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NON-ARCHIMEDEAN or rigid-analytic geometry is an analog of com-
plex analytic geometry over non-Archimedean fields, such as the field
of p-adic numbers Qp or the field of formal Laurent series k((t )). It was
introduced and formalized by Tate in the 1960s, whose goal was to under-
stand elliptic curves over a p-adic field by means of a uniformization simi-
lar to the familiar description of an elliptic curve over C as quotient of the
complex plane by a lattice. It has since gained status of a foundational tool
in algebraic and arithmetic geometry, and several other approaches have
been found by Raynaud, Berkovich, and Huber. In recent years, it has
become even more prominent with the work of Scholze and Kedlaya in
p-adic Hodge theory, as well as the non-Archimedean approach to mirror
symmetry proposed by Kontsevich. That said, we still do not know much
about rigid-analytic varieties, and many foundational questions remain
unanswered.

The goal of this lecture course is to introduce the basic notions of
rigid-analytic geometry. We will assume familiarity with schemes.

Problem sets and other materials related to the course are available at

http://achinger.impan.pl/lecture20f.html

Our basic reference is the book Lectures on Formal and Rigid Geometry by
Siegried Bosch. More references are found in the text.

This document uses the tufte-book LATEXdocument class based on the
design of Edward Tufte’s books; some typesetting tricks were shamelessly
stolen from Eric Peterson’s lecture notes.

These notes owe a lot to the generous help of Alex Youcis.

http://achinger.impan.pl/lecture20f.html
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1
Two interpretations of non-Archimedean geometry

THE p -ADIC NUMBERS Qp are usually defined either as the completion
of the rational numbers Q with respect to the p-adic absolute value

�

�

�

�
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b

�

�

�

�

p
= pordp b−ordp a , (1.1)

or as the fraction field of the p-adic integers Zp defined as the inverse limit

Zp = lim←−
n

Z/pnZ. (1.2)

We can refer to (1.1) as the “metric” or “analytic” point of view, while
(1.2) represents a more “algebraic” (or “formal”) perspective. 1 1 We choose to ignore here the (rather

useless) definition of p-adic numbers in
terms of base- p digit expansions.

Both interpretations have their advantages and drawbacks. The metric
approach is admittedly closer to one’s intuition, and allows one to employ
right away the powerful tools of topology and analysis. However, the
topology of the p-adic numbers is quite pathological: Qp is a totally
disconnected topological space. This makes it difficult to proceed by
analogy with real or complex analysis.

The algebraic approach allows us to reduce questions about Qp to pure
algebra over the rather simple rings Z/pnZ. One therefore has commu-
tative algebra and algebraic geometry at their disposal, which, in turn,
allows one to more easily make sound and precise arguments. The down-
side: the relationship between objects over Qp and over Z/pnZ can often
be extremely convoluted.

TO ACHIEVE p -ADIC ENLIGHTENMENT, one needs a good grasp of
both2, as well as a means of switching between the two with ease. The 2 It seems as though we must use sometimes

the one theory and sometimes the other,
while at times we may use either. We are
faced with a new kind of difficulty. We
have two contradictory pictures of reality;
separately neither of them fully explains the
phenomena of light, but together they do.

A. Einstein, L. Infeld The Evolution of
Physics

goal of these lectures is to explain how to do p-adic geometry (or, more
generally, non-Archimedean geometry3) by combining the analytic and

3 More precisely, rigid (or rigid-analytic)
geometry, whose strange name we will
justify later on.

the algebraic approaches. Roughly speaking, the first will be represented
by Tate’s notion of rigid analytic varieties, and the second by Raynaud’s
approach using formal schemes.

WE WILL NOW GO BEYOND p-adic numbers and fix the notation
which we will use most of the time. By a non-Archimedean field we mean
a field K equipped with a non-Archimedean norm, which by definition is
a function

| · | : K→ [0,∞)
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such that

1. |x|= 0 if and only if x = 0,

2. |xy|= |x| · |y|,
3. |x + y| ≤max(|x|, |y|).
We also assume that |x| 6= 1 for some x 6= 0 (i.e. that | · | is nontrivial), and
that K is complete with respect to (the metric defined by) the norm. 4 4 In some sources, non-Archimedean fields

are not assumed to be complete and/or
nontrivially valued.

The third axiom, stronger than the triangle inequality |x+y| ≤ |x|+|y|,
is what makes the field non-Archimedean. It implies that the subset

O = {x ∈K such that |x| ≤ 1}
is a subring of K , called the valuation ring. It is local with maximal ideal

m= {x ∈K such that |x|< 1}.
We denote the residue field O /m by k.

Let t ∈ m be a nonzero element.5 Completeness of K is equivalent to 5 We call such a t a pseudouniformizer.

the fact that the natural map

O → lim←−
n

O /t nO

is an isomorphism. The field K can be recovered as the fraction field of O ,
in fact it is the localization K = O [ 1

t ]. The inverse limit above carries the
inverse limit topology (with the O /t nO being equipped with the discrete
topology), and the isomorphism is an isomorphism of topological rings if
O has the metric topology induced by the norm | · |. The topology on K
is the unique one with respect to which O is an open subring. This implies
that K is encoded as a topological field by the inverse system above.

The basic examples are complete discrete valuation fields (cdvf), which
can be characterized as those K as above for which the maximal ideal m
is principal, so that O is a complete discrete valuation ring (cdvr) with
maximal ideal m, residue field k = O /m, and fraction field K . Naturally,
our main example is

O = Zp , K =Qp , m= (p), k = Fp ,

and another one is the Laurent series field (over a base field k)6 6 Intuition: k((t )) is the field of functions
on the “infinitesimal punctured disc”

Spec k((t )) = Spec k[[t ]] \ {t = 0}.O = k[[t ]] := lim←−
n

k[t ]/(t n), K = k((t )) := O
�

1
t

�

.

The characteristic of k is called the residue characteristic of K . If it is
equal to the characteristic to K , we say that K is of equal characteristic,
otherwise it is of mixed characteristic. In the latter case, K has characteris-
tic zero. Thus Qp and its normed extensions are of mixed characteristic,
and the fields k((t )) have equal characteristic. In fact, every cdvf of equal
characteristic is of the form k((t )).

In general, we will have to work with non-Archimedean fields K which
are not cdvf’s, in which case the valuation ring O is non-Noetherian. In-
deed, it is often useful to consider K algebraically closed, while a complete
discrete valuation field is never algebraically closed.7

7 Consider a generator of m, i.e. an
element of valuation one. Does it have a
square root in K?
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1.1 First example: the unit disc

The study of schemes begins with the case of the affine line over a base
field k

A1
k = Spec k[x],

from which one obtains An
k by direct product, then affine schemes of

finite type over k by taking closed subschemes X ⊆ An
k , and finally

schemes locally of finite type over k by gluing. If k is algebraically closed,
then by Hilbert’s Nullstellensatz, closed points of A1

k are in bijection
with k.

In non-Archimedean geometry over an algebraically closed8 non- 8 We make this assumption only for
simplicity and only in this introduction.Archimedean field K , similar role is played by the closed unit disc

D1
K = {x ∈K : |x| ≤ 1}.

Proceeding by analogy with scheme theory, we start with the algebra of
functions on D1

K , which should consist of power series f =
∑

n≥0 an xn

which converge for |x| ≤ 1. An easy check shows that a series in K con-
verges if and only if its terms tend to zero. We conclude that we want the
ring of “holomorphic functions” on D1

K to be

K〈X 〉=
¨

∑

n≥0

anX n ∈K[[X ]] with an→ 0 as n→∞
«

.

Next, we would like to equip D1
K with a sheaf of functions whose

global sections is the above algebra K〈X 〉. The naive idea is to define,
for an open subset U ⊆ D1

K , the ring O wobbly(U ) as the set of functions
U →K which can be represented locally as a power series.

Indeed, this is trivially a sheaf, and we do obtain an injection

K〈X 〉→ O wobbly(D1
K ).

However, this map is very far from being surjective. Indeed, D1
K is highly

disconnected, for example

D1
K = {|x|= 1} ∪ {|x|< 1} (1.3)

expresses D1
K as a union of two disjoint open (!) subsets. The function f ∈

O (D1
K ) equal to 1 on the first open and 0 on the second is not in the image

of K〈X 〉. (This example justifies the adjective wobbly.) Clearly, something
goes terribly wrong with analytic continuation in the nonarchimedean
setting!

1.2 Tate’s admissible topology on the unit disc

The first attempt at fixing this issue is due to Krasner, and is based on
a non-Archimedean analog of Runge’s theorem in complex analysis.
A Krasner analytic function on D1

K is a uniform limit of rational functions
with no poles inside D1

K . This leads to a presheaf O for which O (D1
K ) =

K〈X 〉, and which has the property that O (U ) is a domain if U “should
be” connected. Still, it is not a sheaf.
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Let us explain, in a simple case, Tate’s idea of fixing the issue. Consider
the following covering of D1

K :

D1
K = {|x| ≤ ρ}

︸ ︷︷ ︸

U

∪{ρ≤ |x| ≤ 1}
︸ ︷︷ ︸

V

(1.4)

with 0 < ρ < 1, ρ = |t | for some t ∈ K . The algebra of (Krasner analytic)
functions O (U ) on the smaller disc U = {|x| ≤ ρ} consists of power series
converging on this disc, i.e.

K
­X

t

·

=
¨

f =
∑

n≥0

anX n ∈K[[X ]] : lim
n→∞ |an |ρn = 0

«

.

Similarly, for the annulus V = {ρ≤ |x| ≤ 1}, O (V ) consists of convergent
Laurent series

K
D

X ,
t
X

E

=
¨

f =
∑

n∈Z

anX n : lim
n→∞ |an |= 0, lim

n→−∞ |an |ρn = 0

«

,

and functions O (U ∩V ) on the intersection U ∩V = {|x|= ρ} are

K
­X

t
,

t
X

·

=
¨

f =
∑

n∈Z

anX n : lim
|n|→∞

|an |ρn = 0

«

.

It turns out that we are lucky: the sequence

0→K 〈X 〉→K
­X

t

·

×K
D

X ,
t
X

E

→K
­X

t
,

t
X

·

(1.5)

is exact.9 Thus O satisfies the sheaf condition with respect to the covering 9 Check this!

U ∪V .

TATE’S SOLUTION is now to identify a class of admissible coverings
U =

⋃

Ui of opens U ⊆ D1
K . For U = D1

K , these are the coverings
admitting a finite refinement by subsets of the form

{|x − a| ≤ |t |, |x − ai | ≥ |ti |}.
The covering (1.3) is not admissible in this sense, while (1.4) is. Tate’s
acyclicity theorem says that the presheaf O satisfies the sheaf condition for
all admissible coverings. Exactness of (1.5) is a basic special case.

In particular, this implies that D1
K is quasi-compact with respect to

the admissible topology: every admissible cover admits a finite subcover.
Moreover, it becomes connected in the sense that there is no admissible
cover

U =
⋃

i∈I

Ui ∪
⋃

j∈J

V j ,

with both summands nonempty, such that Ui ∩V j = ; for (i , j ) ∈ I × J , as
reflected by the fact that O (D1

K ) =K〈X 〉 is a domain.
Formalizing the above requires the notion of a G-topology on a topo-

logical space X , which is the data of a class of admissible open subsets10 10 For D1
K , we declare all open subsets

admissible. The condition will however
not be empty for Dn

K with n > 1.
and of admissible coverings of admissible open subsets satisfying some
axioms. One has a natural notion of a sheaf with respect to a G-topology,
which is a presheaf on the category of admissible opens which satisfies the
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sheaf condition with respect to admissible coverings. Thus O is a sheaf
with respect to the admissible topology on D1

K .
In Tate’s formalism, which we shall work out in the first part of the

course, the basic geometric objects are rigid-analytic varieties. One uses
as building blocks the affinoid algebras, which are quotients of the Tate
algebras

K〈X1, . . . ,Xr 〉=
(

∑

n1,...,nr≥0

an1...nr
X n1

1 . . .X nr
r : an1...nr

→ 0 as n1+ . . .+ nr → 0

)

.

To an affinoid algebra A = K〈X1, . . . ,Xr 〉/I one associates the affinoid
SpA. Its underlying topological space is the corresponding closed subset
of

Dr
K = {(x1, . . . , xr ) ∈K r : |xi | ≤ 1 for i = 1, . . . , r }

cut out by the ideal I . One equips it with a G-topology (the admissible
topology), and a sheaf of rings O , similarly to the case of D1

K . A rigid-
analytic variety is a topological space with a G-topology and a sheaf of
rings with respect to that topology, which is locally (as a G-topologized
space!) isomorphic to SpA for some affinoid algebra A.

1.3 Raynaud’s approach

The main drawbacks of Tate’s theory are

• the admissible topology is counterintuitive and complicated to work
with,

• and the underlying spaces do not have enough points (e.g. there exist
nonzero abelian sheaves for the admissible topology whose stalk at
every point is zero),

• one is bound to work over a fixed field; for a non-algebraic extension of
nonarchimedean fields K ′/K (e.g. Cp/Qp ) there is no map D1

K ′ →D1
K ,

• (why should there have to be a base field at all?)

• it is quite far from algebraic geometry (e.g. the opens are not defined by
non-vanishing loci, but also be inequalities—not algebraic opens, but
semi-algebraic opens).

There are several frameworks which address these issues in different
ways, notably Huber’s theory of adic spaces, Berkovich’s theory of ana-
lytic spaces (usually called Berkovich spaces), and Raynaud’s approach via
formal schemes, worked out by Bosch and Lütkebohmert and recently
developed further by Fujiwara–Kato and Abbes. In the second half of this
course, we will become acquainted with all of these, mostly focusing on
Raynaud’s theory, as it is the closest to algebraic geometry.

THE STARTING POINT of Raynaud’s theory is the following isomor-
phism (where t ∈K is a pseudouniformizer)

We will prove this later, but you are
welcome to try and check it yourself.K〈X 〉=

�

lim←−
m

O [X ]/(t m)
�

�

1
t

�

. (1.6)
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The isomorphism (1.6) expresses K〈X 〉 in terms of (0) the polynomial
algebra O [X ] through the algebraic operations of (1) t -adic completion,
and (2) localization with respect to t . So, for example, if O is a discrete
valuation ring, we immediately see that K〈X 〉 is Noetherian, because
(0) the polynomial algebra O [X ] is Noetherian, (1) the completion of
a Noetherian ring with respect to an ideal is Noetherian, and (2) the
localization of a Noetherian ring is Noetherian. (Unfortunately, our O
will not always be Noetherian, so one needs to work harder.)

TO HAVE A GEOMETRIC PICTURE, we replace O [X ] with its spec-
trum X =A1

O . The projective system O /t nO [X ] corresponds to a system
of closed immersions

X0 ,→X1 ,→X2 ,→ ·· · , Xn =A1
O /t n+1O .

Each of these immersions is defined a nilpotent ideal, and hence is a home-
omorphism on the underlying spaces.

The above inductive system does not have a limit in the category of
schemes. Instead, one can take its limit in the larger category of locally
ringed spaces:

X= (|X|,OX) = lim−→
n

Xn .

Since |Xn | ,→ |Xn+1| are homeomorphisms, we can identify |X| with |X0|.
Treating OXn

as a sheaf on |X0|= |X|, we have

OX = lim←−
n

OXn
= lim←−

n

OX /(t
n+1).

The locally ringed space X is an example of a formal scheme, the formal
completion of X = A1

K with respect to the ideal tOX . In fact, in this
context we could define formal schemes over O as systems of closed im-
mersions X0 ,→ X1 ,→ ·· · between O -schemes, with Xn defined by the
ideal t n+1OXn+1

.
The final step, inverting t , is the hardest: in Raynaud’s approach, one

wants to define a rigid-analytic variety over O as the “generic fiber” of
a formal scheme over O . This is done purely formally by localizing the
category of formal schemes over O with respect to admissible blow-ups, i.e.
blowups along an ideal containing a power of t . In the words of Fujiwara
and Kato, rigid geometry is the birational geometry of formal schemes.

