclusions

(Sx(ε)×X
eX ∗)× (0,ε′′/ε) ,→ (Sx(ε)×X

eX ∗)× (0,ε′/ε) (ε′′ ≤ ε′ ≤ ε),

and therefore are homotopy equivalences. It follows that αε induces an isomorphism
Π( eC ) ∼−→ Fx,ε. Of course any smaller ε will do.

For β, γ , and δ, we will use the criterion of Lemma 4.3.2. In each case, assumption
(1) is satisfied with d = 2dim(X ), so we only need to check (2) and (3).

(β) By Theorem 4.1.5(2), we know that Fx,ε has the homotopy type of a finite CW
complex. Thus passing to the limit with n we obtain the desired claim by Proposi-
tion 4.3.5.

(γ ) Fix an integer n ≥ 1, and let F be a constructible sheaf of finite abelian groups
on X ∗n , and denote the map X ∗n −→ X by jn. Then Theorem 4.3.6 shows that the base
change map

ϕ : ε∗Rq jn∗F −→ Rq jn∗ε
∗F

is an isomorphism. Taking stalks at x, we see that in the commutative square

(Rq jn∗F )x
ϕ //

��

(Rq jn∗ε
∗F )x

��
H q(Cn,alg,F ) ε∗

// H q(Cn,F )

the bottom arrow is an isomorphism, and so are the vertical arrows, hence the top arrow
has to be an isomorphism as well. The same holds for H 1 of constructible sheaves of
groups. Taking the limit over n, we get the desired result.

(δ) This follows from [SGA73a, Exp. XIII Proposition 2.1.4]

81



82



Chapter 5

Nearby cycles and monodromy

5.1 Introduction

Kato–Nakayama spaces

Let us start with a short review of the theory of Kato–Nakayama spaces of log complex
analytic spaces, which in the author’s opinion provide the most intuitive explanation of
many phenomena in logarithmic geometry. To a fs log complex analytic space (X ,MX )
one functorially associates a space (X ,MX )log (which we often abbreviate to Xlog) to-
gether with a proper continuous map τ : (X ,MX )log −→ X [KN99, NO10]. If X is
smooth, (X ,MX )log is a manifold with boundary. A point of Xlog corresponds to a pair
(x, h) of a point x ∈X and a homomorphism h :M gp

X ,x −→ S1 making the diagram

O ∗X ,x

f 7→ f (x) //

��

C∗

z
|z |
��

M gp
X ,x h

// S1

commute. In particular, the fiber τ−1(x) is in a natural way a torsor under the compact
abelian Lie group Hom(M

g p

X ,x ,S1).
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Example 5.1.1. 1. If (0,M0) is the standard log point Spec(N−→C) then (0,M0)log =
S1.

2. If X = C withMX the compactifying log structure induced by C \ {0} ⊆ C, then
Xlog = [0,∞)× S1, τ(r,θ) = r e iθ.

3. More generally, if (X ,MX ) = Hom(P,C) is an affine toric variety, then
(X ,MX )log =Hom(P,S1)×Hom(P,[0,∞)) with τ(r,θ)(p) = r (p)e iθ(p).

The geometry of Xlog reflects the log geometry of (X ,MX ). For example, one has
H ∗(Xlog,C) ' H ∗(X ,Ω•X /C,log) [KN99]. If (X ,MX ) is smooth over C with trivial log

structure, with U = (X ,MX )tr, then the inclusion U ,→ X factors as U ,→ Xlog
τ−→

X , where U−→Xlog is a local homotopy equivalence. We have thus replaced the open
immersion U ,→ X with the proper map τ with the same cohomological properties
(compare this with Theorem 4.2.6 for Uét−→(X ,MX )két

ε−→Xét).
The same is true for maps f : (X ,MX ) −→ (Y,MY ). For example, flog is proper if

f is, and flog is a submersion (of manifolds with boundary) if f is smooth and exact. We
also have a logarithmic analog of Ehresmann’s theorem: if f is smooth, exact, and proper,
then flog is a locally trivial fibration whose fibers are compact manifolds with boundary.
If f is moreover vertical (i.e.,MX is generated by f ∗MY as a sheaf of faces), the fibers are
actual manifolds.

The formation of (X ,MX )log commutes with base change with respect to strict mor-
phisms [KN99, Lemma 1.3(3)], that is, the square

(X ′,MX ′)log

ulog //

τ
��

(X ,MX )log

τ
��

X ′ u
// X

(5.1)

is cartesian if u : (X ′,MX ′)−→(X ,MX ) is strict. In particular, as any fs log analytic space
locally admits a strict map to an affine toric variety, Example 5.1.13 provides a local
description of (X ,MX )log in general. Moreover, the square is also cocartesian (i.e., a
pushout) if u is a strict closed immersion.

One beautiful application of this construction is the procedure of (topologically) re-
constructing a log smooth degeneration from its special fiber together with its log struc-
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ture. For a map f : X −→ Y of topological spaces, let us denote by Cyl( f ) the open
mapping cylinder X × [0,1)tY /((x, 0)∼ f (x)).

Theorem 5.1.2. Let (S,MS) be a disc around 0 ∈ C with the log structure induced by the
inclusion S∗ = S \ {0} ,→ S, and let f : (X ,MX ) −→ (S,MS) be a proper and smooth
morphism of complex analytic spaces, with MX the log structure induced by the inclusion
X ∗ =X ×S S∗ ,→X .

Then, after shrinking the radius of S, there exist isomorphisms X ∼−→Cyl(τX0
) and S ∼−→

Cyl(τS0
) fitting inside a commutative diagram

X0

ss ,,

��
X ∼ //

��

Cyl(τX0
)

��
S0

ss ,,
S ∼ //Cyl(τS0

).

In other words, the morphism of pairs f : (X ,X0)−→ (S, S0 = 0) is isomorphic to the map of
mapping cylinders (Cyl(τX0

),X0) −→ (Cyl(τS0
), S0) via an isomorphism inducing the iden-

tity on X0 and S0.

Proof. Note that the open cylinder Cyl(τX0
) is by definition the pushout of the diagram

(X0,MX0
)log

τX0

��

id×0 // (X0,MX0
)log× [0,1)

X0.

