Problem Set 9 due Jan 10, 2021

In the following exercises, O is a complete discrete valuation ring with uniformizer t, residue field k, and fraction field K.

Problem 1. Give an example of a diagram $\mathscr{X} \to \mathscr{S} \leftarrow \mathscr{Y}$ of admissible \mathscr{O} -formal schemes such that the fiber product $\mathscr{Z} = \mathscr{X} \times_{\mathscr{S}} \mathscr{Y}$ in the category of \mathscr{O} -formal schemes is not admissible. Compute \mathscr{Z}_{ad} .

Problem 2. Let X be (a) the affine line $\mathbf{A}_{\mathcal{O}}^1$ with doubled "zero section" V(x), or (b) the affine line $\mathbf{A}_{\mathcal{O}}^1$ with doubled "origin in the special fiber" V(x, t), where x is the coordinate on $\mathbf{A}_{\mathcal{O}}^1$. In both cases, compute the canonical map of rigid-analytic spaces

$$(\widehat{X})_{\mathrm{rig}} \to (X_K)^{\mathrm{an}}$$

and check that it is not an open immersion.

Problem 3. Let \mathscr{X} be a formal scheme locally of finite type over \mathscr{O} , let X_0 be its special fiber (a scheme locally of finite type over k), let $X = \mathscr{X}_{rig}$ be its rigid-analytic generic fiber, and let sp: $X \to \mathscr{X}$ be the specialization map. Let Z_i ($i \in I$) be the irreducible components of $|X_0|$. Show that the tubes

$$]Z_i[=\operatorname{sp}^{-1}(Z_i)\subseteq X \quad (i\in I)$$

(where we identify $|\mathscr{X}| = |X_0|$) form an admissible cover of X.

Problem 4. Construct a flat lifting X_1 of $X_0 = \mathbf{A}_k^2 \setminus 0$ over $k[[t]]/(t^2)$ for which the restriction map $\Gamma(X_1, \mathcal{O}_{X_1}) \to \Gamma(X_0, \mathcal{O}_{X_0}) = k[x, y]$ is not surjective.

Problem 5. Let $X = \mathbf{A}_{\mathcal{O}}^1$ with coordinate x and let $X' \to X$ be the blowup at the "origin of the special fiber," defined by the ideal (t, x). Show that the induced morphism of rigid-analytic generic fibers of formal completions

$$\widehat{X'}_{rig} \to \widehat{X}_{rig}$$

is an isomorphism. (This is a basic example of an admissible blowup.)

Hint: An example was featured at the beginning of Lecture 17. To simplify it further, you can try to make \mathscr{X}, \mathscr{Y} and \mathscr{S} affine.

Hint: Use the standard covering by two affine opens.