1.4 Why study rigid geometry?

The goal of the course is not only to introduce the basic definitions and
facts surrounding rigid-analytic varieties—we will see some important
applications of the theory as well. I will now try to give a short preview
without spoilers.

Disclaimer: There are many possible answers to the question above.
The following is heavily influenced by my own perspective and expertise
as an algebraic geometer interested in the topology of algebraic varieties.

The broad answer is:

Rigid geometry allows us to use methods of topology and analysis in an otherwise purely algebraic context.
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For an explicit example, consider a complex algebraic curve, say a
smooth plane curve X in P2 of degree d . As one learns in the basic alge-
braic geometry course, this curve has genus

g =
(d − 1)(d − 2)

2
.

Over the complex numbers, the underlying manifold (the complex analyti-
fication) of X is an oriented surface with g many handles. Can we make
sense of the last sentence algebraically? The question sounds crazy at first:
to begin with, the underlying topological space of X (with the Zariski
topology) does not see the genus at all, so how can we try to decompose it
into handles?

Rigid geometry allows us to break varieties into pieces and perform surgery.

The answer is to degenerate the curve until it breaks and becomes easier
to manage.11 Thus, let `1, . . . ,`d be generically chosen linear forms on P2. 11 Can we study algebraic curves by

putting them inside the Large Hadron
Collider?

If { f = 0} is the homogeneous equation of our curve X , we consider the
equation with an additional parameter t

Xt = {t f +(1− t )`1 · . . . · `d = 0} ⊆ P2
k[t ].

Thus X1 =X , while X0 is the union of d lines in P2 in general position.
The curve X0, while much easier to understand than X , is singular.

Its topology differs from that of X . The idea, made possible by rigid
geometry, is to study the smooth fibers Xt which “infinitesimally close”
to X0. To make this precise, we first base change the above family to the
field K = k((t )), obtaining a smooth algebraic curve XK over K . Next, we
turn it into a rigid-analytic varietyX = (XK )an, its rigid analytification. It
is cut out by the same equation in a rigid-analytic version of P2

K .
It turns out thatX is “close enough” to X0 that there exists a natural

morphism of topological spaces (the specialization map)

sp: |X |→ |X0|.

The preimage Ui = sp−1(Li ) of the line Li = {`i = 0} ⊆ |X0| happens to
be an open rigid subvariety ofX which closely resembles a sphere with
d − 1 discs removed (the discs are the preimages of the points Li ∩ L j for
j 6= i under sp). This gives a combinatorial decomposition ofX which
one can use in place of the triangulation or handlebody decomposition on
the complex analytification. For cubic curves (elliptic curves) one has the
following picture:

L1

L3

L2U2

U3

U1

X0X
sp

Figure 1.1: Intuitive picture of the special-
ization map (d = 3, so g = 1).
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HERE ARE SOME EXAMPLES of serious applications of rigid geometry
roughly along the above lines:

• Uniformization of curves and abelian varieties. (In fact, construct-
ing a p-adic analytic analog of the expression of a complex elliptic
curve as C modulo a lattice was Tate’s original motivation for defining
rigid-analytic varieties. We will see Tate’s uniformization later in the
course.)

• The approach to SYZ mirror symmetry proposed by Kontsevich.

• Raynaud’s solution to Abhyankar’s conjecture (constructing finite
étale covers of A1

Fp
with given Galois group).

• Study of moduli of curves (often done using tropical methods, which is
philosophically similar).

• Semistable reduction.

Other extremely important applications belong to p-adic Hodge the-
ory.



2
Non-archimedean fields

In this chapter, we learn some fundamentals about the kind of base fields
we will work with — fields complete with respect to a nontrivial non-
archimedean norm. We start with basic facts about general valuation
rings; the extra generality is not needed for Tate’s theory, but will prove
useful later on.

In the appendix to this chapter, we review henselian local rings and
Hensel’s lemma.

2.1 Valuation rings and valuations

Definition 2.1.1. A subring O of a field K is a valuation (sub)ring of K if
for every x ∈K×, either x ∈ O or x−1 ∈ O .

The above condition implies that K = FracO . This motivates the
terminology: we will call a ring O a valuation ring if O is a domain and if
it is a valuation ring of K = FracO .

Lemma 2.1.2. Every valuation ring is a local ring.

Proof. It suffices to check that the set of non-units is closed under addi-
tion. If x, y ∈ O are nonzero non-units, then either xy−1 ∈ O , in which
case x+y = y(xy−1+1) is a non-unit because y is a non-unit, or y x−1 ∈ O ,
and we swap x and y.

Lemma 2.1.3. The relation

x ≤ y if y x−1 ∈ O (2.1)

induces a linear order on Γ = K×/O ×, making Γ into a linearly ordered
group. 1 1 An ordered abelian group is an abelian

group Γ with an order relation ≤ such that
a ≤ b implies a+ c ≤ b + c . It is linearly
or totally ordered if ≤ is a linear order.

Proof. First, if x ′ = u x and y ′ = v x with u, v ∈ R×, then x ≤ y ⇐⇒ x ′ ≤
y ′, so that ≤ induces a relation on K×/O ×. The fact that either x ≤ y or
y ≤ x is the definition of a valuation ring. The rest is straightforward.

The quotient homomorphism

K×→K×/O ×

is a “valuation” on the field K , as we shall now define. First, we introduce
the following convention: for an ordered abelian group Γ (written ad-
ditively), we shall write Γ ∪ {∞} for the ordered commutative monoid
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obtained by adding an element∞ and declaring

γ ≤∞ and γ +∞=∞+∞=∞ (γ ∈ Γ ).
Definition 2.1.4. A valuation on a field K is a group homomorphism

ν : K×→ Γ
into a linearly ordered group Γ (written additively, so that ν(xy) = ν(x) +
ν(y)), which, when extended to a map of monoids ν : K → Γ ∪ {∞} by
ν(0) =∞, satisfies

ν(x + y)≥min{ν(x), ν(y)}.
The value group of a valuation ν : K× → Γ is the image ν(K×). Thus ν

trivially induces a surjective valuation ν ′ : K× → ν(K×), and it is useful to
identify ν and ν ′. More generally, we will call two valuations νi : K× → Γi
(i = 1,2) equivalent if there exists a third valuation ν : K× → Γ and
monotone homomorphisms ϕi : Γ → Γi (i = 1,2) such that νi = ϕi ◦ ν :

Γ1

K×

ν1

77

ν2
''

ν // Γ

ϕ1

??

ϕ2

��
Γ2.

A valuation is trivial if it has trivial value group, i.e. ν(x) = 0 for all
x ∈K×.

Proposition 2.1.5. Let K be a field.

(a) If O ⊆ K is a valuation ring and Γ = K×/O × is equipped with the linear
order (2.1), then the projection map ν : K×→ Γ is a valuation on K.

(b) Conversely, if ν : K×→ Γ is a valuation, then

O = {x ∈K | ν(x)≥ 0}
is a valuation ring of K, and its maximal ideal is m= {x ∈K | ν(x)> 0}.

(c) Constructions in (a) and (b) produce mutually inverse bijections

{valuation rings of K} ' {valuations on K}/equivalence.

Proof. (a) We check the property ν(x + y) ≥ min{ν(x), ν(y)}, which
resembles the proof that a valuation ring is local. Let x, y ∈ K×, and
suppose xy−1 ∈ O , then

ν(x + y) = ν(y(xy−1+ 1)) = ν(y)+ ν(xy−1+ 1)
︸ ︷︷ ︸

≥0 since xy−1+1∈O
≥ ν(y),

and similarly if y x−1 ∈ O .
(b) Clearly for x ∈ K either x ∈ O or x−1 ∈ O and O is closed under

multiplication. The fact that it is also closed under addition follows from
ν(x + y)≥min{ν(x), ν(y)}.
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(c) Clearly, equivalent valuations define the same valuation ring. The
only non-obvious assertion is that if ν2 : K× → Γ2 = K×/O × is the valu-
ation associated via (b) to the valuation ring O associated to a valuation
ν1 : K×→ Γ1 via (a), then ν1 and ν2 are equivalent. We let Γ = Γ2 = K×/O ×,
ϕ2 the identity, and ϕ2 : Γ =K×/O ×→ Γ1 the map induced by ν1.

Γ1

K× //

55

))

K×/O ×

::

K×/O ×

2.2 Valuations and norms

If the value group is a subgroup of R, one can turn a valuation into a
“norm.”

Definition 2.2.1. A valuation of height one2 is a valuation ν : K×→R. 2 This terminology is slightly nonstandard:
what is usually meant by a valuation of
height one is a nontrivial valuation whose
value group embeds in R.

More generally, the height (or rank) of
a valuation is the order type of the set of
all convex subgroups of the value group,
(linearly) ordered by inclusion, where a
subgroup A⊆ Γ is convex if a ≤ x ≤ b and
a, b ∈A implies x ∈A.

As it turns out, and is easy to show,
this is just the Krull dimension of the
corresponding valuation ring O .

Note that two valuations of height one νi : K× → R (i = 1,2) are
equivalent if and only if ν2(x) = cν1(x) for some positive real c .3

3 Exercise 3 on Problem Set 1.

Definition 2.2.2. A nonarchimedean norm on a field K is a map

| · | : K→ [0,∞)
such that

i. |xy|= |x| · |y|,
ii. |x|= 0 if and only if x = 0,

iii. |x + y| ≤max{|x|, |y|}.
Proposition 2.2.3. Let K be a field.

(a) If ν : K→R is valuation of height one, then4 4 The base e of the exponential is of course
an arbitrary choice. Sometimes there
exists a more natural one. For example, if
K is p-adic, i.e. |p|< 1 for a prime p, then
one usually considers the norm

|x|= p−ν(x).

|x|= exp(−ν(x))
(where exp(−∞) = 0) defines a nonarchimedean norm on K.

(b) Conversely, if | · | is a norm on K, then

ν(x) =− log |x|
(where log0=−∞) defines a valuation of height one. The corresponding
valuation ring is the “closed ball” O = {x | |x| ≤ 1}.

(c) The constructions in (a) and (b) produce mutually inverse bijections

{height one valuations on K} ' {nonarchimedean norms on K}.

Proof. Clear.

Proposition 2.2.4. Let | · | be a nonarchimedean norm on a field K. Then

d (x, y) = |x − y|
defines a metric on K, making K into a topological field. This metric and the
induced topology have the following properties:

(a) Every triangle is isosceles, every point of an open ball is its center, and
every two (open or closed) balls are either disjoint or one contains the
other,



16 INTRODUCTION TO NON-ARCHIMEDEAN GEOMETRY

(b) The open ball {|x − a| < ρ}, the closed ball {|x − a| ≤ ρ}, and the sphere
{|x − a| = ρ} are both open and closed for ρ > 0. In particular, the
valuation ring O = {|x| ≤ 1} ⊆K is an open subring.

(c) The topological space K is totally disconnected,

(d) Suppose that K is complete (every Cauchy sequence converges). A series
∑∞

n=0 an with an ∈K converges if and only if liman = 0.

Proof. Continuity of addition, multiplication, and inverse is clear and left
to the reader.

(a) The key observation is that if |x|> |y|, then |x−y|=max{|x|, |y|}=
|x|. Indeed, we have

|x|= |y +(x − y)| ≤max{|y|, |x − y|} ≤max{|y|, |x|, |y|}= |x|,

so the inequalities are equalities, implying |x − y| = |x|. Similarly, if |y| >
|x| then |x − y| = |y|, thus in general two of the numbers |x|, |y|, |x − y|
have to be equal.

If a triangle has vertices a, b , c , apply the above to x = c − a, y = c − b
to see that it is isosceles, with two longest sides being equal.

Now consider an open ball B(a,ρ) = {|x − a| < ρ} and let b ∈ B ,
i.e. |b − a| < ρ. If c ∈ K , then consider the triangle with vertices a, b , c .
The above observation shows that |c − a| ≥ ρ if and only if |c − b | ≥ ρ,
showing B(a,ρ) = B(b ,ρ).

ab

c
If two open balls B and B ′ intersect at a point b , then taking b as the

center of both balls shows that one is contained in the other.
(b) The open ball is of course open, and the closed ball is the union of

the open ball and the sphere. It suffices to treat the sphere S = {|x| = ρ}
(centered at zero for simplicity). Let a ∈ S; we claim that the open ball
{|x−a|<ρ} is contained in S. Indeed, if |x−a|<ρ then |x|= |a+(x−a)|
and since |x − a|<ρ= |a|, we have |x|= |a|= ρ, so x ∈ S.

(c) Let S ⊆ K be a subset and let a, b ∈ S be two distinct points,
ρ= |a− b |> 0. Then

S = (S ∩{|x − a|<ρ/2})∪ (S ∩{|x − a| ≥ ρ/2})

expresses S as a sum of two disjoint and non-empty open subsets. Thus S
cannot be connected if it has more than one point.

(d) Clearly if
∑

an converges then liman = 0. Conversely, suppose
liman = 0; we check that bn = a1+ · · ·+ an forms a Cauchy sequence. Let
ε > 0, and let N be such that |an |< ε for n ≥N . Then for m > n >N

|bm − bn |= |an+1+ · · ·+ am |<max{|an+1|, . . . , |am |}< ε.

2.3 Geometric examples of valuations
This section is a bit of a digression, but
will become important later in the course.Long long time ago, before schemes were invented by Grothendieck,

varieties were studied (or even defined) using valuations on their function
fields. E.g. Zariski’s proof of resolution of singularities on surfaces heavily
relied on the classification of valuations on their function fields. We will
see some of these below.
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Example 2.3.1. Let R be a Dedekind domain with field of fractions K ,
and let m⊆ R be a maximal ideal. Standard examples:

• R = Γ (X ,OX ) for X a smooth affine algebraic curve, with m corre-
sponding to a closed point x ∈X ,

• R= OK the ring of integers in a number field K , e.g. R= Z[i].

The local ring O = Rm is a discrete valuation subring of K . The corre-
sponding valuation on K is ν(x) =max{k : x ∈ mk}. Every valuation on
K which is trivial on k is equivalent to exactly one of these. 5 5 Sound familiar? [7, Chapter I 6]

The remaining examples deal valuations on function fields of surfaces
over a base field k, where the situation is much more complicated, essen-
tially due to the existence of non-trivial blowups. 6 We only consider 6 See [7, Exercise II 4.12].

valuations whose restriction to k is trivial.

Example 2.3.2 (Divisorial valuation). Let X be a normal surface with
field of rational functions K and let D ⊆ S be a prime divisor. Then [7, II
6] D defines a function “order of zero along D”

νD : K = k(S)→ Z∪{∞}

which is a valuation. The corresponding valuation ring is OX ,ξ where ξ is
the generic point of D . Its residue field is k(D), the function field of D .

Example 2.3.3 (Valuation of height two). In the situation of Exam-
ple 2.3.2, let p ∈ D be a closed point at which D is regular. Then x defines
a valuation νp on k(D) as in Example 2.3.1. We can combine the valua-
tions νD on K = k(S) and νp on k(D) into a height two valuation

νD , p : K→ Z2
lex ∪{∞},

where Z2
lex is Z2 with the lexicographic order ((x, y) ≥ (x ′, y ′) if x > x ′ or

x = x ′ and y ≥ y ′). To define νD , p , we pick a uniformizer (generator of the
maximal ideal) π ∈ OX ,ξ = OνD without zero or pole at p and set

νD , p ( f ) = (νD ( f ), νp (g )), g = (π−νD ( f ) f )|ξ ,

where the restriction makes sense because νD (g ) = 1, so g ∈ OνD .
The valuation ring OνD , p

consists of rational functions with no pole
along D and whose restriction to D has no pole at p. It has three prime
ideals, is of Krull dimension two, and is non-Noetherian. Its residue field
is k. See Figure 2.1 for the monoid of monomials in OνD , p

for S =A2.