(5.2)

On the other hand, by [NO10, Theorem 5.1], the map flog : (X ,MX )log −→ (S,MS)log is
a locally trivial fibration. The base of this fibration is (S,MS)log ' S1× [0,1). Collapsing
S1×{0}= (0,M0)log into a point yields the isomorphism S 'Cyl(τS0

). The interval being
contractible, every fiber bundle over S1 × [0,1) can by obtained by pull-back along the
projection to S1 of the induced fibration over S1×{0}= S1 (cf. [Hus75, I 4, Theorem 9.6]
for the group G of homeomorphisms of the fiber of flog, endowed with the compact-open
topology). This shows that there is an isomorphism

(X ,MX )log
∼−→ (X0,MX0

)log× [0,1)
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fitting inside a commutative diagram

(X ,MX )log
∼ //

flog

��

(X0,MX0
)log× [0,1)

τX0
×id

��
(S,MS)log ∼

// S1× [0,1).

The diagram (5.2) is thus isomorphic to

(X0,MX0
)log

τX0

��

id×0 // (X ,MX )log

X0.

(5.3)

To finish the proof, it suffices to note that the square

(X0,MX0
)log

τX0

��

id×0 // (X ,MX )log

τX

��
X0 i

// X

(5.4)

is a pushout. Since (5.4) clearly commutes, we get an induced map

ϕ : Pushout((5.3)))−→X .

Since τX is surjective, so is ϕ. To show injectivity, we use the fact that the log structure
on X is trivial on X \ X0. The question whether ϕ is a homeomorphism is local on
X . Let x ∈ X , and let S ′ ⊆ S be a smaller closed disc containing f (x) in its interior.
Then X ′ = X ×S S ′ is compact and Hausdorff, and ϕ is bijective over X ′, thus ϕ is a
homeomorphism over X ′, which contains a neighborhood of the point x.

The monodromy formula of Ogus

Theorem 5.1.2 implies that the all of the local topological invariants of f around X0,
including nearby cycles and monodromy, are completely determined by (X0,MX0

). Mak-
ing this relationship explicit, particularly in terms of the extension

0−→ f ∗M
gp

S −→M
gp

X −→M
gp

X /S −→ 0 (5.5)
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was the principal aim of [Ogu13]. The goal of this chapter is to provide several variants
of one of Ogus’ results, namely the “monodromy formula” explained below.

Let f : (X ,MX )−→ (S,MS) be a smooth and saturated (Definition 2.2.2) morphism,
where (S,MS) is the standard log point Spec(N−→C). Let

eX = (X ,MX )log×S1 R(1),

τ : eX −→ X the projection. We consider the complexes of sheaves Rτ∗C on X , with
the induced action of Z(1) =π1(S

1), which in the situation where (X ,MX ) is the special
fiber of Theorem 5.1.2 are nothing else than nearby cycles RΨC. Standard calculations
(cf. §5.2 below) show that one can identify the cohomology sheaves Rqτ∗C with the
exterior powers

∧qM
gp

X /S ⊗C, and that the action of Z(1) on Rqτ∗C is trivial. This
implies that for γ ∈ Z(1), the map 1− γ : Rτ∗C−→ Rτ∗C induces homomorphisms

L1−γ : Rqτ∗C−→ Rq−1τ∗C[1]

in the derived category. One might think of the collection of these homomorphisms
as of a “first order approximation” of the monodromy action on Rτ∗C. On the other
hand, cup product with the canonical generator ofM

gp

S , or equivalently the class of the
extension (5.5), induces homomorphisms

E :
q
∧

M
gp

X /S ⊗C−→







q−1
∧

M
gp

X /S ⊗C






[1].

Theorem 5.1.3 (Monodromy Formula, [Ogu13]). For every q ≥ 0 and for every γ ∈ Z(1),
the diagram

∧qM
gp

X /S ⊗C E //

��

�

∧q−1M
gp

X /S ⊗C
�

[1]
·γ //
�

∧q−1M
gp

X /S ⊗C
�

[1]

��
Rqτ∗C L1−γ

// Rq−1τ∗C[1]

commutes.

In this chapter, we provide `-adic analogues of the monodromy formula for smooth
and saturated log schemes over a standard log point (Theorem 5.4.4) and over a trait with
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the standard log structure (Theorem 5.5.1). Moreover, we provide a version of Theo-
rem 5.1.3 with coefficients in Z. In particular, we obtain a completely different proof of
Theorem 5.1.3. Our methods resemble those used by Rapoport and Zink [RZ82] (see
also [Ill94, Ill02b]).

5.2 The complex analytic case

Before giving a complete treatment of the several variants of the monodromy formula,
we provide an outline of our proof of Theorem 5.1.3 (with coefficients Z rather than C).
The proof has two steps, the first being purely an argument of homological algebra, and
the second one relating the homological algebra to the geometry in a very easy way.

Let (S,MS) be the standard log point. We will identify (S,MS)log with S1, and
denote the fundamental group π1(S

1) by Γ. For an abelian group A an an integer
q , A(q) denotes the “Tate twist” A⊗Z Γ

⊗q . Let θ ∈ H 1(Γ,Z(1)) = H 1(Z(1),Z(1))
be the canonical generator, corresponding to the identity on Γ. Under the identifica-
tion H 1(S1,Z(1)) = H 1(Z(1),Z(1)), θ corresponds to the class of the Γ = Z(1)-torsor
exp : R(1)−→ S1.

As in the introduction, we will consider a smooth and saturated log complex analytic
space f : (X ,MX )−→(S,MS). Let τ : eX = (X ,MX )log ×S1 R(1)−→X be the canonical
projection.