Example 2.3.4 (Valuations from formal curve germs). Let again S be a
normal surface with function field K , and let

γ : Spec k[[t ]]→ S

be a morphism of schemes (a “formal curve germ”). We say that γ is
nonalgebraic if its image is not contained in a proper closed subscheme of
S, equivalently if γ maps the generic point Spec k((t )) of Spec k[[t ]] to the
generic point η = SpecK of S.7 The composition of γ ∗ with the standard 7 There is plenty of nonalgebraic curve

germs on an algebraic surface. For exam-
ple, consider S = SpecC[x, y] the affine
plane and γ defined by

γ ∗(x) = t , γ ∗(y) = exp t =
∑

n≥0

t n

n!
.
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Figure 2.1: In Example 2.3.3, consider
S = A2 with coordinates x, y, the divisor
D = {x = 0} ⊆ S, and the point p = {y =
0} ⊆ D . The figure shows the monoid
consisting of all (m, n) ∈ Z2 for which
ν(x m yn) ≥ 0. Can you see why this
monoid is not finitely generated? This is
related to the fact that the valuation ring is
non-Noetherian.

valuation on k((t )) gives a height one valuation

νγ : K→ k((t ))→ Z∪{∞}
with residue field k.

Example 2.3.5 (Height one valuation with dense value group). Suppose
that K = k(x, y). Let λ be an irrational real number. Define the weight
function on monomials in x and y by

weightλ(x
m yn) = m+λn ∈ R.

Define the valuation νλ : K→R∪{∞} by first defining it on polynomials:

νλ

�

∑

m,n≥0

amn x m yn

�

=min{weightλ(x
m yn) : amn 6= 0}

and extending to k(x, y) by νλ( f /g ) = νλ( f )−νλ(g ). This gives a valuation
on K which has height one but whose value group Z⊕λZ' Z2 is dense in
R. See Figure 2.2 for the monoid of monomials in the valuation ring.

Remark 2.3.6. The valuation vλ in Example 2.3.5 can be thought of
as the valuation of the type considered in Example 2.3.4 induced by the
“formal curve germ”

t 7→ (t , tλ).

In fact, for λ′ = a/b rational with (a, b ) = 1, we can define the curve germ

γa,b : SpecC[[t ]]→A2
x,y , γ ∗a,b (x) = t b , γ ∗a,b (x) = t a .

Let νa,b =
1
b νγa,b

where γa,b is the valuation associated to the curve germ as
in Example 2.3.4. If an/bn → λ, then the corresponding valuations νan ,bn

converge pointwise to νλ.

2.4 Nonarchimedean fields

Definition 2.4.1. A nonarchimedean field8 is a field K equipped with a 8 For many authors, “nonarchimedean
field” is simply a field with a nonar-
chimedean norm.

nontrivial nonarchimedean norm | · | with respect to which it is complete.
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Figure 2.2: The monoid of all (m, n) ∈ Z2

for which ν(x m yn) ≥ 0 (Example 2.3.5).
The boundary of the gray area is the line
with slope −1/λ

x +λy = 0.

Since λ /∈Q, this line contains no nonzero
lattice points.

Proposition 2.4.2. Let K be a field endowed with a nontrivial nonar-
chimedean norm | · |. The ring operations on K extend uniquely to the
completion bK of K with respect to d (x, y) = |x − y|, making bK into a
nonarchimedean field.

Definition 2.4.3. Let K be a field endowed with a nonarchimedean norm
| · |. A pseudouniformizer is an element t ∈K with 0< |t |< 1.9 9 In other words, t is a topologically

nilpotent unit, where topologically
nilpotent means that |t n | → 0.Thus | · | is nontrivial if and only if K admits a pseudouniformizer.

Proposition 2.4.4. Let K be a field endowed with a nontrivial nonar-
chimedean norm | · |, and let t ∈ K be a pseudouniformizer. Let O = {x ∈
K | |x| ≤ 1} be the valuation ring. Then K is complete (i.e. K is a nonar-
chimedean field) if and only if O is t -adically complete and separated, i.e. if
the natural map Warning: if K is not discretely valued,

then O will not be a complete local ring!
In that case, the maximal ideal of O
satisfies m2 =m, and hence O /mn = k for
all n, so that ÒO ' k. This is why we need
to work with pseudouniformizers.

π : O → lim←−
n

O /t nO

is an isomorphism. In this case, the map π is a homeomorphism, where the
target is endowed with the inverse limit topology where each O /t nO is given
the discrete topology.

Proof. Set ρ= |t |; we have 0<ρ< 1. First, we note that

t nO = {x ∈K : |x| ≤ ρn}.
The kernel of π is

⋂

n≥0 t nO = {|x| ≤ 0} = {0}. Thus π is always
injective.

An element f̄ of the inverse limit is a compatible system ( f̄n ∈ O /t nO ).
Let fn ∈ O be elements mapping to f̄n ∈ O /t nO . We claim that ( fn)
is a Cauchy sequence. Indeed, we have fn − fm ∈ t nO for m > n, so
| fn − fm | ≤ ρn for m > n. Thus if K is complete, then ( fn) has a limit
f ∈ O . Now for every n, we have

| f − fn |= | fn − fm | ≤ ρn for m� 0,

which shows that f − fn ∈ t nO . Thus π( f ) = f̄ , i.e. π is surjective if K is
complete.
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Conversely, suppose that π is surjective. We will show that O is com-
plete with respect to | · | (this easily implies that K is complete). Let
( fn) ∈ O be a Cauchy sequence. For every m, the images of fn in O /t mO
have to stabilize for n � 0. Let f̄m ∈ O /t mO be the stable value (i.e.
f̄m = limn( fn mod t m) for the discrete topology on O /t nO ). It is easy to
see that f̄ = ( f̄m) is an element of the inverse limit of O /t nO . Let f ∈ O
be an element with π( f ) = f̄ , then f = lim fn .

The claim about the topologies follows from the fact that t nO = {|x| ≤
ρn} is a basis of neighborhoods of zero in O .

2.5 Extensions of nonarchimedean fields

The treatment here follows [4, Appendix A] and [8, II §4 and §6].

Theorem 2.5.1. Let K be a nonarchimedean field and let L/K be a finite
extension. Then there exists a unique norm | · | on L extending K. The field L
endowed with this norm is a nonarchimedean field.

Figure 2.3: Newton polygon of the
polynomial

1+π−1X −π−1X 2+πX 3+π2X 5

For f =
∑n

i=0 ai x i ∈ K[X ], we define its Newton polygon NP( f ) as the
lower convex envelope of the set {(0, ν(a0)), . . . , (n, ν(an))} in R2. Its basic
property is that NP( f g ) = NP( f ) +NP(g ) (Minkowski sum, i.e. sort
the segments of both polygons by slope and concatenate). In particular,
if f is reducible, then NP( f ) contains a point of the form (m,γ ) with
0 < m < deg f an integer and γ an element of the value group. One form
of Hensel’s lemma10 states a partial converse:

10 In the appendix to this lecture, we shall
discuss different formulations of Hensel’s
lemma.

Lemma 2.5.2 (Irreducibility and Newton polygons). Let f ∈ K[X ] be
a nonzero polynomial with f (0) 6= 0. Then f is irreducible if NP( f ) is a
single segment without interior points of the form (m,γ ) with m ∈ Z and
γ ∈ ν(K×). Conversely:

(a) (Weak form) If NP( f ) has segments both of negative and of non-negative
slope, then f is reducible.

(b) (Strong form) If f is irreducible, then NP( f ) is a single segment.

We shall prove the weak form now. It will be sufficient for the proof of
Theorem 2.5.1, which in turn will be used to prove the strong form.

(m,γ )

Figure 2.4: Proof of Lemma 2.5.2(a)

Proof (of the weak form). The first assertion has already been explained
in the discussion preceding the statement of the lemma. To show (a), let
(m,γ ) be a vertex of NP( f ) with smallest γ , and with smallest m among
those. Then 0 < m < deg f , otherwise all slopes of NP( f ) have the same
sign (see Figure 2.5). Replacing f with a−1

m f , we may assume that γ = 0,
and consequently f ∈ O [X ]. The image f̄ of f in k[X ] decomposes as

f̄ =X m h(X ) with h(0) 6= 0.

By Hensel’s lemma (Proposition 2.A.5) using the formulation as in Propo-
sition 2.A.1(b), the above factorization lifts to a factorization f = g̃ h̃ with
deg g̃ = m. Therefore f is reducible.

Proposition 2.5.3. In the situation of Theorem 2.5.1, let O = {|x| ≤ 1} be
the valuation ring of K. An element x ∈ L is integral over O if and only if
NmL/K (x) ∈ O .
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Proof. Let f ∈ K[X ] be the minimal polynomial of x. Since f is irre-
ducible, by Lemma 2.5.2 its Newton polygon has to be the line segment
with endpoints (deg f , 0) and (0, c) where c = ν(a0) is the valuation of
the constant term of f (Figure 2.5). But c = (−1)n NmL/K (x), so if
NmL/K (x) ∈ OK then NP( f ) lies entirely above the line y = 0, which
implies that f ∈ O [X ], so that x is integral over O .

(deg f , 0)

(0, ν(a0))

Figure 2.5: Newton polygon of an irre-
ducible monic polynomial f (Proof of
Proposition 2.5.3)

Conversely, if x is integral, then in fact its minimal polynomial f
belongs to O [X ]; in particular, NmL/K (x) = (−1)deg f f (0) ∈ O . To see
this, let g ∈ O [X ] be monic with g (x) = 0. We have g = f h for some
(also monic) h ∈ K[X ]. Then NP(g ) = NP( f ) +NP(h) lies above the
line y = 0 and ends on it (because it is monic), and hence all of its slopes
are non-positive. However, NP( f ) is a single segment (connecting (0, c)
and (deg f , 0)), and its slope is one of the slopes of NP(g ) and hence is
non-positive. Thus c ≥ 0, i.e. f ∈ O [X ].
Proof of Theorem 2.5.1. Let O = {|x| ≤ 1} ⊆ K be the valuation ring of K
and let O ′ ⊆ L be the integral closure of O inside L. By Proposition 2.5.3,
x ∈ O ′ if and only if |NmL/K (x)| ≤ 1. Since the norm is multiplicative,
this shows that O ′ is a valuation ring of L. Moreover, O ′ ∩K = O because
O is integrally closed.11 11 Easy exercise: show that every valuation

ring is integrally closed.Define |x|= |NmL/K (x)|1/d for x ∈ L, where d = [L : K]. This restricts
to the norm on K , is multiplicative, and |x| 6= 0 for x 6= 0. To show
|x + y| ≤ max{|x|, |y|}, we use the fact that {|x| ≤ 1} = O ′ is a valuation
ring.

If | · |′ is some other norm extending | · | to L, then since the corre-
sponding valuation ring {|x|′ ≤ 1} is integrally closed, it contains O ′. This
implies that | · | ≤ | · |′, and by Exercise 3 from Problem Set 1, we have
| · |′ = | · |c for some constant c . But c = 1 since the two agree on K .

Theorem 2.5.4 (Krasner). Let K be a nonarchimedean field, and let K be
an algebraic closure of K, which we endow with the unique extension of | · |.
Let bK denote the completion of K with respect to this norm. Then ÒK̄ = K

∧
is

algebraically closed.

Proof. Let L be a finite extension of bK . By Theorem 2.5.1, there exists

a unique norm on L extending the norm on bK and L is complete with

respect to that norm. To show L= bK , it therefore suffices to prove that bK
is dense in L.

Let x ∈ L and let 1 > ρ > 0. We shall find a y ∈ bK with |x − y| <
ρ. Without loss of generality, we may assume that |x| ≤ 1. Let f =
∑n

i=0 ai X
i ∈ bK[X ] be its minimal polynomial (with an = 1). Since K is

dense in bK , we can find bi ∈ K (i = 0, . . . , n) with |ai − bi | < ρ (and again
bn = 1). This implies that

|g (x)|= |g (x)− f (x)|=
�

�

�

�

�

n
∑

i=0

(ai − bi )x
i

�

�

�

�

�

<ρ.

Now, the polynomial g =
∑n

i=0 bi X
i splits completely in K :

g =
n
∏

i=1

(X − yi ), y1, . . . , yn ∈K .
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Evaluating at x and taking absolute value, we obtain

ρ> |g (x)|=
n
∏

i=1

|x − yi |.

Therefore one of the factors is less than ρ.

2.6 Slopes of the Newton polygon

We can now prove the promised strong form of Lemma 2.5.2. It will not
be used later in the course.

Lemma 2.6.1. If f ∈ K[X ] is irreducible, then all roots of f in K have the
same norm.

Proof. Let L/K be the splitting field of f and let G =Gal(L/K). Thus G
acts transitively on the roots of f in L. Since the norm | · | on L extending
the norm on K is unique, the group G acts on L by isometries. In partic-
ular, for any two roots α,β of f in L we can find g ∈ G with β = g (α),
and then

|α|= |g (α)|= |β|.
For a real number λ and f ∈ K[X ], we define the slope multiplicity

µ(λ, f ) of λ in NP( f ) as the length of the projection on the x-axis of the
segment in NP( f ) with slope λ (zero if it does not exist), see Figure 2.6.
Additivity of Newton polygons means precisely that

µ(λ, f g ) =µ(λ, f )+µ(λ, g ) for every λ ∈R.

slope λ

µ(λ,NP( f ))

Figure 2.6: Slope multiplicityLemma 2.6.2. For f ∈K[X ] and r > 0, we have

#
¦

α ∈K : f (α) = 0 and |α|= r
©

=µ(log r, f ).

Proof. By additivity of both sides of the asserted equality, we may assume
that f is irreducible, in which case all roots of f have the same absolute
value ρ by Lemma 2.6.1. We may also assume that f is monic and ρ 6= 0,
and write

f =
n
∑

i=0

an−i X
i =

n
∏

j=1

(X −α j ), |α j |= ρ.

Therefore for 0< i ≤ n we have

ai = (−1)i
∑

0≤ j1<...< ji≤n

α j1
· . . . ·α ji

,

and taking absolute values we obtain

|ai | ≤ ρi and |an |= |α1 · . . . ·αn |= ρn .

It follows that NP( f ) is the segment connecting the points (0, ν(an)) =
(0,−n logρ) and (n, 0). This implies the asserted equality for ρ = r , with
both sides equal to n = deg f . Therefore for r 6= ρ both sides are zero, and
hence the assertion is true for every r > 0.

Proof of the strong form of Lemma 2.5.2. Let f ∈ K[X ] be irreducible. By
Lemma 2.6.1, all roots of f have the same absolute value. By Lemma 2.6.2,
the Newton polygon NP( f ) has a single slope, i.e. it is a segment.
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2.A Henselian rings

Hensel’s lemma played an important in the proof of Theorem 2.5.1. The
first goal of this section is to elucidate its role by introducing the notion
of a henselian local ring. Roughly speaking, it is a local ring in which the
assertion of Hensel’s lemma holds. There are however many equivalent
characterizations of this class of local rings, reviewed in Proposition 2.A.1
below, and the reader familiar with the étale topology will surely appre-
ciate the topological flavor of some of them. The second goal is to prove
Hensel’s lemma in its general form: a local ring complete with respect to a
m-primary ideal is henselian.

Our treatment follows the Stacks Project [10, Tag 04GE] .
The ultimate reference is Raynaud’s book
Anneaux locaux henseliens.