Step 1 — Homological Algebra

Let K = Rτ∗Z, which we consider as a complex of sheaves of Γ-modules on X . As
mentioned above, this step is of a purely homological algebraic nature. The only input
from geometry we need is that K is a complex of Γ-modules (on some space — or topos —
X ) such that the Γ-action on the cohomology sheaves H q(K) is trivial for all q ∈ Z. This
well-known property of K will be verified in the next step. It implies (cf. Lemma 5.3.1)
that for γ ∈ Γ the map 1− γ : K −→K induces canonical maps

L1−γ : H q(K)−→H q−1(K)[1]

which the monodromy formula seeks to describe. Recall that for objects M and N of
an abelian category A with enough injectives one has Hom(M ,N[1]) = Ext1(M ,N ). In
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order to explicate L1−γ , we will find the corresponding extension of H q(K) by H q−1(K).
The key point is that L1−γ can be expressed using the element θ ∈ H 1(Γ,Z(1)). Cup

product with θ induces maps ∧θ : H q(Γ,K(q))−→H q+1(Γ,K(q + 1)). Here H q(Γ,−) is
the q -th derived functor of the functor taking a sheaf of Γ-modules on X to its subsheaf
of Γ-invariants. Since H 2(Γ,Z(2)) = 0, we have θ∧θ= 0, and hence we get a complex

. . .−→H q−1(Γ,K) ∧θ−−→H q(Γ,K) ∧θ−−→H q+1(Γ,K)−→ . . . (5.6)

which is exact (cf. Proposition 5.3.3(c)). Furthermore, the canonical projections
H q(Γ,K(q))−→H 0(Γ, H q(K(q))) = H q(K) are surjective, and ∧θ : H q−1(Γ,K(q −
1))−→H q(Γ,K(q)) induce injections H q−1(K)−→H q(Γ,K(q)) (by the same proposition).
Thus the exact sequence (5.6) splits into short exact sequences

0−→H q−1(K(q − 1))−→H q(Γ,K(q))−→H q(K(q))−→ 0. (5.7)

Theorem 5.2.1 (cf. Proposition 5.3.5). Let γ ∈ Γ. The map L1−γ (q) :
H q(K(q))−→H q−1(K(q))[1] corresponds to the pushout of the extension (5.7) along the map

id⊗ γ : H q−1(K(q − 1))−→H q−1(K(q − 1))(1) =H q−1(K(q)).

Interlude — Description of Rqτ∗Z and Rqτ∗Z

Recall the definition of the logarithmic exponential sequence [KN99, §1.4] of a fs
log complex analytic space (X ,MX ). Points of Xlog correspond to pairs (x ∈ X , h :
M gp

X ,x−→S1) such that h extends the map f 7→ f (x)/| f (x)| on O ∗X ,x , and these homomor-
phisms h assemble into a map c : τ−1M gp

X −→S1 (here S1 stands for the sheaf of continuous
functions into S1). Let L be the fiber product of exp : R(1)−→S1 and c . Thus L is the
“sheaf of logarithms of M gp

X ”. We get a pullback diagram of short exact sequences of
sheaves on Xlog

0 // Z(1) // τ−1(OX )

��

exp // τ−1(O ∗X )

��

// 0

0 // Z(1) //L

��

exp // τ−1(M gp
X )

c
��

// 0

0 // Z(1) // R(1)
exp // S1 // 0
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whose middle row is called the logarithmic exponential sequence.

Applying τ∗ to it yields a connecting homomorphism δ : τ∗τ
−1(MX )−→R1τ∗Z(1).

The composition M gp
X −→τ∗τ

−1(M gp
X )−→R1τ∗Z(1) with the adjunction map

M gp
X −→τ∗τ

−1(M gp
X ) factors through M

gp

X = M gp
X /O

∗
X because exp : OX =

τ∗τ
−1(OX )−→τ∗τ−1(O ∗X ) = O

∗
X is surjective. Let us denote by µ : M

gp

X (−1)−→R1τ∗Z
the homomorphism we just constructed (after a −1 Tate twist), and by
µq :

∧qM
gp

X (−1)−→Rqτ∗Z the map induced by µ and cup product.

Theorem 5.2.2 ( [KN99, Lemma 1.5]). The maps µq :
∧q(M

gp

X (−1))−→Rqτ∗Z are iso-
morphisms for all q ≥ 0.

This is not a difficult result: since τ : Xlog−→X is proper, the proper base change
theorem reduces us immediately to the case where X = {x} is a point, in which situation
Xlog is the real torus Hom(M

gp

X ,x ,S1).
Now let us assume, as before, that (X ,MX ) is log smooth and saturated over the

standard log point (S,MS). Since Γ acts on eX and the map τ : eX−→X is Γ-invariant, the
complexes Rτ∗Z are complexes of sheaves of Γ-modules on X .

Similarly to Rqτ∗Z, the sheaves Rqτ∗Z admit a description in terms of M
gp

X /S =

M
gp

X / f ∗M
gp

S . As (S,MS) is the standard log point, there is a canonical section t ofMS

whose image inM S 'N is a generator. The structure morphism f : (X ,MX )−→(S,MS)
corresponds to a choice of a global section f ∗t ofMX , which we also denote by t . Thus
the points of eX are triples (x, h, r ) with (x, h) ∈Xlog and r ∈R(1) with exp(r ) = h(t ). In
particular, there is a global section log t of the pullback of L to eX with exp(log t ) = t .
We consider the pullback of the logarithmic exponential sequence to eX and the as-
sociated connecting homomorphism τ∗τ

−1M gp
X −→R1τ∗Z(1). As before, the composi-

tion a :M gp
X −→τ∗τ

−1(M gp
X )−→R1τ∗Z(1) annihilates O ∗X . But because log t exists on eX ,

a( f ) = 0, and hence a descends further toM
gp

X /S . We denote by µ :M
gp

X /S(−1)−→R1τ∗Z
the constructed homomorphism (after a Tate twist), and by

µq :
q
∧

(M
gp

X /S(−1))−→Rqτ∗Z

the map induced by µ and cup product. We have the following analogue of Theo-
rem 5.2.2.
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Theorem 5.2.3. The maps µq :
∧q(M

gp

X /S(−1))−→Rqτ∗Z are isomorphisms for all q ≥ 0.
In particular, the action of Γ on Rqτ∗Z is trivial for all q ≥ 0.

We will make use of the following explicit description of the maps

µ(1) :M
gp

X −→R1τ∗Z(1) and µ(1) :M
gp

X /S−→R1τ∗Z(1).

Note that R1τ∗Z(1) is the sheafification of the presheaf on X

U 7→H 1(τ−1(U ),Z(1)) = (isomorphism classes of Z(1)-torsors on τ−1(U )).