[10, Tag 04GG]Proposition 2.A.1. Let A be a local ring with maximal ideal m. We set
k = A/m, x = Spec k, X = SpecA, i : x → X the inclusion. The following
conditions are equivalent:

(a) If f ∈ A[T ] is monic and t0 ∈ k is a root of f̄ = f mod m ∈ k[T ]
such that f̄ ′(t0) 6= 0, then there exists a unique root t ∈ A of f such that
t mod m= t0.

(b) If f ∈ A[T ] is monic and f̄ = g h is a factorization of f̄ = f mod m ∈
k[T ] with g , h ∈ k[T ] coprime, then there exists a factorization f = g̃ h̃
with g̃ , h̃ ∈ A[T ] such that g̃ mod m = g , h̃ mod m = h, and deg g̃ =
deg g .

(c) Every finite A-algebra is a product of local rings.

(d) For every étale A-algebra B and every prime p⊆ B lying over m and such
that k(p) = k, there exists a section s : B→A of A→ B with p= s−1(m).

(e) For every étale morphism f : U →X and every lifting ĩ : x→ U of i (i.e.
i = f ◦ ĩ ) there exists a unique section s : X →U such that s ◦ i = ĩ .12 12 Useful to picture this condition as a

lifting problem:

x
ĩ //

i
��

U

f

��
X

∃! s

>>

X .

Proof. Maybe I’ll write something here later.

Definition 2.A.2. (a) A local ring A is henselian if the equivalent condi-
tions of Proposition 2.A.1 hold.

(b) A local ring A is strictly henselian if it is henselian and its residue field
k is separably closed.13 13 Equivalently: every étale cover of SpecA

admits a section.

(c) A valued field (K , ν) is henselian if the valuation ring O = {x | ν(x)≥ 0}
is henselian.

Remark 2.A.3. Condition (d) of Proposition 2.A.1 allows one to con-
struct the henselization of a local ring A as the direct limit

Ah = lim−→
(B ,s)∈CA

B

where CA is the category of pairs (B , s) with B an étale A-algebra and
s : B → k a homomorphism extending A→ k. (This category is filtering
and essentially small.)

https://stacks.math.columbia.edu/tag/04GE
https://stacks.math.columbia.edu/tag/04GG
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Universal property: A→ Ah is a local homomorphism into a henselian
local ring which is initial among such (in the category of local rings and
local homomorphisms).

Similarly, given a separable closure k sep of k, we can construct the strict
henselization Ash by considering the category of étale A-algebras endowed
with a homomorphism to k sep extending A→ k sep. (Using the algebraic
closure k̄ instead of k sep gives the same result.)

Remark 2.A.4. The strict henselization of a local ring is the local ring
for the étale topology. To make this precise, we reformulate everything in
terms of geometry. Recall that a geometric point of a scheme X is a map
x̄ → X with x̄ = Spec k(x̄) for some separably closed field k(x̄). (Again,
one can use algebraically closed fields instead.) An étale neighborhood of
a geometric point x̄ of X is an étale morphism U → X endowed with a
lifting x̄→ U of x̄→X . Étale neighborhoods of x̄ in X form a cofiltering
category N (X , x̄), and the colimit

OX ,x̄ = lim−→
U∈N (X ,x̄)

Γ (U ,OU )

is isomorphic to the strict henselization O sh
X ,x of OX ,x where x is the im-

age of x̄ in X (and where we use the separable closure of k(x) in k(x̄) as
k(x)sep). 14 14 Similarly, the henselization is related

in the same way to local rings for the
Nisnevich topology.Proposition 2.A.5 (Hensel’s lemma). Every local ring A which is J -adically

complete and separated for an m-primary15 ideal J ⊆ A is henselian. In 15 This means that for x ∈ m we have
xN ∈ J for N � 0 depending on x.particular, every complete local ring is henselian.

For fans of the étale topology, we give a geometric proof:

Proof. We prove condition (e). Let X = SpecA and x = Spec k as before,
and let

U

f
��

x

ĩ
??

i
// X

be an étale neighborhood of x → X . Set Xn = SpecA/J n+1 for n ≥ 0.
First, consider the diagram

x ĩ //

��

U

f
��

X0
//

s0

>>

X .

Since x→X0 is an immersion defined by the nil ideal16 m/J ⊆A/J , by the

16 An ideal in a commutative ring is nil
(locally nilpotent in [10]) if it consists of
nilpotent elements.

infinitesimal criterion for étaleness17 there exists a unique diagonal arrow

17 Infinitesimal criterion for étale
maps: A morphism f : X → Y locally
of finite presentation is étale if and only
if for every ring A and nil ideal I ⊆ A
(equivalently, every square zero ideal), and
every commutative square of solid arrows

SpecA/I //

��

X

f

��
SpecA //

<<

Y

there exists a unique dotted arrow making
the diagram commute.

s0 making the square commute.
Starting from s0, we shall successively build maps sn : Xn → U lifting

Xn → X along f . It suffices to apply the infinitesimal criterion to the
squares

Xn
sn //

��

U

f
��

Xn+1
//

sn+1

==

X .
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Since A is J -adically complete, in the limit, the maps give the desired
section s : X →U .18

18 If you are confused with the last step,
set U = SpecB and temporarily revert to
commutative algebra.

Remark 2.A.6. The most common proof uses condition (a) of Propo-
sition 2.A.1, and uses “Newton’s method” to iteratively construct the
desired root t using explicit induction steps. Proofs in [4, Appendix A]
and [8] use condition (b), which gives a more direct approach to proving
Theorem 2.5.1, but makes for a messier and less illuminating argument.

Corollary 2.A.7. Every nonarchimedean field is henselian.

Proof. Let K be a nonarchimedean field, let O ⊆ K be its valuation ring,
and let t ∈ O be a pseudouniformizer. Apply Proposition 2.A.5 with
A= O and J = (t ).

Lemma 2.A.8. The following are equivalent for a field K endowed with a
height one valuation ν .

(a) K is henselian.

(b) The assertion of Lemma 2.5.2 holds.

Proof. Left as exercise.

The universal property of henselization induces a map Ah → bA.

Proposition 2.A.9. For a valued field (K , ν), the following are equivalent:

(a) K is henselian,

(b) every finite extension L of K admits a unique extension of the valua-
tion ν .

Proof. Suppose that K is henselian. Given Lemma 2.A.8, we can repeat
the proof of Proposition 2.5.3 word for word. The first paragraph of the
proof of Theorem 2.5.1 shows that we can extend the valuation ring of K
to L, which gives an extension of the valuation, easily seen to be unique.
For the reverse direction, see [8, Theorem II 6.6].

Henselian rings will appear later in the course: the local ring OX ,x of a
point x on a rigid analytic space X is not complete, but it is henselian.19 19 The same holds for complex analytic

spaces, e.g. the local ring C{t} of power
series with positive radius of convergence
is henselian.





3
The Tate algebra

In this chapter, we fix a nonarchimedean field K . We denote by O its
valuation ring, by k = O /m its residue field, and by t ∈ m a fixed pseu-
douniformizer.

We first introduce the Tate algebra, slightly emphasizing the “alge-
braic” point of view. We equip it with the Gauss norm, for which we give
a geometric interpretation which facilitates the verification of some basic
properties like multiplicativity or the Maximum Principle. The Gauss
norm makes the Tate algebra into a Banach K -algebra; we prove that it
satisfies a universal property in the category of Banach K -algebras. Next,
we prove that the Tate algebra satisfies a number of favorable algebraic or
topological properties, namely: 1 1 I mostly managed to avoid the rather

tedious arguments using the Weierstrass
Preparation Theorem and the theory of
bald and B -rings used in [4, Chapter 2].
Matter of taste, I guess.

• it satisfies a version of Noether normalization,

• it is Noetherian,

• all of its ideals are closed,

• the residue fields of its maximal ideals are finite extensions of K .

In the appendix, written jointly with Alex Youcis, we figure out one
can view Banach spaces over K algebraically through the lens of O /t n -
modules.

3.1 Definition of the Tate algebra

Definition 3.1.1. The algebra of restricted power series in r variables is the
t -adic completion of the polynomial algebra O [X1, . . . ,Xr ]:

O 〈X1, . . . ,Xr 〉= lim←−
n

O [X1, . . . ,Xr ]/(t
n) = lim←−

n

((O /t n)[X1, . . . ,Xr ]) .

The Tate algebra in r variables is the localization

K〈X1, . . . ,Xr 〉= O 〈X1, . . . ,Xr 〉⊗O K = O 〈X1, . . . ,Xr 〉
�

1
t

�

.

Let n = (t ,X1, . . . ,Xr ) ⊆ O [X1, . . . ,Xr ]. The n-adic completion of
O [X1, . . . ,Xr ] is the ring of formal power series

O [[X1, . . . ,Xr ]] = lim←−
n

O [X1, . . . ,Xr ]/n
n .
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Since n⊇ (t ), we get the induced map on the respective completions:

O 〈X1, . . . ,Xr 〉→ O [[X1, . . . ,Xr ]]. (3.1)

Lemma 3.1.2. The map (3.1) is injective, and its image consists of the power
series whose coefficients tend to zero: 2 2 Here we use the multi-index notation:

if n = (n1, . . . , nr ) ∈ Nr , we set Xn =
X n1

1 · . . . ·X nr
r and |n|= n1+ . . .+ nr .

O 〈X1, . . . ,Xr 〉 '
¨

∑

n∈Nr

anxn ∈ O [[X1, . . . ,Xr ]] : an→ 0 as |n| →∞
«

.

Proof. We define the inverse homomorphism ϕ. Let f =
∑

anXn ∈
O [[X]] be an element of the right hand side. The condition that an → 0
means precisely that for every m ≥ 0, all but finitely many of the co-
efficients an are divisible by t m . Thus, for every m ≥ 0, the image
fm of f in O [[X]]/t m = (O /t m)[[X]] is a polynomial. The elements
fm ∈ (O /t m)[X] form a compatible system, and give rise to an element
ϕ( f ) of O 〈X〉. One easily checks that ϕ is the inverse to (3.1).

By inverting t , we obtain an isomorphism

K〈X1, . . . ,Xr 〉 '
¨

∑

n∈Nr

anXn ∈K[[X1, . . . ,Xr ]] : an→ 0 as |n| →∞
«

.

As we have observed in §1.1, the right hand side is precisely the algebra of
power series with coefficients in K which converge in the unit disc

Dr (K) = {(x1, . . . , xr ) ∈K : |xi | ≤ 1 for i = 1, . . . , r }.
In particular, this implies that if for f ∈ K[[X1, . . . ,Xr ]] the series f (x)
converges for all x ∈Dr (K), then it also converges for all x ∈Dr (K).

3.2 The topology on K〈X1, . . . ,Xr 〉 and the Gauss norm

The ring O 〈X1, . . . ,Xr 〉, being defined as a completion, carries a natural
inverse limit topology, called the t -adic topology. It extends uniquely to
a topology of the Tate algebra K〈X1, . . . ,Xr 〉 for which O 〈X1, . . . ,Xr 〉 is
an open subring; that topology can be described as the inductive limit
topology, since Compare with Exercise 2 on Problem

Set 2.

K〈X1, . . . ,Xr 〉=
⋃

n≥0

t−nO 〈X1, . . . ,Xr 〉.

Below, we describe the natural norm inducing these topologies.

Definition 3.2.1. The Gauss norm on K〈X1, . . . ,Xr 〉 is defined by

| f |=max{|an | : n ∈Nr } if f =
∑

n∈Nr

anxn .

In other words, | f | is the infimum of the values of |c | for c ∈ K× such
that c−1 f ∈ O 〈X1, . . . ,Xr 〉. In particular, we have

O 〈X1, . . . ,Xr 〉= { f ∈K〈X1, . . . ,Xr 〉 : | f | ≤ 1} .
The topology on O 〈X1, . . . ,Xr 〉 induced by the metric d (x, y) = |x − y| is
the t -adic topology.
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The geometric interpretation: suppose that K is discretely valued, and
that t ∈ O is a uniformizer. Then X = SpecO [X1, . . . ,Xr ] = Ar

O is a
Noetherian regular scheme, and Y = {t = 0} = Ar

k is a prime divisor on
X . Therefore Y defines a valuation of height one νY on k(X ) (“order of
zero or pole along Y ”). It agrees with the Gauss norm in the weak sense
that for f ∈K[X1, . . . ,Xr ]⊆K〈X1, . . . ,Xr 〉, we have

| f |Gauss = |t |−νY ( f ).
In fact, K[X1, . . . ,Xr ] is dense in K〈X1, . . . ,Xr 〉 with respect to the t -adic
topology, and the Gauss norm is the unique continuous extension of the
norm |t |−νY ( f ) to K〈X1, . . . ,Xr 〉.

The proofs of the following two easy results employ the above intu-
ition.

Lemma 3.2.2 (The Gauss norm is multiplicative). We have | f g |= | f | · |g |
for f , g ∈K〈X1, . . . ,Xr 〉.
Proof. Clearly this holds if f ∈K is a constant. We can therefore rescale f
and g so that | f | = 1 = |g |. Equivalently f , g ∈ O 〈X1, . . . ,Xr 〉 and their
residues modulo the maximal ideal m⊆O

f̄ , ḡ ∈ O 〈X1, . . . ,Xr 〉/m= k[X1, . . . ,Xr ]

are nonzero. Since k[X1, . . . ,Xr ] is a domain, f g ∈ O 〈X1, . . . ,Xr 〉 has
nonzero image f̄ ḡ in k[X1, . . . ,Xr ], and hence | f g |= 1= | f | · |g |.
Proposition 3.2.3 (The Maximum Principle). For f ∈ K〈X1, . . . ,Xr 〉, we
have

| f |= sup
¦

| f (x1, . . . , xr )| : (x1, . . . , xr ) ∈K r , |xi | ≤ 1
©

.

Proof. As in the previous proof, we can reduce to the case | f | = 1.
Clearly, the right hand side is ≤ 1; we will show it equals 1. We have
f ∈ O 〈X1, . . . ,Xr 〉 and its image f̄ ∈ k[X1, . . . ,Xr ] is nonzero. We can
therefore find a point (ξ̄1, . . . , ξ̄r ) ∈ k̄ r such that f̄ (ξ̄1, . . . , ξ̄r ) 6= 0. Now k̄
is the residue field of (the integral closure of O in) K ; let (ξ1, . . . ,ξr ) ∈ K r

be an element lifting (ξ̄1, . . . , ξ̄r ). Then |ξi | ≤ 1 and | f (ξ̄1, . . . , ξ̄r )|= 1.

Remark 3.2.4. The above proof shows three things in addition. First, the
supremum is a maximum, and therefore attained in Lr for L a finite exten-
sion of K . Second, if the residue field k is infinite, the above maximum is
attained at a point in K r . Lastly, the maximum is attained at a point with
|x1|= · · ·= |xr |= 1.

The Gauss norm makes the Tate algebra into a Banach K -algebra, as
defined below.

Definition 3.2.5 (Banach spaces and Banach algebras). Let V be a vector
space over K . A vector space norm on V is a function

| · | : V → [0,∞)
such that

i. |xv |= |x| · |v | for x ∈K , v ∈V ,
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ii. |v |= 0 if and only if v = 0,

iii. |v +w| ≤max{|v |, |w|} for v, w ∈V .

It is called a Banach norm if V is complete with respect to the induced
metric d (x, y) = |x − y|. A Banach space over K is a vector space over K
equipped with a Banach norm.

Let A be a K -algebra. A K-algebra norm on A is a vector space norm | · |
on A which satisfies

iv. |vw| ≤ |v | · |w| for v, w ∈A.

It is a Banach algebra norm if | · | is a Banach norm. A Banach K-algebra is a
K -algebra over K equipped with a Banach norm.