Let m be a local section ofM
gp

X . Suppose that m′ is a section ofM gp
X whose image in

M
gp

X equals m. The logarithmic exponential sequence makes the preimage of the section
τ−1(m) of τ−1(M gp

X ) under the map exp :L−→τ−1(M gp
X ) into a torsor under Z(1), and

the sectionµ(1)(m) of R1τ∗Z(1) corresponds to the isomorphism class of this torsor. The
analogous description holds for µ(1). Moreover, the two descriptions being compatible,
we see that the square

M
gp

X (−1)

µ

��

//M
gp

X /S(−1)

µ

��
R1τ∗Z // R1τ∗Z

(5.8)

commutes.
Consider the case (X ,MX ) = (S,MS). In this situation, eX = R(1), and the map τ is

the map exp : R(1) −→ S1. This Z(1)-torsor is identified with the torsor on S1 coming
from the logarithmic exponential sequence and the generating section t of τ−1(M gp

S ). We
deduce that µS(1)(t ) = θ. For a general (X ,MX ), pulling this back to X we obtain

µ(1)( f ∗t ) = f ∗θ. (5.9)

Step 2 — The end of the proof

Note that since eX−→Xlog is a Γ-torsor, we have Rτ∗Z = H ∗(Γ, Rτ∗Z),
so Rqτ∗Z = H q(Γ, Rτ∗Z). Using this identification, the map ∧θ :
H q(Γ, Rτ∗Z(q))−→H q+1(Γ, Rτ∗Z(q + 1)) corresponds to cup product with the (image
in R1τ∗Z(1) of the) generator θ of R1τS∗Z(1) = H 1(S1,Z(1)) = H 1(Γ,Z(1)). Therefore,
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the extension (5.7) (which, after Theorem 5.2.1, determines L1−γ ) corresponds to the
extension

0−→ Rq−1τ∗Z(q − 1) aq

−−→ Rqτ∗Z(q)
b q

−−→ Rqτ∗Z(q)−→ 0 (5.10)

where the map aq : Rq−1τ∗Z(q − 1) −→ Rqτ∗Z(q) is “lift to Rq−1τ∗Z(q − 1) and take
cup product with θ” and the map b q : Rqτ∗Z(q)−→ Rqτ∗Z(q) is deduced from pullback
along eX −→Xlog.

We will first prove the monodromy formula for q = 1. Let t be the canonical section
ofMS (whose image inMX equals f by definition). Our goal is to relate the the extension
(5.5) to the extension 5.10 for q = 1. In other words, we need to check that the diagram

0 // f ∗M
gp

S (−1) t //

��

M
gp

X (−1)

µ

��

//M
gp

X /S(−1)

µ

��

// 0

0 // Z(−1)
a1

// R1τ∗Z b 1
// R1τ∗Z // 0

(5.11)

commutes. Here the square on the right is a Tate twist of (5.8), and the commutativity
of the square on the left follows directly from (5.9).

Since the maps µq , µq , and aq are defined by cup product, we easily deduce that the
diagrams

0 // (
∧q−1M

gp

X /S(−1))(−1) ∧t //

µq−1

��

∧qM
gp

X (−1)

µq

��

//
∧qM

gp

X /S(−1)

µq

��

// 0

0 // Rq−1τ∗Z(−1)
aq

// Rqτ∗Z b q
// Rqτ∗Z // 0,

(5.12)

where the bottom row is an appropriate Tate twist of (5.10), commute. Combined with
Theorem 5.2.1, this shows that the diagrams

∧qM
gp

X /S ⊗Z(−1) E //

µq

��

(
∧q−1M

gp

X /S ⊗Z(−1))(−1)[1]
·γ // (

∧q−1M
gp

X /S ⊗Z(−1))[1]

µq−1

��
Rqτ∗Z L1−γ

// Rq−1τ∗Z[1],

where E corresponds to the class of the top row extension (5.12), commute as well. This
completes the proof.
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5.3 Homological algebra and group cohomology

5.3.1 Homological algebra

Recall the definition of the truncation functors τ≤q and τ≥q on the category of complexes
in an abelian category A:

τ≤qK = [. . .−→K q−1 −→ ker(K q −→K q+1)−→ 0−→ . . .],

τ≥qK = [. . .−→ 0−→ coker(K q−1 −→K q)−→K q+1 −→ . . .].

These functors descend to the derived category D(A). For a pair of integers a ≤ b , we
write τ[a,b] = τ≥aτ≤b = τ≤bτ≥a and τ[a,b ) = τ[a,b−1]. If a < b < c , we have an exact
triangle of functors

τ[a,b ) −→ τ[a,c) −→ τ[b ,c) −→ .

We have τ[q ,q]K =H q(K)[−q].

Lemma 5.3.1. Let f : K −→ K ′ be a morphism in D(A), and let q be an integer. Suppose
that the induced maps H q−1K −→H q−1K ′ and H qK −→H qK ′ are zero.

1. There exists a unique morphism L f : H q(K)−→H q−1(K ′)[1]making the diagram

τ[q−1,q]K

τ[q ,q−1]( f )
��

// H q(K)[−q]

L f [−q]
��

τ[q−1,q]K
′ H q−1(K ′)[1− q]oo

commute.

2. Let C−→K
f
−→ K ′−→C [1] be an exact triangle. The corresponding long cohomology

exact sequence

. . .−→H q−1K
f =0
−−→H q−1K ′ −→H qC −→H qK

f =0
−−→H qK ′ −→ . . .

gives a short exact sequence

0−→H q−1K ′ −→H qC −→H qK −→ 0.

The corresponding map H q(K)−→H q−1(K ′)[1] equals L f .
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Proof. (1) Consider the following commutative diagram with exact rows and columns.

Hom(τ[q]K ,τ[q]K
′[−1]) //

��

Hom(τ[q−1,q]K ,τ[q]K
′[−1]) //

��

Hom(τ[q−1]K ,τ[q]K
′[−1])

��
Hom(τ[q]K ,τ[q−1]K

′) //

��

Hom(τ[q−1,q]K ,τ[q−1]K
′) //

��

Hom(τ[q−1]K ,τ[q−1]K
′)

��
Hom(τ[q]K ,τ[q−1,q]K

′) //

��

Hom(τ[q−1,q]K ,τ[q−1,q]K
′) //

��

Hom(τ[q−1]K ,τ[q−1,q]K
′)

��
Hom(τ[q]K ,τ[q]K

′) //Hom(τ[q−1,q]K ,τ[q]K
′) //Hom(τ[q−1]K ,τ[q]K

′).

Note that the groups in the top row and the group in the bottom right corner are zero,
as Hom(A,B) = 0 if there exists an n ∈ Z such that τ≥nA= 0 and τ≤n−1B = 0. Similarly,
the left horizontal maps are injective. The claim follows then by diagram chasing.

(2) Without loss of generality, we can assume that we have a short exact sequence of
complexes 0 −→ C −→ K −→ K ′ −→ 0. Applying truncation τ[q−1,q] yields a diagram
with exact rows and columns

0

��

0

��

0

��
H q−1(C )

��

// H q−1(K)

��

0 // H q−1(K ′)

��

yy

C q−1/B q−1C α
//

��

K q−1/B q−1K //

��

(K ′)q−1/B q−1K ′ //

��

0

0 // Z qC

��

// Z qK

��

// Z qK ′

��
H q(C ) //

��

H q(K) 0 //

��

H q(K ′)

��
0 0 0.
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We need to check that the diagram

[K q−1/B q−1K −→ Z qK]

��

// [0−→H qK] [H q−1K ′ −→H qC ]∼oo

��
[(K ′)q−1/B q−1K −→ Z qK ′] [H q−1K ′ −→ 0]oo

commutes in the derived category. For this, it suffices to find a complex L together with a
quasi-isomorphism L−→ [K q−1/B q−1K −→ Z qK] and a map L−→ [H q−1K ′ −→H qC ]
such that the diagrams of complexes

L
∼

tt ))
[K q−1/B q−1K −→ Z qK]

))

[H q−1K ′ −→H qC ]
∼

uu
[0−→H qK]

and
L

∼

uu ''
[K q−1/B q−1K −→ Z qK]

��

[H q−1K ′ −→H qC ]

��
[(K ′)q−1/B q−1(K ′)−→ Z qK ′] [H q−1K ′ −→ 0]oo

commute. Let Z = ker(K q−1/B q−1K −→ Z qK ′) and let

L= [C q−1/B q−1C
id×(−α)
−−−→C q−1/B q−1C ⊕Z

dC⊕dK−−−→ Z qC ]

with Z qC in degree 1. Maps in the big diagram induce maps L −→ [K q−1/B q−1K −→
Z qK] and L−→ [H q−1K ′ −→H qC ] and it is easy to check the required assertions.

5.3.2 Cohomology of procyclic groups

Let Γ be either a free cyclic group or a torsion free procyclic group. In the first case, we
consider Γ as a discrete topological group and set R= Z. In the latter case, Γ'

∏

p∈S Zp
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for a set of primes S (cf. [RZ10, §2.7]), and we set R =
∏

p∈S Zp . Either way, Γ is a free
topological R-module of rank 1. For a topological (e.g. discrete) R-module M , we write
M (n) =M ⊗RΓ

⊗n if n ≥ 0, M (n) =M ⊗R (Γ
∨)⊗(−n) if n < 0, where Γ∨ =HomR,cont(Γ, R).

We have natural identifications M (n)(m) ' M (n +m). Any γ ∈ Γ defines a morphism
tγ : M −→M (1) sending m to m⊗ γ .

LetΛ be a discrete quotient ring of R, i.e. Z/NZ for any N ≥ 0 if R= Z, orΛ= Z/NZ
with assN ⊆ S if R =

∏

p∈S Zp . Let CΓ,Λ denote the category of discrete Λ[Γ]-modules,
i.e., Λ-modules equipped with a Γ-action with open stabilizers. It is an abelian category
with enough injectives. For a bounded below complex M ∈D+(CΓ,Λ), we write H n(Γ, M )
for the derived functors of the functor (−)Γ :CΓ,Λ −→Λ−mod of Γ-invariants.

For any object M of D+(CΓ,Λ) and any choice of a topological generator γ ∈ Γ, the

total complex of the double complex [M
1−γ
−→ M ] (in columns 0 and 1) is canonically

quasi-isomorphic to H ∗(Γ, M ) (total derived functor of Γ-invariants). We follow the sign
conventions of [Sai03, p. 585-587]. Concretely, this implies that

H q(Γ, M ) =
{(a, b ) ∈M q ⊕M q−1 : da = 0, d b = (1− γ )a}
{(da′, (1− γ )a′− d b ′) : (a′, b ′) ∈M q−1⊕M q−2}

. (5.13)

In particular, for M an object of CΓ,Λ, we have

H 0(Γ, M ) = ker(1− γ : M−→M ) and H 1(Γ, M ) = coker(1− γ : M−→M ). (5.14)

Lemma 5.3.2 (cf. [RZ82, §1]). (1) Let θ ∈ Ext1
CΓ,Λ
(Λ,Λ(1)) = H 1(Γ,Λ(1)) be the class of

the extension
0−→Λ(1)

x 7→(x,0)
−−−→Λ(1)⊕Λ

(x,y)7→y
−−−→Λ−→ 0

where γ · (x, y) = (x+ tγ (y), y). The element θ corresponds to the identity map under the
identification H 1(Γ,Λ(1)) 'Hom(Γ,Λ(1)) =Hom(Λ(1),Λ(1)), and corresponds to the
the class of tγ (1) ∈Λ(1) = coker(1− γ :Λ(1)−→Λ(1)) under the identification (5.14).

(2) For any M ∈ CΓ,Λ, the map M Γ(−1) = Hom(Λ(1), M ) −→ H 1(Γ, M ) sending f :
Λ(1)−→M to f (θ) coincides with the map H 0(Γ, M (−1)) −→ H 1(Γ, M ) defined by cup
product with θ. Using the identifications (5.14), this map corresponds to the composition

ker (1− γ : M (−1)−→M (−1)) incl.−−→M (−1)
tγ−−→M

proj.
−−→ coker(1− γ : M−→M ).

In particular, it is an isomorphism if M is a Λ-module with trivial Γ-action.
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(3) For any complex M ∈ D+(CΓ,Λ), the map θ : H q−1(Γ, M )−→ H q(Γ, M (1)) corresponds
to the map (a, b ) 7→ (0, tγ (a)) under the identification (5.13).

Proof. (1) The homomorphism ϕ : Γ −→ Λ(1) corresponding to the extension satisfies
γ (0,1) = (ϕ(γ ), 1), which equals (tγ (1), 1). Assertion (3) follows from [RZ82, Lemma
1.2], and (2) follows from (3).

Recall that if F : A−→ B is a left-exact functor between abelian categories, and if A
has enough injectives, then for every M ∈D+(A) there is a spectral sequence

E pq
2 = Rp F (H q(M )) ⇒ H p+q(R+F (M )).