A linear map f : V →W between Banach spaces over K is continuous
if and only if it is bounded in the sense that | f (v)| ≤ C · |v | (v ∈ V )
for some constant C independent of v. This implies in particular that a
continuous f : V →W is uniformly continuous.

Proposition 3.2.6. The Tate algebra K〈X1, . . . ,Xr 〉 is a Banach algebra
when equipped with the Gauss norm.

Proof. Axioms i.–iii. are clear, and iv. follows from Lemma 3.2.2. It re-
mains to show that K〈X1, . . . ,Xr 〉 is complete. It suffices to show that
the closed unit ball {| f | ≤ 1} = O 〈X1, . . . ,Xr 〉 is complete. This in turn
follows from the fact that O 〈X1, . . . ,Xr 〉 is t -adically complete.

Corollary 3.2.7. The Tate algebra K〈X1, . . . ,Xr 〉 is the completion of
K[X1, . . . ,Xr ] with respect to the Gauss norm.

Proof. It suffices to observe that O [X1, . . . ,Xr ] is dense in O 〈X1, . . . ,Xr 〉,
which follows from the definition (and the fact that the metric topology
induced by the Gauss norm agrees with the t -adic topology).

3.3 The universal property

Definition 3.3.1. Let A be a Banach K -algebra. An element a ∈ A is
powerbounded if the set {an : n ≥ 1} is bounded, meaning that {|an | : n ≥
1} is bounded from above. We denote the set of powerbounded elements
by A◦ ⊆A.

The subset A◦ ⊆ A is a subring. If the norm on A is multiplicative, then
a ∈ A◦ if and only if |a| ≤ 1; therefore A◦ = {|a| ≤ 1} is an open subring.
Thus for A=K〈X1, . . . ,Xr 〉 we have A◦ = O 〈X1, . . . ,Xr 〉.

Every continuous homomorphism A → B maps A◦ into B◦. Since
the element X ∈ K〈X 〉 is powerbounded, for every Banach K -algebra we
obtain a map

ϕ 7→ ϕ(X ) : HomK (K〈X 〉,A)→A◦, (3.2)

where for Banach K -algebras A and B , HomK (B ,A) denotes the set of all
continuous K -algebra homomorphisms B→A.

Warning. If A is not reduced, then the
subring A◦ is not very well-behaved.

For example, if A = K〈X 〉/(X 2) then
A◦ = O ⊕K ·X is neither bounded nor
t -adically separated.
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Lemma 3.3.2. The maps (3.2) are bijective and define an isomorphism
between the functors A 7→ HomK (K〈X 〉,A) and A 7→ A◦ from Banach
K-algebras to sets. In other words, K〈X 〉 represents the functor A 7→A◦.

Similarly, K〈X1, . . . ,Xr 〉 represents the
functor A 7→ (A◦)r .

Proof. Since K[X ] is dense in K〈X 〉 (Corollary 3.2.7), any two continu-
ous K -algebra homomorphsims ϕ,ψ : K〈X 〉 → A with ϕ(X ) = ψ(X ) have
to coincide. This shows injectivity. To show that ϕ 7→ ϕ(X ) is surjective,
let a ∈ A◦ and let ϕ : K[X ] → A be the unique K -algebra homomor-
phism sending X to a. To extend ϕ to the completion K〈X 〉 of K[X ]
with respect to the Gauss norm, it suffices to show that ϕ is (uniformly)
continuous, i.e. that

|ϕ( f )| ≤C · | f | for some C > 0.

Since a is powerbounded, there exists a C such that |an | ≤ C for all n ≥ 0.
But then, for f =

∑m
i=0 bi X

i ∈K[X ], we have

|ϕ( f )|=
�

�

�

�

�

m
∑

i=0

bi a
i

�

�

�

�

�

≤max{|bi |} ·max{|an |} ≤ | f | ·C .

3.4 The Tate algebra is Noetherian

The goal of this section is to prove that K〈X1, . . . ,Xr 〉 is Noetherian.

Proposition 3.4.1 (Warm-up). Suppose that K is discretely valued, i.e. O is
a dvr. Then O 〈X1, . . . ,Xr 〉 and K〈X1, . . . ,Xr 〉 are Noetherian.

Proof. Since O is Noetherian, so is the polynomial algebra O [X1, . . . ,Xr ].
The completion of a Noetherian ring with respect to an ideal is Noethe-
rian [2, Theorem 10.26], thus O 〈X1, . . . ,Xr 〉 is Noetherian. Finally, the lo-
calization of a Noetherian ring is Noetherian, and therefore K〈X1, . . . ,Xr 〉
is Noetherian as well.

However, if the valuation is nondiscrete, then O will not be Noethe-
rian: the maximal ideal is not finitely generated, in fact it satisfies m=m2.
Thus O 〈X1, . . .Xr 〉 is non-Noetherian as well, for the same reason. That
reason disappears when we invert t .

The proof below loosely follows Tian’s notes [11], with some simplifi-
cations.

Proposition 3.4.2 (Noether normalization). Let I ⊆ K〈X1, . . . ,Xr 〉 be
a closed ideal.3 Then there exists a finite and injective K-algebra homomor- 3 We shall soon prove that every ideal in

K〈X1, . . . ,Xr 〉 is closed.phism
K〈Y1, . . . ,Ys 〉 ,→K〈X1, . . . ,Xr 〉/I for some s ≤ r .

Proof. The idea of the proof is to deduce the statement from the usual
Noether normalization lemma over k. We shall use the algebra O 〈X1, . . . ,Xr 〉
as an intermediary between the Tate algebra K〈X1, . . . ,Xr 〉 and the poly-
nomial ring k[X1, . . . ,Xr ].

Let J = I ∩O 〈X1, . . . ,Xr 〉 and B = O 〈X1, . . . ,Xr 〉/J . Note that J is open
in I , we have I = J ·K〈X1, . . . ,Xr 〉, and J is closed in O 〈X1, . . . ,Xr 〉. The
last fact implies that

B ' lim←−
n

B/t n , B/t n = (O /t n)[X1, . . . ,Xr ]/J .



32 INTRODUCTION TO NON-ARCHIMEDEAN GEOMETRY

Noether normalization applied to B/m = k[X1, . . . ,Xr ]/J produces a
finite injective map

k[Y1, . . . ,Yr ]→ B/m

which we can lift to a map O 〈Y1, . . . ,Ys 〉 → B . Indeed, we can certainly
lift it to an O -algebra map O [Y1, . . . ,Yr ] → B , and upon taking t -adic
completion we obtain the desired O 〈Y1, . . . ,Ys 〉 → B (because B is t -
adically complete). We want to show that the latter map is finite and
injective as well.

Injectivity is easy: let f ∈ O 〈Y1, . . . ,Ys 〉 and write f = c g with c ∈ O
and |g | = 1. Then g has nonzero image in k[Y1, . . . ,Ys ], and hence its
image in B/m is nonzero. Since B is O -torsion free (being a submodule of
the K -module K〈X1, . . . ,Xr 〉/I ), we see that f maps to zero only for c = 0.

For finiteness, as an intermediate step we will show that

O /t [Y1, . . . ,Ys ]→ B/t

is finite. It suffices to show that the images of Xi in B/t are integral over
O /t [Y1, . . . ,Ys ]. Since their images in B/m are integral over k[Y1, . . . ,Ys ],
there exist monic polynomials Pi ∈ O 〈Y1, . . . ,Ys 〉[X ] with Pi (Xi ) ∈ mB .
But then for N � 0 we have P N

i (Xi ) ∈ tB , i.e. the Xi are integral over
O /t [Y1, . . . ,Ys ].

Now, let {Zα} be a finite set of elements of B which generate B/t as a
O /t [Y1, . . . ,Ys ]-module. Fix W0 ∈ B and write

W0 =
∑

α

f0,αZα+ tW1

=
∑

α

( f0,α+ t f1,α)Zα+ t 2W2

= . . . ?=
∑

α

fαZα

where fα =
∑

n fn,α t n . Indeed, the difference of the two sides of ?= belongs
to
⋂

n t nB = 0. Therefore Zα generate B over O 〈Y1, . . . ,Ys 〉. 4 4 The argument presented in the final
paragraph shows more generally that if A
is a t -adically complete O -algebra and M
is a t -adically separated A-module, then
elements e1, . . . , en ∈ M which generate
M/t also generate M (“t -adic Nakayama’s
lemma”).

Remark 3.4.3. The above proof shows that we can choose the finite injec-
tive map so that it factors through K〈X1, . . . ,Xr 〉. This is not automatic,
for example in the situation below

K〈X 〉

��
K〈Y 〉

99

Y 7→t−1X
// K〈X 〉/(X 2)

there does not exist a dotted arrow making the triangle commute. Indeed,
the element t−1X ∈ A is nilpotent and hence power-bounded, but it
cannot be lifted to a power-bounded element of K〈X 〉. We will need this
observation in §4.2, where the above issue will be clarified.

Proposition 3.4.4. The Tate algebra K〈X1, . . . ,Xr 〉 is Noetherian.

Proof. We prove this by induction on r . Let I ⊆ K〈X1, . . . ,Xr 〉 be a
nonzero ideal. Pick f ∈ I with | f | = 1. It is enough to show that
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K〈X1, . . . ,Xr 〉/( f ) is Noetherian, for then the image I/( f ) is finitely
generated and hence so is I .

The ideal ( f ) is closed, as multiplication by f

f : K〈X1, . . . ,Xr 〉→K〈X1, . . . ,Xr 〉
is an isometry onto its image ( f ). We can therefore apply Noether nor-
malization (Proposition 3.4.2) to obtain a finite and injective homomor-
phism

K〈Y1, . . . ,Ys 〉 ,→K〈X1, . . . ,Xr 〉/( f ).
Moreover, since | f | = 1, we must have s < r by construction. By induc-
tion, K〈Y1, . . . ,Ys 〉 is Noetherian and hence so is K〈X1, . . . ,Xr 〉/( f ).
Proposition 3.4.5. Every ideal in K〈X1, . . . ,Xr 〉 is closed.

Proof. Let I ⊆ K〈X1, . . . ,Xr 〉 be an ideal and let I be its closure. Then
I , again an ideal, is finitely generated: I = ( f1, . . . , fs ). Using the density
of I in I , we will show that we can find another system of generators
(g1, . . . , gs ) with gi ∈ I , showing I = I .

Consider the surjective and bounded map of Banach spaces

K〈X1, . . . ,Xr 〉⊕s → I , (h1, . . . , hs ) 7→
∑

hi fi .

By the Open Mapping Theorem5, there exists a C > 0 such that for 5 Open Mapping Theorem. A surjective
continuous map π : V → W of Banach
spaces over K is open. That is, there exists a
C > 0 such that {|w| ≤ 1} is contained in
π({|v | ≤C }).
Proof. Open your Functional Analysis
textbook and check that the proof works
without change in the non-Archimedean
setting. �

every f ∈ I there exist h1, . . . , hs ∈ K〈X1, . . . ,Xr 〉 with f =
∑

hi fi and
|hi | ≤C · | f |.

Since I ⊆ I is dense, we can find g1, . . . , gs ∈ I with |gi − fi |< C−1. By
the previous paragraph, there exist hi j ∈ K〈X1, . . . ,Xr 〉 (1 ≤ i , j ≤ s ) such
that

gi − fi =
∑

j

hi j f j and |hi j |< 1.

Rewrite this as
gi =

∑

j

Hi j f j , Hi j = hi j +δi j ,

so that the matrix H = [Hi j ] satisfies |H − Id| < 1 (for the supremum
norm on matrix entries). It is easy to see (see Problem 2 on PS3) that this
implies that H is invertible, showing I = ( f1, . . . , fs )⊆ (g1, . . . , gs )⊆ I .

3.5 Maximal ideals

Recall that by Nullstellensatz, for an algebraically closed field k, the max-
imal ideals in k[X1, . . . ,Xr ] are in bijection with k r . If k is not necessarily
algebraically closed, and k is an algebraic closure, then maximal ideals
in k[X1, . . . ,Xr ] correspond to orbits of the action of the Galois group
Gal(k/k) on k

r
. The case of the Tate algebra is similar.

Proposition 3.5.1. There is a bijection between the set MaxK〈X1, . . . ,Xr 〉
of maximal ideals in K〈X1, . . . ,Xr 〉 and the set of orbits of the action of the
Galois group Gal(K/K) on

Dr (K) = {(x1, . . . , xr ) ∈K r : |xi | ≤ 1},
where | · | is the unique extension of the norm on K to K.
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Proof. For x = (x1, . . . , xr ) ∈Dn(K), let

mx = { f ∈K〈X1, . . . ,Xr 〉 : f (x) = 0}
(note that f (x)makes sense because |xi | ≤ 1). This is a maximal ideal, as
the image of the evaluation map

f 7→ f (x) : K〈X1, . . . ,Xr 〉→K

is a subring of K containing K and hence is a field. Moreover, Galois
conjugate points give the same ideal, so we get a map x 7→ mx from one
side to the other.

Conversely, let n (the notation m already being reserved for the max-
imal ideal in O ) be a maximal ideal in K〈X1, . . . ,Xr 〉. Applying Noether
normalization, we see that the residue field L = K〈X1, . . . ,Xr 〉/n is finite
over K〈X1, . . . ,Xs 〉 for some s . But this implies that the latter ring is a
field, so s = 0 and L is a finite extension of K . Embedding it into K , we
obtain a homomorphism

ϕ : K〈X1, . . . ,Xs 〉→ L→K .

Let xi = ϕ(Xi ) ∈ K . Thus xi are powerbounded, and hence |xi | ≤ 1. This
gives a point x = (x1, . . . , xr ) ∈Dr (K), well-defined up to the choice of the
embedding of L in K . This gives a map n 7→ x in the other direction.

As such embeddings are permuted by the Galois group, it is clear that
mx 7→ x. If n 7→ x, then n ⊆ mx , and hence they are equal since both are
maximal. We have thus constructed mutually inverse bijections.

Corollary 3.5.2. Every K-algebra homomorphism

K〈Y1, . . . ,Ys 〉→K〈X1, . . . ,Xr 〉
is continuous.

Proof. By the Maximum Principle (Proposition 3.2.3), the Gauss norm
on K〈X1, . . . ,Xr 〉 agrees with the supremum norm

| f |sup = sup{| f mod n| : n ∈MaxK〈X1, . . . ,Xr 〉},
where | f mod n| is the norm of the image of f in the residue field L =
K〈X1, . . . ,Xr 〉/n. This definition of the Gauss norm is intrinsic to the
K -algebra structure on K〈X1, . . . ,Xr 〉. It is also straightforward to check
using | · |Gauss = | · |sup that for every K -algebra homomorphism

ϕ : K〈Y1, . . . ,Ys 〉→K〈X1, . . . ,Xr 〉
we have |ϕ( f )| ≤ | f |, i.e. f is not only continuous but even contracting.

3.6 More commutative algebra

We state the following additional results without giving a proof.

Theorem 3.6.1. (a) The Tate algebra is Jacobson (every prime ideal is the
intersection of maximal ideals). See [4, Proposition 2.2/16].
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(b) The Tate algebra is regular, of Krull dimension n, and excellent. See [5, §1.1] and references therein.

(c) Every ideal I ⊆ K〈X1, . . . ,Xr 〉 admits a system of generators ( f1, . . . , fs )
with | fi | = 1 and such that every f ∈ I we can write f =

∑

fi gi with
|gi | ≤ | f | See [4, Corollary 2.3/7].
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3.A Banach spaces (with Alex Youcis)
Still slightly incomplete.