Applying this to the functor (−)Γ :CΓ,Λ −→ Λ−mod, we get a spectral sequence, which
we call the Cartan–Leray spectral sequence

E pq
2 =H p(Γ, H q(M )) ⇒ H p+q(Γ, M ). (5.15)

Because E pq
2 = 0 for p > 1, this spectral sequence degenerates, yielding for every q ∈ Z a

short exact sequence

0−→H 1(Γ, H q−1(M ))
δCL−−→H q(Γ, M )

πCL−−→H 0(Γ, H q(M ))−→ 0. (5.16)

Proposition 5.3.3. Let M be an object of D+(CΓ,Λ).

(1) Using the identifications of (5.13)–(5.14), πCL(a, b ) = [a] (which is invariant because
a− γa = d b is a coboundary) and δCL(c) = [(0, c)] where c ∈ Z q−1(M ) is any lift of c .

(2) The diagram

H q−1(Γ, M ) θ //

πCL
��

H q(Γ, M (1))

H 0(Γ, H q−1(M ))
θ
// H 1(Γ, H q−1(M )(1))

δCL

OO

commutes.

(3) Suppose that H q−1(M ) and H q(M ) are trivial Γ-modules for some integer q. Then the
sequence

H q−1(Γ, M (q − 1)) θ−−→H q(Γ, M (q)) θ−−→H q+1(Γ, M (q + 1))

is exact.
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Proof. Assertion (1) follows from the fact that the spectral sequence (5.15) is the spec-

tral sequence of the double complex [M
1−γ
−→ M ]. Then (2) follows from (1) by direct

calculation, and (3) follows from (2) and Lemma 5.3.2(2).

Lemma 5.3.4. Let γ ∈ Γ be a topological generator, and let γ ′ = γ n for some n ≥ 1. Let
Γ′ be the closure of the subgroup generated by γ ′. Then under the identifications (5.14), the
restriction map H 1(Γ, M )−→H 1(Γ′, M ) corresponds to the map

1+ γ + . . .+ γ n−1 : M/(1− γ )−→M/(1− γ ′).

In particular, the diagram

0 // H 1(Γ, H q−1(M ))
δCL //

1+γ+...+γ n−1

��

H q(Γ, M )
πCL //

res
��

H 0(Γ, H q(M )) //

��

0

0 // H 1(Γ′, H q−1(M ))
δCL // H q(Γ′, M )

πCL // H 0(Γ′, H q(M )) // 0

commutes.

Proof. This is clear in view of the identity 1− γ n = (1− γ )(1+ γ + . . .+ γ n−1).

Proposition 5.3.5. Let M ∈ D+(CΓ,Λ) and q ∈ Z. Suppose that Γ acts trivially on
H q−1(M ) and H q(M ), and hence for every γ ∈ Γ there is an induced map L1−γ :
H q(M )−→H q−1(M )[1] as in Lemma 5.3.1. Let

E : H q(M ) =H 0(Γ, H q(M ))−→H 1(Γ, H q−1(M ))[1] =H q−1(M )(−1)[1]

be the map corresponding to the extension (5.16). Then the diagram

H 0(Γ, H q(M )) E // H 1(Γ, H q−1(M ))[1] H 0(Γ, H q−1(M )(−1))[1]θ

tγ
��

H q(M )
L1−γ

// H q−1(M )[1] H 0(Γ, H q−1(M ))

commutes.

Proof. Suppose first that γ is a topological generator. We apply Lemma 5.3.1(2) to the

exact triangle C−→M
1−γ
−→ M−→C [1] where C = [M

1−γ
−→ M ]. Note that by the explicit
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description of (5.13), the map H q(C ) =H q(Γ, M )−→H q(M ) =H 0(Γ, H q(M )) coincides
with πCL. Similarly, the map H q−1(M ) = H 1(Γ, H q−1(M )(1)) −→ H q(C ) = H q(Γ, M )
coincides with δCL. This identifies E with L1−γ up to twist as desired.

For a general γ ∈ Γ, note that we can write γ = γ n
0 where γ0 is a topological generator

and n ≥ 0. The assertion follows then from the case n = 1 and Lemma 5.3.4.

Remark 5.3.6. Analogous statements hold if we replaceCΓ,Λ with the category of sheaves
of discrete Γ-modules in a topos X . This will be the case of interest in the following
section.

5.4 The algebraic case

The proof of the monodromy formula in the algebraic setting is completely analogous.
Let k be an algebraically closed field and let (S,MS) = Spec(N −→ k) be the stan-
dard log point over k. Let N ⊆ P ⊆ Q be the monoid of non-negative rational num-
bers whose denominators are invertible in k. Let (S,MS) = Spec(P −→ k), and let
Γ = Aut((S,MS)/(S,MS)) (the logarithmic inertia group of (S,MS)). We have a nat-
ural identification Γ = Ẑ′(1) = lim←−N

µN (k) [Ill02a, 4.7(a)]. We can identify the topos
(S,MS)két with the classifying topos of Γ. Fix an integer N ∈ P and let Λ = Z/NZ with
N ∈ P . Thus Λ(1) =µN (k). Finally, let θ ∈ Γ(S, R1εS,∗Λ) =H 1(Γ,Λ(1)) be the canonical
generator, where εS : (S,MS)két −→ Sét is the projection.

Let f : (X ,MX ) −→ (S,MS) be a smooth and saturated morphism. Let (X ,MX ) =
(X ,MX )×(S,MS )

(S,MS), and let ε : (X ,MX )két−→Xét be the projection.

Step 1 — Homological Algebra

Let K = Rε∗Λ, which is a complex of sheaves of continuous Γ-modules on Xét. As we
will see shortly, the Γ-action on the cohomology sheaves H q(K) is trivial for all q , and
hence every γ ∈ Γ induces a map

L1−γ : H q(K)−→H q−1(K)[1].

Cup product with θ yields a long exact sequence (5.6) which splits into short exact se-
quences

0−→H q−1(K(q − 1))−→H q(Γ,K(q))−→H q(K(q))−→ 0. (5.17)
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Theorem 5.4.1 (cf. Proposition 5.3.5). Let γ ∈ Γ. The map L1−γ (q) :
H q(K(q))−→H q−1(K(q))[1] corresponds to the pushout of the extension (5.7) along the map
id⊗ γ : H q−1(K(q − 1))−→H q−1(K(q − 1))(1) =H q−1(K(q)).