The goal of this slightly persnickety appendix, only tangentially related
to the lecture, is to explicate the notion of a Banach space over K in terms
of O /t n -modules. The main result (Proposition 3.A.10) describes the
category BanK of Banach spaces over K as a localization of the category
Mod∧O of complete O -modules (which itself is the inverse limit of the
categories ModO /t n ) with respect to topological isogenies, i.e. morphisms
whose kernel and cokernel have dense torsion submodules.

As before, we work over a non-Archimedean field K , denote by O ⊆ K
be its valuation ring, and fix a pseudouniformizer t ∈ O .

3.A.1 Torsion-free O -modules

ModA for a ring A is the category of all A-modules, and Mod f
A is the full

subcategory of flat A-modules.
For M ∈ModO , we define its torsion submodule

Mtors =
⋃

n≥0

ker (t n : M →M ) .

The module M is torsion (resp. torsion-free) if Mtors = M (resp. Mtors = 0).
We have the following basic result:

Lemma 3.A.1. An O -module M is flat if and only if it is torsion-free.

Since the module M/Mtors is torsion-free, we have a functorial way of
making any given O -module flat. Since every map M → N where N is
torsion-free has to map Mtors to zero, we obtain:

Lemma 3.A.2. The functor

M 7→M/Mtors : ModO →Mod f
O

is a left adjoint to the inclusion Mod f
O ⊆ModO .

3.A.2 Complete O -modules

The completion of an O -module M is the inverse limit

ÒM = lim←−
n

M/t n M .

A O -module M is complete if the natural map M → ÒM is an isomorphism.
We denote by Mod∧O the full subcategory of ModO consisting of complete
O -modules. The completion functor

M 7→ ÒM : ModO →Mod∧O

is a left adjoint to the inclusion Mod∧O ⊆ModO .
We denote by Mod∧, f

O the full subcategory of flat and complete O -
modules. The completion of a flat O -module is again flat, and again the
completion functor Mod f

O → Mod∧, f
O is a left adjoint to the inclusion

functor.



THE TATE ALGEBRA 37

We have equivalences of categories

Mod∧O = 2- lim←−
n

ModO /t n and Mod∧, f
O = 2- lim←−

n

Mod f
O /t n ,

where for an inverse system of categories (Cn ,πn : Cn+1→Cn), we define
its 2-categorical inverse limit 2- lim←−n

Cn as consisting of systems of objects
and isomorphisms (xn ∈ Cn , ιn : πn(xn+1) ' xn), and where morphisms
are systems of maps (x ′n→ xn) commuting with the maps ι′n , ιn .

Warning: The category Mod∧O has kernels and cokernels. The kernel See [10, Tag 07JQ] .

is simply the kernel in ModO , and the cokernel is the completion of the
usual cokernel. However, Mod∧O is not abelian. The reason for that is that
the image of a map need not be closed.

Lemma 3.A.3. The functor M 7→ (M/Mtors)
∧ is a left adjoint to the inclu-

sion Mod∧, f
O ⊆Mod∧O .

Before we begin, we start with the following ancillary lemma:

Lemma 3.A.4. Let M be an object of Mod∧O and N a subspace of M . Then,
there is a natural embedding

N/M → (N/M )∧

with dense image.

Proof. Let us note that

(N/M )∧ = lim←−(M/N )/t n(M/N )

= lim←−M/(t n ,N )

So, let us then observe that we have a natural map

M → lim←−M/(t n ,N )

We claim that the kernel of this map is precisely N . Indeed, to show that
N is in the kernel we need to show that N projects to zero in (t n ,N ) for
every n. But, take x in N and write x = lim yn with yn in N for all n
and x − yn ∈ t n M . Then, evidently x projects to 0 in M/(t n ,N ) since
x is in yn + t n M ⊆ (t n , M ). Conversely, suppose that x maps to zero in
lim←−M/(t n ,N ). Then, by definition, for all n ¾ 0 we have that we can
write x = yn + t n zn for some yn in N and zn in M . In particular, from this
we see that x = lim yn and thus x is in N .

From this we see that we get an injection

M/N → lim←−M/(t n ,N ) = (M/N )∧

To see that it has dense image it suffices to note that for all n we have the
composition

M/N → lim←−M/(t n ,N )→M/(t n ,N )

is surjective, from where the claim follows.

From this we deduce the following:

Corollary 3.A.5. Let M be an object of Mod∧O . Then, Mtors is dense in M if
and only if (M/Mtors)

∨ is zero.

https://stacks.math.columbia.edu/tag/07JQ
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We now return to Lemma 3.A.3:

Proof of Lemma 3.A.3. We need to show that for every obect M of Mod∧O
and every object N of Mod∧, f

O we have that the natural bijection

Hom((M/Mtors)
∨,N )∼=Hom(M ,N )

But, we note that evidently the natural map

Hom(M ,N )→Hom(M/Mtors,N )

is a bijection since N is O -flat. Moreover, since N is O -complete we have
that the natural map

Hom(M/Mtors,N )→Hom((M/Mtors)
∧,N )

is a bijection. The claim follows.

3.A.3 Banach spaces

See Definition 3.2.5 for the definition of a Banach space. A linear map
f : V →W between Banach spaces over K is called bounded if there exists
a c ∈ [0,∞) such that

| f (v)| ≤ c |v | for all v ∈V .

We denote by Hom(V ,W ) the linear space of such maps. It is stable
under composition, and we denote the category of all Banach K -spaces
and bounded maps by BanK .

We then have the following well-known result (e.g. see [3, §2.1.6] and
[3, §2.1.8]):

Lemma 3.A.6. Let V and W be Banach K-spaces. Then, a K-linear map
f : V →W is bounded if and only if it’s continuous. Moreover, the function

| f | := sup
x 6=0

| f (x)|
|x|

is a norm on Hom(V ,W ) which endows Hom(V ,W ) with the structure of
a Banach K-space. Moreover, the following properties hold:

1. | f |= sup
x∈V
|x|=1

| f (x)|

2. | f (x)|¶ | f ||x| for all x in V .

3. | f ◦ g |¶ | f ||g | for any continuous map of Banach K-spaces g : W →U .

3.A.4 Lattices

For V ∈ BanK , we write V0 = {|v | ≤ 1}. We then have the following
elemenary observation:

Lemma 3.A.7. The subset V0 is an O -submodule which is O -flat, complete,
and such that the induced map V0⊗O K→V is an isomorphism.
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Proof. Since |xv | ¶ |x||v | for all x in K and v in V we evidently see that
V0 is an O -submodule of V . Since V is a K -module we know that it’s
O -torsionfree and thus a fortori the same holds true for V0 which implies
that it’s O -flat. Finally, we note that the induced map V0⊗O K →V is an
isomorphism as follows. Since K is O -flat we have that the induced map
V0⊗O K→V ⊗O K is injective. But, we note that V ⊗O K ∼=V via the map
which maps v⊗x to xv. Thus, we see that the induced map V0⊗O K→V
is an isomorphism if and only if for all v in V one can write v = xv0 with
x in K and v0 in V0. But, this is clear since if t n v converges to 0 and so,
since V0 is open in V , must be in V0 for some n ¾ 0. We then can write
v = t−n(t n v).

If f : V →W is a continuous map of Banach K -spaces, then for c ∈ K
we have f (V0) ⊆ cW0 if and only if |c | ≥ | f |. In particular, we see that if
we set

Hom0(V ,W ) := { f ∈Hom(V ,W ) : | f |¶ 1}
then we have the equality

Hom0(V ,W ) = { f ∈Hom(V ,W ) : f (V0)⊆W0}
We define the category BanO to be the subcategory of BanK with the same
underlying class of objects but where for V and W Banach K -spaces we
set

HomBanO (V ,W ) :=Hom0(V ,W )

and call it the category of Banach lattices.

Proposition 3.A.8. The functors

−⊗K : Mod∧, f
O → BanO , V 7→V0 : BanO →Mod∧, f

O

are mutually inverse equivalences of categories.

Before we explain the proof of this lemma, we remark as to how for
M an object of Mod∧, f

O we are regarding M ⊗O K as a Banach K -space.
Namely, we have the following simple observation:

Lemma 3.A.9. Let M be an object of Mod∧, f
O . Then, the function

|v | := inf
x∈K×

x−1v∈M

|x|

defines the structure of a Banach K-space on M⊗O K. Moreover, if f : M →N
is an O -module map, then the induced map f : M ⊗O K → N ⊗O K is
continuous.

Let us note that we are using the O -flatness of M to regard M as a
subgroup of M ⊗O K .

Proof of Lemma 3.A.9. Let us first verify that | · | really is a norm on
M ⊗O K .

We first observe that if |v | = 0 then we have that x−1v is in M for all x
in K×. From this it’s easy to see that v is an element of M . Moreover, we
see that we in fact have that v is an element of t n M for all n ¾ 0. Since M
is complete this implies that v is zero as desired.
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To see that |v +w| ¶ max(|v |, |w|) for all v and w in M ⊗O K is easy.
Indeed, we note that if x−1v and x−1w are both in M then so then is
x−1(v +w) from where the claim follows.

Finally, we show that for all x in K and v in M ⊗O K we have that
|xv |= |x||v |. To see this, we merely note that

|xv |= inf
y∈K×

y−1 xv∈M

|y|

= inf
y∈K×

y−1v∈M

|y x|

= |x| inf
y∈K×

y−1v∈M

|y|

= |x||v |
as desired.

To see that M ⊗O K is complete is clear. Indeed, suppose that {vn} is
a Cauchy sequence in M ⊗O K . Let us note then that there exists some
n0 ¾ 0 such that |vn − vm | ¶ 1 for n ¾ n0. One then sees from the
ultrametric inequality that vn − vn0

is in M for all n ¾ n0. Then, we see
that vn − vn0

is a Cauch sequence in M and thus, by the completness of M ,
converges.

To see the claim concerning maps we proceed as follows. We need to
show that lim f (xn) = f (lim xn). Note though that if lim xn = x then
this implies lim(xn − x) = 0. Thus, we see that for all N ¾ 0 there exists
an n0 such that for n ¾ n0 we have that xn − x ∈ t N M . We see then that
f (xn − x) ∈ f (t n M )⊆ t nN . Thus, we see that lim f (xn − x) = 0 and thus
lim f (xn) = f (x) as desired.

We are now ready to prove Proposition 3.A.8:

Proof. (of Proposition 3.A.8) It suffices to show that −⊗O K and (−)0 are
fully faithful and that they are inverses on isomorphism classes.

But, we note that for M and N objects of Mod∧, f
O that

Hom0(M ⊗O K ,N ⊗O K) = { f ∈Hom(M ⊗O K ,N ⊗O K) : f (M )⊆N}
=Hom(M ,N )

where this last map is an equality since as we observed in Lemma 3.A.9
the localization of any map M →N is automatically continuous.

Similarly, for two Banach K -spaces V and W we have that

Hom(V0,W0) = { f ∈Hom(V ,W ) : f (V0)⊆W0}
=Hom0(V ,W )

where the first equality follows as in the last sentence of the previous
paragraph.

Finally, we observe that

(M ⊗O K)0 =M , V0⊗O K =V

from where the proposition follows.
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3.A.5 Banach spaces in terms of complete modules

We would now like to put this altogether to obtain BanK is a localization
of Mod∧O . Namely, let us define a morphism f in Mod∧O to be a topological
isogeny if ker f and coker( f ) have dense torsion submodules. We then
have the following:

Proposition 3.A.10. The functor

F : Mod∧O → BanK : M 7→ (M/Mtors)
∧⊗O K

realizes BanK as the localization of Mod∧O at the set of topological isogenies.

Proof. By [? , Lemma 5.5] it suffices verify that F is essentially surjective,
weakly full with fixed target (as in loc. cit.), and for all V in BanK we have
that F −1(V ) is a cofiltering category, and that F ( f ) is an isomorphism if
and only if f is topological isogeny.

To see that F is essentially surjective and weakly full with fixed target,
we can apply Proposition 3.A.8.

To see that F −1(V ) is cofiltering is clear
Finally, we verify that F ( f ) is an isomorphism if and only if f is a

topological isogeny. But, by the open mapping theorem we know that
F ( f ) is an isomorphism if and only if

ker F ( f ) = ker( f )⊗O K , coker(F ( f )) = coker( f )⊗O K

(using the O -flatness of K) are both trivial. Thus, it suffices to show that
F (M ) is zero if and only if Mtors is dense in M . But, since (M/Mtors)

∧ is flat
we know that (M/Mtors)

∧ embeds into F (M ) and thus F (M ) is zero if and
only if (M/Mtors)

∧ = 0. The claim then follows from Corollary 3.A.5.





4
Affinoid algebras and spaces

In this short section, we study quotients of Tate algebras, called affinoid
algebras. The main result is that they carry natural equivalence classes
of Banach K -algebra norms. Later, we will define their affinoid spectra,
which will serve as building blocks for rigid-analytic spaces over K , just as
spectra of finitely generated algebras over a field k are building blocks for
schemes locally of finite type over k.

4.1 Affinoid algebras and the residue norm

Definition 4.1.1. Let K be a non-Archimedean field. An K -algebra A
is an affinoid algebra if it is isomorphic to a quotient of the Tate algebra
K〈X1, . . . ,Xr 〉 for some r ≥ 0.

The results from §3.4 and §3.6 imply the following.

Proposition 4.1.2. Every affinoid K-algebra A is Noetherian, Jacobson, and
there exists a finite and injective K-algebra homomorphism

K〈Y1, . . . ,Ys 〉 ,→A

for some s ≥ 0.

Let A be an affinoid K -algebra and let

α : K〈X1, . . . ,Xr 〉→A

be a surjective homomorphism; set I = ker(α). Since every ideal in the
Banach K -algebra K〈X1, . . . ,Xr 〉 is closed (Proposition 3.4.5), the quotient
A=K〈X1, . . . ,Xr 〉/I is a Banach space for the residue norm

| f |α = inf{|g | : g ∈ α−1( f )}.
Further, it is trivial to check that | · |α is sub-multiplicative, therefore mak-
ing (A, | · |α) into a Banach K -algebra. We shall soon prove that different
presentations α give rise to equivalent norms | · |α.

4.2 The supremum norm

Our goal in this section is to show that the K -algebra structure on an
affinoid K -algebra A determines its topology. This is similar to the fact
that the t -adic topology on an O -module is canonically determined.
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Our main foothold will be the corresponding result for finite field ex-
tensions of K , Theorem 2.5.1. We already know that affinoid K -algebras
are Jacobson, which means that their maximal ideals carry significant
information, and that the residue fields at maximal ideals are finite exten-
sions of K . Together, these observations allow us to define the supremum
semi-norm on an affinoid K -algebra A by setting

| f |sup = sup{| f (x)| : x ∈MaxA},
where | f (x)| is the absolute value of the image of f in the residue field
L of x with respect to the unique extension of the norm on K to L. (We
already saw a preview of this for A= K〈X1, . . . ,Xr 〉 in the proof of Corol-
lary 3.5.2.)

Proposition 4.2.1 (Properties of the supremum semi-norm). Let A be an
affinoid K-algebra.

(a) The supremum semi-norm | · |sup on A satisfies the axioms (i), (iii), and (iv)
of a Banach K-algebra norm (Definition 3.2.5). It is power-multiplicative,
in the sense that |an |sup = |a|nsup. For every K-algebra homomorphism
ϕ : A→ B between affinoid algebras, we have |ϕ(a)|sup ≤ |a|sup for all
a ∈A.

(b) One has |a|sup = 0 if and only if a is nilpotent. If A is reduced, so that
axiom (ii) of Definition 3.2.5 is also satisfied, then | · |sup is a Banach
K-algebra norm.

(c) For A = K〈X1, . . . ,Xr 〉, the supremum norm coincides with the Gauss
norm.

(d) (Maximum principle) For every a ∈ A there exists an x ∈MaxA such that
|a|sup = |a(x)|. In particular, there exists an n ≥ 1 such that |a|nsup ∈ |K |.

(e) For every residue norm | · |α on A, an element a ∈ A is powerbounded
(Definition 3.3.1) if and only if |a|sup ≤ 1.

Proof. Part (a) is clear. The first assertion of (b) follows from the fact that
A is Jacobson, so that

p

(0) =
⋂

n∈MaxA

n.

Completeness of a reduced A with respect to | · |sup is more involved and
will not be needed; see [3, Theorem 6.2.4/1]. Part (c) was proved as part
of the proof of Corollary 3.5.2.

For the remaining claims (d) and (e), we need some preparatory results.
The following easy lemma says that one can estimate the absolute values
of the roots of a polynomial by looking at its Newton polygon.

Lemma 4.2.2. Let f = X n + a1X n−1 + . . .+ an ∈ K[X ] be a polynomial,
and let α1, . . . ,αn ∈K be its roots. Then

max
i=1,...,n

|αi |= max
i=1,...,n

|ai |1/i .

(n, 0)

(n− i , ν(ai ))

slope log |ai |1/i =− ν(ai )
i

Figure 4.21: Proof of Lemma 4.2.2.

Proof. The right-hand side is equal to exp(−µ) where µ is the largest
slope of NP( f ) (see Figure 4.2). By Lemma 2.6.2, this equals max |αi |.
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Let us fix a surjection α : K〈X1, . . . ,Xr 〉 → A and finite and injective
homomorphism β : K〈Y1, . . . ,Ys 〉 → A. By Remark 3.4.3, β can be lifted
to a map γ : K〈Y1, . . . ,Ys 〉 → K〈X1, . . . ,Xr 〉; part (c) implies that γ is
contracting with respect to the Gauss norms.

K〈X1, . . . ,Xr 〉
α, surjection// A

K〈Y1, . . . ,Ys 〉

γ , contracting

OO

β, finite+injective

::We fix an a ∈ A; since a is integral over K〈Y1, . . . ,Ys 〉, we fix a polyno-
mial

f =X n + f1X n−1+ . . .+ fn ∈K〈Y1, . . . ,Ys 〉[X ]
such that f (a) = 0. We make the following assumption:1

1 This assumption is satisfied for example
if A is a domain, or just torsion-free as
a K〈Y1, . . . ,Ys 〉-module, and if f is of
minimal degree, see [4, Lemma 3.1/13].

B =K〈Y1, . . . ,Ys 〉[X ]/( f )→A is injective.

Note that B = K〈Y1, . . . ,Ys ,X 〉/( f ) is also an affinoid K -algebra. Under
the above assumption, Max(A)→Max(B) is surjective. Therefore

|a|sup = sup
x∈Max(A)

|a(x)|= sup
x∈Max(B)

|X (x)|

= sup
y∈Max(K〈Y1,...,Ys 〉

max
x∈Max(B),x 7→y

|X (x)|.

By Lemma 4.2.2, the maximum equals max | fi (y)|1/i , and hence the above
equals max | fi |1/i

sup =max | fi |1/i .
We have thus, under our simplifying assumption, obtained the follow-

ing assertion:

One can find f such that |a|sup = max
i=1,...,n

| fi |1/i .

We omit the rather unenlightening reduction to this case, referring the
reader to [4, §3.1].2 2 Idea of the reduction [4, Lemma 3.1/14]:

replace A with
∏

A/pi where p1, . . . ,pm ⊆
A are the minimal prime ideals. For each
i , the affinoid K -algebra A/pi is a domain,
and we can apply [4, Lemma 3.1/13].

To prove (d), we apply the Maximum Principle (Proposition 3.2.3) to
g = f1 · . . . · fn ∈ K〈Y1, . . . ,Yr 〉, obtaining a y ∈ MaxK〈Y1, . . . ,Yr 〉 with
|g |sup = |g |= |g (y)|. But this implies that | fi |sup = | fi |= | fi (y)| for every i ,
and hence

|a|sup = max
i=1,...,n

| fi |1/i = max
i=1,...,n

| fi (y)|1/i =max
x 7→y
|a(x)|.

To prove (e), the condition |a|sup ≤ 1 is equivalent to | fi | ≤ 1 for all i .
This implies that a is integral over O 〈Y1, . . . ,Yr 〉. Since γ is contracting
(Corollary 3.5.2), the images ai = β(Yi ) = α(γ (Yi )) ∈ A satisfy |ai |α ≤ 1.
This easily implies that a is power-bounded: if C = max{|a i |α : i < n}
then by induction we show that |an+m |α ≤C for all m ≥ 0:

|an+m |α =
�

�

�

�

�

−
n−1
∑

i=0

an−i a
i+m

�

�

�

�

�

α

≤C .

Finally, if a is powerbounded, then |a|nsup = |an |sup ≤ |an |α is bounded,
forcing |a|sup ≤ 1.

Theorem 4.2.3. Every K-algebra homomorphism A→ B between affinoid
K-algebras is continuous with respect to any choice of residue norms on the
source and target. In particular, all residue norms on an affinoid K-algebra
are equivalent.
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Proof. Fix a surjection α : K〈X1, . . .Xr 〉 → A corresponding to a residue
norm | · |α and let

ϕ : K〈X1, . . .Xr 〉→A→ B

be the composition. Since A has the quotient topology, it is enough
to show that ϕ is continuous. In other words, we may replace A with
K〈X1, . . .Xr 〉 endowed with the Gauss norm.

The elements bi = ϕ(Xi ) ∈ B are power-bounded by Proposi-
tion 4.2.1(e), since

|bi |sup ≤ |Xi |sup = 1.

By the universal property of K〈X1, . . .Xr 〉 among Banach K -algebras,
there exists a unique continuous K -algebra homomorphism

ϕ′ : K〈X1, . . .Xr 〉→ B such that ϕ′(Xi ) = bi .

It suffices to show that ϕ = ϕ′. Fix f ∈ K〈X1, . . .Xr 〉 and set g =
ϕ( f )− ϕ′( f ) ∈ B . For every maximal ideal n ⊆ B and every s ≥ 1,
the quotient B/ns is a finite dimensional K -algebra, and therefore the
composition

π ◦ϕ : K〈X1, . . .Xr 〉→ B→ B/ns

is continuous (since B/ns is finite-dimensional, all norms are equivalent).
Indeed, we may assume that π ◦ ϕ is surjective, and then π ◦ ϕ is contin-
uous with respect to the residue norm it induces on B/ns ). This forces
πϕ = πϕ′ by the universal property of K〈X1, . . .Xr 〉 applied this time to
B/ns .

Thus g maps to zero in B/ns for every n and s . Therefore for every n,
the image of g in An lies in

⋂

s n
s An, which is zero (by Krull’s intersec-

tion theorem). This implies that g = 0.

4.3 The canonical topology

Let A= K〈X1, . . . ,Xr 〉/( f1, . . . , fs ) be an affinoid K -algebra. Then MaxA is
identified with

{x ∈Dr (K) : fi (x) = 0}/Gal(K/K).

Endowing K with the metric topology, K r with the product topology, the
set { fi (x) = 0, |xi | ≤ 1} ⊆ K r with the induced topology, and finally the
above quotient by Galois action with the quotient topology, we obtain
a topology on MaxA called the canonical. A more intrinsic (evidently
independent of the presentation) definition is the following.

Definition 4.3.1. The canonical topology on MaxA is the topology gener-
ated by the subsets

X ( f ) = {x ∈MaxA : | f (x)| ≤ 1}, f ∈A.

(More coming soon.)



5
Sheaves, sites, and topoi

5.1 Motivation: reinventing the real
Largely stolen from Brian Conrad’s
lecture notes.Imagine being a geometer who does not believe in irrational numbers,

perhaps for the fear of drowning. You study the geometry of the “line”
Q and maybe the higher-dimensional spaces Qr . With the irrationals
hiding in your blind spot, the “unit interval” [0,1]Q = [0,1]∩Q appears
to you as both connected and compact, in the naive sense that it is not
the union of two disjoint intervals with rational endpoints, and that every
family of such intervals in Q which covers [0,1]Q admits a finite subcover.
Further, the functor assigning to each interval with rational endpoints
(a, b )Q = (a, b ) ∩Q the set of all continuous piecewise linear functions
(a, b )Q → Q satisfies the sheaf condition for finite coverings by intervals
with rational endpoints.

Naturally, these properties fail to hold for the usual metric topology on
Q. Since we want to make do with what we have and avoid “filling in the
holes,” we need a different way of formalizing our naive thoughts above.

Definition 5.1.1. A closed (resp. open) rational box is a subset of Qr of
the form

∏r
i=1[ai , bi ]Q (resp.

∏r
i=1(ai , bi )Q) with ai , bi ∈Q. Convention: (a, b )Q = (a, b )∩Q etc.

(a) An open subset U ⊆ Qr is an admissible open if for every closed
rational box K ⊆ U there exists a finite collection V1, . . . ,Vm of open
rational boxes contained in U such that K ⊆⋃m

i=1 Vi .

(b) A cover U =
⋃

α∈I Uα of an admissible open U by admissible opens
Uα is an admissible cover if for every closed rational box K ⊆ U there
exists a finite collection V1, . . . ,Vm of open rational boxes contained
in U such that K ⊆⋃m

i=1 Vi and each Vi is contained in some Uα.

Note that the intersection U ′′ = U ∩ U ′ of two admissible opens is
again admissible. Indeed, if K ⊆ U ∩ U ′, we can find V1, . . . ,Vm and
V ′1 , . . . ,V ′n as in the definition. Then V ′′i j =Vi ∩V j (1≤ i ≤ m, 1≤ j ≤ n)
are rational boxes, are contained in U ′′, and cover K .

Definition 5.1.2. A sheaf for the admissible topology on Qr is a functor1 1 Here we regard any poset C as a category
with morphisms

HomC (c , c ′) =
¨{∗} if c ≤ c ′

; otherwise.

F : {admissible opens in Qr }→ Sets

such that for every admissible cover U =
⋃

α∈I Uα the sequence

F (U )→∏

α∈I

F (Uα)⇒
∏

α,β∈I

F (Uα ∩Uβ) (5.1)
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is exact.2 2 Here exact is another name for an
equalizer: the left map is injective and its
image equals the set of elements whose
images by the two parallel arrows are
equal.

Recall some basic terminology: if U =
⋃

α∈I Uα is an open cover,
we say thatF satisfies the sheaf condition for {Uα}α∈I if (5.1) is exact. If
U =

⋃

β∈J Vβ is another cover, we say that {Vβ}β∈J refines {Uα}α∈I if
every Vβ is contained in some Uα; more precisely, if there exists a map
f : J → I such that Vβ ⊆Uf (β) for every β ∈ J .

Proposition 5.1.3. (a) Let G be a functor from the poset of closed rational
boxes in Qr to sets which satisfies the sheaf condition for every finite
covering K =

⋃

α∈I Kα. Then G extends uniquely to a sheaf for the
admissible topology on Qr . The consideration of values on closed

boxes is a bit artificial here. In algebraic
geometry and rigid geometry, our basic
opens (affine or affinoid opens) will be
quasi-compact, and there will be no need
to consider the values of a sheaf on closed
sets.

(b) IfF is a sheaf on Rr (for the standard topology), then the functor associat-
ing to a closed rational box K =

∏

[ai , bi ]Q the value

F (∏[ai , bi ]) := lim−→
∏

[ai ,bi ]⊆U⊆Rr

F (U )

satisfies the sheaf condition for every finite covering of a closed rational
box by closed rational boxes, and therefore by (a) it extends uniquely to a
sheaf for the admissible topology on Qr , denotedF .

(c) The associationF 7→F defines an equivalence of categories

{sheaves on Rr } ' {sheaves for the admissible topology on Qr }.
Proof. Omitted, but see Problems 2 and 3 on Problem Set 4.

In Appendix 5.A we will learn how to reconstruct certain topological
spaces from their category of sheaves. In particular, we shall obtain:

Corollary 5.1.4 (See Appendix 5.A). The space Rr can be recovered from
the category of sheaves for the admissible topology on Qr .

Example 5.1.5. (a) Every open subset U ⊆Q is admissible.

(b) However, the covering of Q by all open rational intervals (a, b )Q such
that
p

2 /∈ (a, b ) is not an admissible cover, since e.g. K = [0,1]Q
cannot be covered by finitely many such intervals.

(c) The sheaf “skyscraper at
p

2,” defined as

F (U ) =
(

Z if
p

2 ∈U

0 otherwise

defines a nonzero sheafF for the admissible topology on Q whose
stalks at all points in Q (defined in the obvious way) are zero.

(d) The following is an example of an inadmissible open in Q2 (due to
Zev Rosengarten):

U =Q2 ∩
�

(0,
p

2)+ {x ≥−|y|}
�

(see Figure 5.1).

In this case, the closed box K = [0,1]× [0,2] does not admit a finite
cover by open subsets contained in U .

K
(0,
p

2)

Figure 5.11: An inadmissible open subset
of Q2.



SHEAVES, S ITES, AND TOPOI 49

5.2 Sites

Definition 5.2.1 (Site). A site is a category C in which every object c ∈
obC is endowed with a collection Cov c of families of maps {cα→ c}α∈I ,
called covering families, satisfying the following axioms.

i. (ISOMORPHISM) If c ′ → c is an isomorphism then the singleton
{c ′→ c} is a covering family of c ,

ii. (PULLBACK) If {cα→ c}α∈I is a covering family of c and if c ′→ c is
a morphism, then the fiber products c ′α = cα×c c ′ exist and the family

{c ′α = cα×c c ′→ c ′}α∈I

is a covering family of c ′.

iii. (COMPOSITION) If {cα → c}α∈I is a covering family of c and for
every α ∈ I we have a covering family {cαβ→ cα}β∈Jα

of cα, then

{cαβ→ cα→ c}α∈I ,β∈Jα

is a covering family of c .

The basic example is of course the site OpX of opens in a topological
space X , where morphisms are inclusions U ′ ⊆ U of open subsets, and
where {Uα ⊆ U } is a covering family precisely when U =

⋃

Uα. Another
one is provided by our toy example above: the category of admissible
opens in Qr where covering families are given by admissible covers. 3 3 More examples of sites:

• The étale site of a scheme X : the
objects are étale morphisms U → X ,
maps are morphisms over X , and
covers {Uα → U } are families of
jointly surjective maps,

• Replacing étale with flat and locally
finitely presented one obtains the fppf
site.

• For a group G, the category of G-sets
where covers are jointly surjective
families of G-equivariant maps.

Note that axioms (i) and (ii) imply that an isomorphism c ′ → c in-
duces a bijection between covering families of c and of c ′. By abuse of
terminology, we shall use the notation C to refer to both the site and
the underlying category. A safer way would be to give a name such as
τ to the choice of Cov c for every c ∈ C satisfying the above axioms
(called a Grothendieck (pre)topology on the category C ) and define a site
as a category C with a Grothendieck topology τ, denoted (C ,τ). This is
sometimes useful, e.g. if one considers two sites with the same underlying
category. 4

4 The same happens in topology: one
uses a letter such as X to denote both a
topological space and the underlying set;
if confusion is possible, one writes (X ,T )
for the topological space.

Definition 5.2.2 (Sheaf). Let C be a site. A sheaf on C is a contravariant
functor

F : C op→ Sets

such that for every c ∈ obC and every covering family {cα → c}α∈I the
sequence

F (c)→∏

α∈I

F (cα)⇒
∏

α,β∈I

F (cα×c cβ) (5.2)

is exact (note that the fiber products cα×c cβ exist thanks to axiom ii).
We denote by ShC the category of sheaves on C , considered as a full

subcategory of the category of presheaves PShC = Fun(C op,Sets). We
call ShC the topos associated to C .