Interlude — Description of Rqε∗Λ and Rqε∗Λ

Recall the definition of the logarithmic Kummer sequence [KN99, Proposition 2.3] of a
fs log scheme (X ,MX ). Let N be an integer invertible on X , and let Λ = Z/NZ. The
sheafMX extends naturally to a sheafM log

X on (X ,MX )két. The logarithmic Kummer
sequence is the exact sequence

0−→Λ(1)−→M log,gp
X

N−−→M log,gp
X −→ 0.

Consider the projection ε : (X ,MX )két−→Xét. Applying Rε∗ to the logarithmic Kum-
mer sequence, we get a connecting homomorphism δ : ε∗M

log,gp
X −→R1ε∗Λ(1). The com-

positionMX−→ε∗M
log,gp
X −→R1ε∗Λ(1) with the adjunction mapMX−→ε∗M

log,gp
X factors

throughM
gp

X ⊗Λ because the N -th power map O ∗X−→O
∗

X is surjective for the étale topol-
ogy (as N is invertible on X ). Let us denote by µ :M

gp

X ⊗Λ(−1)−→R1ε∗Λ the homomor-
phism we just constructed (after a−1 Tate twist), and byµq :

∧q(M
gp

X ⊗Λ(−1))−→Rqε∗Λ
the map induced by µ and cup product.

Theorem 5.4.2 ( [KN99, Theorem 2.4], [Ill02a, Theorem 5.2]). The maps

µq :
q
∧

(M
gp

X ⊗Λ(−1))−→Rqε∗Λ

are isomorphisms for all q ≥ 0.

Now let as assume, as before, that (X ,MX ) is smooth and saturated over the standard
log point (S,MS) over k. Since Γ acts on (X ,MX ) and the map ε : (X ,MX )két−→Xét is
Γ-invariant, the complexes Rε∗ are sheaves of continuous Γ-modules on X .

Note that, since f is saturated, (X ,MX ) is a saturated log scheme. The map X−→X is
an isomorphism, and hence we can identify X and X . Moreover, the sequence

0−→ f ∗M
gp

S ⊗Λ−→M
gp

X ⊗Λ−→M
gp

X ⊗Λ−→ 0

is exact, so we can identifyM
gp

X ⊗Λ withM
gp

X /S ⊗Λ. Even though (X = X ,MX ) is not
an fs log scheme, it is a limit of the fs log schemes (XN = X ,MXN

) = (X ,MX )×(S,MS )
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(SN ,MSN
) where (S,MS) = Spec( 1

N N−→ k) for N ∈ P , and hence statements analogous
to those discussed above hold for (X ,MX ). More precisely, we have a morphism of topoi

ε : (X ,MX )két −→X ét =Xét.

The logarithmic Kummer sequence

0−→Λ(1)−→M log,gp

X

N−−→M log,gp

X
−→ 0

is exact, giving a connecting homomorphism ε∗M
log,gp

X
−→R1ε∗Λ(1). As before, the com-

position M gp

X
−→ε∗M

log,gp

X
−→ R1ε∗Λ(1) factors through M

gp

X ⊗ Λ =M
gp

X /S ⊗ Λ. We

denote by µ :M
gp

X /S ⊗Λ(−1)−→R1ε∗Λ the constructed homomorphism (after a −1 Tate

twist), and by µq :
∧qM

gp

X /S−→Rqε∗Λ the map induced by µ and cup product. Again we
have

Theorem 5.4.3. The maps µq :
∧qM

gp

X /S−→Rqε∗Λ are isomorphisms for all q ≥ 0. In
particular, the action of Γ on Rqε∗Λ is trivial for all q ≥ 0.

Step 2 — The end of the proof

We have Rε∗Λ = H ∗(Γ, Rε∗Λ), so Rqε∗Λ = H q(Γ, Rε∗Λ). Using this identification, the
map ∧θ : H q(Γ, Rε∗Λ(q))−→H q+1(Γ, Rε∗Λ(q + 1)) corresponds to cup product with the
(image in R1ε∗Λ(1) of the) generator θ of RqεS∗Λ(1) =H 1(Γ,Λ(1)). Therefore, the exten-
sion (5.7) (which, after Theorem 5.2.1, determines L1−γ ) corresponds to the extension

0−→ Rq−1ε∗Λ(q − 1) aq

−−→ Rqε∗Λ(q)
b q

−−→ Rqε∗Λ(q)−→ 0 (5.18)

where the map aq : Rq−1ε∗Λ(q − 1) −→ Rqε∗Λ(q) is “lift to Rq−1ε∗Λ(q − 1) and take
cup product with θ” and the map b q : Rqε∗Λ(q)−→ Rqε∗Λ(q) is deduced from pullback
along (X ,MX )két−→(X ,MX )két.

Let t be the canonical section ofMS (whose image inMX equals f by definition).
Let µS :M

gp

S ⊗Λ(−1)−→R1εS∗Λ be the map in Theorem 5.4.2 for S in place of X . Then
the Tate twist µS(1) :M

gp

S ⊗Λ−→R1εS∗Λ sends t to θ. Since the maps µq , µq , and aq are
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defined by cup product, we easily deduce that the diagrams

0 // (
∧q−1M

gp

X /S ⊗Λ(−1))(−1) ∧t //

µq−1

��

∧qM
gp

X ⊗Λ(−1)

µq

��

//
∧qM

gp

X /S ⊗Λ(−1)

µq

��

// 0

0 // Rq−1ε∗Λ(−1)
aq

// Rqε∗Λ b q
// Rqε∗Λ // 0,

(5.19)
where the bottom row is an appropriate Tate twist of (5.18), commute. Let E :
∧qM

gp

X /S ⊗ Λ(−1)−→(
∧q−1M

gp

X /S ⊗ Λ(−1))(−1)[1] be the map corresponding to the
class of the top row extension (5.19). We have proved:

Theorem 5.4.4. For every q ≥ 0 and for every γ ∈ Γ, the diagram
∧q(M

gp

X /S ⊗Λ(−1))

µq

��

E //
∧q−1(M

gp

X /S ⊗Λ(−1))(−1)[1]
γ //

∧q−1(M
gp

X /S ⊗Λ(−1))[1]

µq−1

��
Rqε∗Λ L1−γ

// Rq−1ε∗Λ[1].

commutes.

5.5 Variants and applications

5.5.1 The case over a trait

Let (S,MS) be a henselian trait as in §1.4. We do not have to assume that the fraction
field K has characteristic zero1. Let S = SpecV where V is the integral closure of V in
K , and let MS be the log structure on S induced by the open immersion η ,→ S. Let
G = Gal(η/η), let I ⊆ G be the inertia group, P ⊆ I the wild inertia subgroup. Let
G t = G/P be the tame quotient of G. As explained in [Ill02a, 8.1], G acts on the log
point (s ,Ms ) (where Ms =MS |s ) through G t , and the tame inertia I t = I/P via the
tame character t : I t−→Ẑ′(1)(k). Thus I t is identified with the log inertia group Γ of
(s ,Ms ) using the log geometric point (s ,Ms )−→(s ,Ms ).

Let f : (X ,MX ) −→ (S,MS) be a smooth and saturated morphism. Let X ◦ =
(X ,MX )tr, let X = X ×S S, and let ı : Xs−→X ,  : X ◦

η
−→X be the natural maps. Let

1In fact, the setup and notation here is (almost) taken from [Ill02a, §8]
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N be an integer invertible on S, and let Λ= Z/NZ. Our goal is to describe the action of
I on the nearby cycle sheaves RΨ◦Λ := ı∗R ∗Λ. We use the notation Ψ◦ to indicate that
the log structure on X might not be vertical.

Let (X ,MX ) = (X ,MX )×(S,MS )
(S,MS). Because f is saturated, we have X =X ×S S.

Consider the following commutative diagram of topoi

(Xη,MXη
)két

log
// (X ,MX )

ε
��

(Xs ,MXs
)

ε

��

ı log
oo

(X ◦
η
)ét

u

OO


// X ét (Xs )ét.ı

oo

Here u : (X ◦
η
)ét = (X

◦
η
,MX ◦η

)két−→(Xη,MXη
) is induced by the inclusion j .

The purity theorem [Fuj02] (cf. [Nak98, 2.0.1, 2.0.5]) implies that Ru∗Λ = Λ.
Nakayama’s theorem [Nak98, 3.2] implies that RΨlogΛ := ı log∗R log

∗ Λ=Λ. Furthermore,
we have RΨ◦Λ= ı∗R ∗Λ= Rε∗RΨ

logΛ= Rε∗Λ [Ill02a, 8.2.3]. In particular, the wild in-
ertia P acts trivially on RΨ◦Λ, and I acts trivially on RqΨ◦Λ. We thus get for g ∈ I maps
Lg−1 : RqΨ◦Λ−→Rq−1Ψ◦Λ[1], which equal the maps L1−γ : Rqε∗Λ−→Rq−1ε∗Λ[1] (de-
scribed by Theorem 5.4.4 applied to (Xs ,MXs

)/(s ,Ms )) under the above identification,

where γ = t (g ) ∈ Γ is the image of g under the tame character t : I −→ Ẑ′(1)(k) = Γ.
Since (X ,MX ) is regular, we have MX =MX ◦/X , and hence M gp

X = j∗O ∗X ◦ where
j : X ◦ ,→X is the inclusion. Similarly,M gp

X
= ∗O ∗X ◦η . The Kummer sequence

0−→Λ(1)−→O ∗X ◦η
N−−→O ∗X ◦η −→ 0

induces, upon applying ∗, a connecting homomorphism M
gp

X −→R1 ∗Λ, and therefore
maps

∧qM
gp

X /S ⊗Λ(−1) −→ Rq ∗Λ. Restricting to the special fiber, we get maps µq :
∧q(M

gp

Xs/s ⊗Λ(−1)−→RqΨ◦Λ, which agree with µq :
∧qM

gp

Xs/s ⊗Λ(−1) −→ Rqε∗Λ as
defined in the previous section. Using Theorem 5.4.4, we deduce

Theorem 5.5.1. For every q ≥ 0 and for every g ∈ I , the diagram
∧q(M

gp

Xs/s ⊗Λ(−1))

µq

��

E //
∧q−1(M

gp

Xs/s ⊗Λ(−1))(−1)[1]
t (g ) //

∧q−1(M
gp

Xs/s ⊗Λ(−1))[1]

µq−1

��
RqΨ◦Λ

Lg−1

// Rq−1Ψ◦Λ[1].
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commutes, where t : G −→ Ẑ′(1)(k) denotes the tame character.

5.5.2 The case over a disc

Let (S,MS) be a disc around 0 ∈ C of radius δ > 0, with the log structure induced by
the open immersion S∗ = S \ {0} ,→ S. Let eS = {Re(z)> logδ}, exp : eS−→S∗, a universal
cover of S∗ (identifying π1(S

∗) with Z(1)). Let (0,M0) be the center of S, considered as a
standard log point

Let f : (X ,MX )−→(S,MS) be a log smooth and saturated morphism of log complex
analytic spaces. Let (X0,MX0

) the log special fiber ( f −1(0),MX |X0
) with exact closed

immersion i : (X0,MX0
)−→(X ,MX ), and let X ◦ ⊆ X be the biggest subset whereMX =

O ∗X . Finally, define eX ◦ =X ◦×S
eS with  : eX ◦−→X the natural map. We will be interested

in the complex RΨ◦Z = i ∗R ∗Z of sheaves of Z(1)-modules on X0. As before, there are
isomorphisms µq :

∧qM gp
X0/0
⊗ Z(−1)−→RqΨ◦Z, whose construction implies that the

action of Z(1) on RqΨ◦Z is trivial, and hence once again we get for every γ ∈ Z(1) maps
L1−γ : RqΨ◦Z−→Rq−1Ψ◦Z[1].

In the same spirit as before, using Theorem 5.1.2, we obtain

Theorem 5.5.2. For every q ≥ 0 and for every γ ∈ Z(1), the diagram

∧q(M
gp

X0/0
⊗Z(−1))(−1)

µq

��

E //
∧q−1(M

gp

X0/0
⊗Z(−1))(−1)[1]

γ //
∧q−1(M

gp

X0/0
⊗Z(−1))[1]

µq−1

��
RqΨ◦Z

L1−γ

// Rq−1Ψ◦Z[1].

commutes.

Example 5.5.3. This completes our treatment of the Dwork family of elliptic curves in
Example 1.1.9. The map α appearing there equals the map L1−T up to sign.
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