In general, a topos (plural: topoi) is a category which is equivalent to
ShC for some site C (with no extra structure!). Different sites can give
rise to equivalent topoi, and so a topos is in a way a superior notion; we



50 INTRODUCTION TO NON-ARCHIMEDEAN GEOMETRY

can regard a site as a particular presentation of the associated topos, just
as a metric on a topological space is a useful but non-canonical “presenta-
tion” of its topology.

So far, to define sheaves and topoi, we only needed a part of axiom
(ii), namely that suitable fiber products exist. To see the other axioms
in action, let us show that familiar features of sheaf theory: refinement,
(zeroth) Čech cohomology, and sheafification, work in a similar way in a
site C .

Definition 5.2.3 (Refinement). We say that a covering family {c ′
β
→ c}β∈J

refines a covering family {cα → c}α∈I of the same object c if there exists a
function ϕ : J → I and maps ϕβ : c ′

β
→ cϕ(β) fitting inside a commutative

triangle

c ′
β

ϕβ //

��

cϕ(β)

~~
c .

This is an analog of the usual notion in topology: a cover U =
⋃

U ′
β

refines U =
⋃

Uα if every Uβ is contained in some Uα. The relation
of refinement is clearly transitive. Further, axioms (ii) and (iii) imply
that every two covering families {cα → c}α∈I and {c ′

β
→ c}β∈J admit a

common refinement, namely [10, Tag 00W6]

{cα×c c ′β→ c}(α,β)∈I×J .

Given a presheafF : C op→ Sets and a covering family {cα→ c}α∈I let
us defineH 0(F ,{cα}) as the equalizer of

∏

α∈I

F (cα)⇒
∏

α,β∈I

F (cα×c cβ).

ThusF satisfies the sheaf condition for {cα} (meaning that (5.2) is exact)
precisely when the canonical mapF (c)→H 0(F ,{cα}) is a bijection.

[10, Tag 00W7]
Lemma 5.2.4. LetF be a presheaf on C and let {cα→ c}, {c ′

β
→ c} be two

covering families of an object c.

(a) Let ϕ : J → I and ϕβ : c ′
β
→ cϕ(β) be as in Definition 5.2.3. Then

(ϕ,{ϕβ}) induces a map

H 0(F ,{cα})→H 0(F ,{c ′β}).

(b) If ϕ′ : J → I , ϕ′
β

: c ′
β
→ cϕ′(β) is another such datum, then the two

induced mapsH 0(F ,{cα})→H 0(F ,{c ′
β
}) are equal.

This means that if {c ′
β
→ c} refines {cα → c}, we obtain a canoni-

cal mapH 0(F ,{cα}) → H 0(F ,{c ′
β
}). Thus if we consider Cov c as a

partially ordered set with respect to the relation of refinement (as we ob-
served, this poset is cofiltering: every two elements have a common upper
bound), we can define the zeroth Čech cohomology as the colimit

Ȟ 0(F , c) = lim−→{cα}∈Cov c

H 0(F ,{cα}).

Then c 7→ Ȟ 0(F , c) is another presheaf on C , denotedF+.

https://stacks.math.columbia.edu/tag/00W6
https://stacks.math.columbia.edu/tag/00W7
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[10, Tag 00WB] , [10, Tag 00WH]
Lemma 5.2.5 (Sheafification). For every presheafF on C , the presheaf
(F+)+ is a sheaf. The functorF 7→ F # := (F+)+ is a left adjoint to the
inclusion ShC ⊆ PShC , called the sheafification functor.

Further, many other notions of sheaf theory: cohomology, contin-
uous maps of sites f : C → C ′5, push-forward and pull-back functors 5 By convention, this is a functor

f −1 : C ′ →C in the opposite direction.
It is assumed to map covering families to
covering families and to preserve fiber
products.

These conditions ensure that the functor

(−) ◦ f −1 : PShC → PShC ′

maps sheaves to sheaves, inducing a
functor

f∗ : ShC → ShC ′.

f∗ : ShC → ShC ′ and f ∗ : ShC ′→ ShC , and so on, exist and behave as
one would expect.

Let us stop here the development of the general theory, referring the
curious reader to [12], [9], [1], or [10, Tag 00UZ] .

5.3 G-topologies

The admissible site of Qr defined in §5.1 is fairly concrete: its objects are
simply subsets of the set Qr . In other words, admissible opens and covers
define a G-topology in the sense of the following definition.

Definition 5.3.1 (G-topology). A G-topology on a set X is a site whose
underlying category is a full subcategory of the poset of subsets of X ,
which is stable under intersections and such that covering families are
jointly surjective.

In other words, it is the data of a set C of subsets of X , called admis-
sible opens, such that the intersection of two admissible subsets is again
admissible, and for each admissible open U ∈ C , a class of admissible
covers {Uα}α∈I where U =

⋃

α∈I Uα and Uα ∈ C , such that the following
axioms are satisfied

i. The cover {U } is an admissible cover for every U ∈C .

ii. If U ′ ⊆ U is an inclusion of admissible opens and if {Uα} is an
admissible cover of U , then {U ′α = Uα ∩U ′} is an admissible cover of
U ′.

iii. If {Uα}α∈I is an admissible cover of an admissible open U and if
for every α ∈ I , {Uαβ}β∈Jα

is an admissible cover of Uα, then
{Uαβ}α∈I ,β∈Jα

is an admissible cover of U .

A G-topological space is a set X endowed with a G-topology.

Example 5.3.2. Let X be a separated scheme, and take as admissible
opens the set of all affine open subsets U ⊆ X . Separatedness ensures
that C is stable under pairwise intersection. There are two variants of
admissible covers:

• (STRONG) A covering {Uα}α∈I of an affine open U by affine opens
Uα is admissible if U =

⋃

Uα.

• (WEAK) The same but with I finite.

Since every affine scheme is quasi-compact, both give rise to the same
category of sheaves, which is moreover equivalent to the category of
sheaves on the topological space X .

https://stacks.math.columbia.edu/tag/00WB
https://stacks.math.columbia.edu/tag/00WH
https://stacks.math.columbia.edu/tag/00UZ
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In a G-topological space, we say that some property holds locally if it
does so on the members of an admissible covering.

Our goal in the next chapter will be to put a G-topology on the space
of maximal ideals of an affinoid K -algebra, as well as a structure sheaf. We
will then glue such spaces to obtain general rigid-analytic spaces. Gluing
G-topologies is facilitated by the following properties:

Definition 5.3.3 (Completeness axioms). Let X be a G-topological space.

(0) We say that X satisfies axiom (G0) if ; and X are admissible opens.

(1) We say that X satisfies axiom (G1) if “admissibility of a subset is a
local condition”: given a subset V ⊆ U of an admissible open U , the
set V is an admissible open if and only if there exists an admissible
cover {Uα} of U such that Uα ∩V is an admissible open for all α.

(2) We say that X satisfies axiom (G2) if a covering of an admissible open
V by admissible opens {Vα} is admissible if it admits an admissible
covering of V as a refinement.

Remark 5.3.4. Consider the following condition (G′2) “admissibility of
a cover is a local condition”: given an admissible open V contained in an
admissible open U and a family {Vβ} of admissible open subsets of V ,
the family {Vβ} is an admissible cover of V if and only if there exists an
admissible cover {Uα} of U such that {Uα ∩Vβ} is an admissible cover of
Uα ∩V for every α. Then (G2) ⇒ (G′2), and if the G-topology satisfies
the additional property that every cover of the form V =

⋃

Vα of an
admissible open by admissible opens such that V = Vα for some α is
admissible (that is, “split” covers are admissible), then also (G′2)⇒ (G2).

If U is an admissible open of a G-topological space X , then the set
of all admissible opens V ⊆ X and the datum of all admissible covers
consisting of such subsets forms a G-topology on U , called the induced
G-topology.

[4, Proposition 5.1/11]
Proposition 5.3.5 (Gluing G-topologies). Let X be a set and let Uα ⊆ X
(α ∈ I ) be subsets of X such that X =

⋃

Uα. Suppose that

• each Uα is endowed with a G-topology satisfying axioms (G0), (G1), and
(G2), and

• Uα ∩Uβ is an admissible open in both Uα and Uβ for every α,β ∈ I , and

• the G-topologies on Uα and Uβ induce the same G-topology on Uα ∩Uβ.

Then there exists a unique G-topology on X satisfying (G0), (G1), and (G2)
for which the Uα are admissible opens, for which X =

⋃

Uα is an admissible
cover, and which induces the given topology on each Uα.

Proof. Condition (G1) imposes that V ⊆ X is admissible if and only
if V ∩ Uα is an admissible open of Uα for all α. Similarly, (G2) forces
declaring {Vβ} an admissible cover of V =

⋃

Vβ if {Uα ∩Vβ}β is an
admissible cover of Uα ∩V (for the G-topology on Uα) for every α. This
shows uniqueness, and we need to check that this defines a G-topology on
X with the desired properties. This is rather straightforward and we omit
the proof.
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5.A Sober topological spaces

For a topological space X , let Op(X ) be the poset of open subsets of
X , ordered by inclusion.6 Can we recover X from Op(X )? Clearly not 6 The poset Op(X ) is an example of a

locale: a poset in which the supremum
of every subset and the infimum of every
finite subset exists, and which satisfies the
distributive law

inf{x, sup{ai }i∈I }= sup{inf{x,ai }}i∈I .

Every locale forms a site where
{ai ≤ a}a∈A forms a covering family if
a = sup{ai }, and hence gives rise to a
topos. For the locale Op(X ), this is the
usual sheaf theory on X .

always, for example if X has the indiscrete topology (the only opens are
X and ;) then Op(X ) carries no information about the cardinality of X .
More generally, if X is not T0, i.e. there exist two points x 6= x ′ which
such that x ∈ U ⇐⇒ x ′ ∈ U for every open U ⊆ X , then Op(X ) and
Op(X /(x ∼ x ′)) are isomorphic.

Even axiom T0 is not sufficient for the recovery of X for Op(X ). For
example, if X = A1

k with the Zariski topology and X ′ = X \ {η} is the set
of all closed points of X (η is the generic point), then Op(X ) ' Op(X ′),
since a non-empty U ⊆X ′ is open if and only if U ∪{η} is open in X ′.

Recall that a closed subset Y ⊆ X of a topological space X is irreducible
if it is not the sum of two proper closed subsets. If Y = {y} for some point
y ∈ Y , we call y a generic point of Y .

Definition 5.A.1 (Sober space). A topological space X is sober if every
irreducible closed subset Y ⊆ X has a unique generic point. We denote by
Topsober ⊆ Top the full subcategory of sober spaces.

See [6, 0 2.1.(b)]
Proposition 5.A.2. The inclusion functor Topsober ⊆ Top admits a left
adjoint X 7→X sob, the soberification.

Proof sketch. Let X be a topological space and let X sob be the set of all
irreducible closed subsets of X ; we have a natural map τX : X → X sob

sending x to {x}. We endow X sob with the topology in which a sub-
set U ⊆ X sob open if there exists an open U ◦ ⊆ X such that U equals
the set of irreducible subsets which intersect U ◦. This topology makes
τX : X →X sob continuous. Moreover, the open subset U ◦ is unique if it
exists, so we have an order-preserving bijection U ↔ U ◦ between opens
in X and in X sob.

The space X sob is sober: if Z ⊆ X sob is an irreducible closed subset,
write its complement U = X sob \ Z as the set of all closed irreducible
Y ⊆ X which intersect some open U ◦ ⊆ X . Set W = X \U ◦; it is easy to
check that W is irreducible, and hence defines a point [W ] ∈ X sob. One
then checks that Z = {[W ]}, and that [W ] is the unique generic point of
Z . Details omitted.

If f : X → X ′ is continuous, and Y ⊆ X is closed and irreducible,
then f (Y ) ⊆ X ′ is irreducible, and so is its closure f (Y ). The map
f sob : X sob → (X ′)sob defined by Y 7→ f (Y ) is continous. Moreover,
the square

X
f //

τX

��

X ′

τX ′
��

X sob
f sob
// (X ′)sob

commutes. We have thus defined a functor X 7→ X sob : Top → Topsober

and a natural transformation τ which will serve as the unit of the adjunc-
tion.
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Finally, we need to check that every map X →X ′ with X ′ sober factors
uniquely through X sob. This is equivalent to saying that τX : X →X sob

is a homeomorphism of X is sober. The inverse maps [Y ] to the unique
generic point ηY of Y ; it is clearly an inverse bijection. It is also continu-
ous, since the preimage of {[Y ] : Y ∩U ◦ 6= ;} equals U ◦.

Since τX : X → X sob induces a bijection on open subsets, we have
Op(X ) ' Op(X sob) as posets. Conversely, the construction of the space
X sob only depends on the poset Op(X ). Indeed, the set of closed irre-
ducible subsets Y of X is in bijection Y ↔ X \ Y = U with the set of
open subsets U ∈Op(X ) which are not equal to the intersection U1 ∩U2

of two opens U1, U2 6= U . Since U1 ∩U2 is the largest element of the poset
Op(X ) which is smaller than both U1 and U2, the latter depends only on
the order on Op(X ). Summarizing:

Corollary 5.A.3. The soberification of a space X depends only on the poset
Op(X ), and the poset Op(X ) depends only on the soberification of X . For
two spaces X and Y , there exists an isomorphism of posets Op(X ) 'Op(Y )
if and only if X sob ' Y sob.

For a family {Uα} of open subsets of a space X , the union U =
⋃

Uα
is the smallest element of the poset Op(X ) which is larger than all Uα. It
follows that the topos Sh(X ) (the category of sheaves on X ) depends only
on the poset Op(X ). In particular, X and X sob have equivalent topoi.

It turns out that Op(X ) 7→ Sh(X ) does not lose any information,
namely:

See [6, 0 2.7(a)].
Proposition 5.A.4. Let X be a sober topological space. Then X can be
reconstructed from the topos Sh(X ).

Proof. Note that every topos T = ShC admits a final object e , the sheaf
whose value on every c ∈ obC is the singleton {∗}. If T = Sh(X ) for
a topological space X , then e = HomOp(X )(−,X ) is simply the sheaf
represented by X , the final object of the site Op(X ).

Ignoring potential set-theoretic difficulties, let us consider the set
Op(T ) of sub-objects of e , i.e. isomorphism classes of objects v ∈ obT
such that the unique morphism v → e is a monomorphism. We endow
Op(T ) with the order where we declare v ≤ v ′ if there exists a morphism
v→ v ′.

Suppose now that T = Sh(X ) for a topological space X . If U ⊆ X is an
open subset, then the sheaf hU = HomOp(X )(−, U ) is a sub-object of the
final object hX ; moreover, if V ⊆ U then hV ≤ hU , so we get a morphism
of posets

γ : Op(X )→Op(T ).

We claim that γ is an isomorphism of posets. Indeed, if v is a sub-object
of e , let U be the union of all opens V ⊆ X such that v(V ) 6= ;. Since
every v(V ) is a subset of {∗} = e(V ), the sheaf condition implies that
v(U ) = {∗}. By Yoneda’s lemma, this gives a map of sheaves hU → v.
This map is an isomorphism on stalks and hence is an isomorphism. This
gives the inverse to γ , and we omit checking all the remaining details.

Finally, X sob = X can be reconstructed from Op(X ) 'Op(Sh(X )) by
Corollary 5.A.3.
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We come back to our toy example at the beginning of the chapter:

Corollary 5.A.5. The space Rr can be reconstructed from the category
Shadm(Qr ) of sheaves for the admissible topology on Qr .

The same idea in rigid geometry recovers the adic spectrum SpaA of
an affinoid K -algebra A in the sense of Huber from the affinoid space
(SpA=MaxA, admissible topology), to be defined next. Thus a good un-
derstanding of the points of SpaA allows one to get rid of the G-topology
in favor of usual topology.
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