PURITY FOR NEWTON POLYGONS OF F-CRYSTALS
(AFTER DE JONG-OORT)
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1. STATEMENT OF THE RESULTS

Let S be a locally Noetherian scheme over Fp,. An F-crystal on S is a locally
free crystal & of ﬁg‘f/i%p—modules on the crystalline site (S/Zp)cris, endowed with a
homomorphism F': Fi& — &; it is nondegenerate if both the kernel and cokernel
of F are killed by a power of p.

If S = Speck for an algebraically closed field k, then an F-crystal on S is a
finite free W(k)-module E endowed with a Frobenius-semilinear endomorphism
F: E— E. If K is the fraction field of W (k), then the Dieudonné-Manin theorem
states that (F ® K, F) is characterized up to isomorphism by its Newton polygon
NP(FE), which is the graph of the piecewise linear continuous function A: [0,7] — R
(r=dim E ® K) with f(0) = 0 and slope A; on [i — 1,4], where \; < ... < A, are
the p-adic valuations of the eigenvalues of some matrix representing F'.

Thus if § = Speck — S is a geometric point, we get the associated Newton
polygon NP(&%), which depends only on the image s of 5 in S. We therefore get a
stratification by Newton polygons

S=||Ss Ss={secSINP(&) =5}
B
Each Sz is a constructible subset of S. Grothendieck’s theorem [4, §2.3] states that
the Newton polygon only goes up by specialization: if s € Sg, then NP(&) > S.
Thus each Sg is in fact locally closed in S.
The goal of this talk is to sketch the proof of the following theorem of de Jong
and Oort:

Theorem 1 ([3, Theorem 4.1]). The stratification by Newton polygons jumps only
in codimension one. More precisely, if n is the generic point of a component of
Sp\ Sa, then the local ring ﬁgﬁ . has dimension one.

This theorem is deduced (using an earlier result of de Jong on extending ho-
momorphisms between F-crystals [2]) from the following inconspicuously looking
result.

Theorem 2 ([3, Theorem 3.2]). Let S = Spec A be the formal germ of a normal
surface singularity over an algebraically closed field k of characteristic p, i.e. A is
a normal two-dimensional complete local k-algebra. Let S — S be a resolution of

singularities, let U = S\ 0 where 0 € S is the closed point, and let j: U — S be the
inclusion. Then the induced map

j*: Hl(gv Qp) — Hl(Ua Qp)
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is an isomorphism.
As we shall explain first, this theorem is not so difficult (and known much earlier)
if we replace Q, with Q (¢ # p) as coefficients.
2. TWO NOTIONS OF PURITY AND THE EASY VERSION OF THEOREM 2

The term purity is used in algebraic geometry in (at least) two different ways.

2.1. Zariski—Nagata purity. Zariski-Nagata purity is the statement that the
locus over which a given map fails to be étale has (pure) codimension one. To state
it formally, consider a cartesian square of the form

V—Y
f Ui g lf
where
e X is a regular scheme,
e j is an open immersion whose complement has codimension > 1,
e Y is normal,
o f is finite,

o fy is étale.

Theorem (Zariski-Nagata purity, [SGA2, Exp. X, Thm. 3.4]). Under these as-
sumptions [ is étale.

In other words, the restriction map
j*: {finite étale schemes over X} — {finite étale schemes over U}
is an equivalence, or j.: m(U) — m1(X) is an isomorphism.
The proof proceeds in a few steps:

(1) Reduce to the case X local of dimension 2.

(2) Show that f is flat. By miracle flatness [Matsumura 23.1], it is enough to
show that Y is Cohen—Macaulay. But, since Y is normal, it is Ss.

(3) In the case when f is finite and flat, the locus where f fails to be étale can
be described as the discriminant locus

V (det (Tr(zy): Oy Qe Oy — Ox))
which is clearly a divisor in X.
2.2. Cohomological purity. There are several equivalent formulations, one of
them concerns computing the cohomology of the complement of a snc divisor. Let
X be again a regular scheme, let D C X be an snc divisor, let U = X \ D, and
let j: U — X be the inclusion. We are interested in the étale cohomology of
U with coefficients A = Z/¢NZ (¢ a prime invertible on X). Since H*(U,A) =
H*(X, Rj.\), we can write the spectral sequence
B = HY(X,R%j,A) = H"(UA).
The purity theorem explicates the sheaves R’j,A appearing on the Eo-page.
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(It is easy to guess what the answer should be looking at the situation over C:
if P€ D and D = V(z;...2,) in local coordinates at P, then the stalk of R"j,Z
at P is the cohomology of

4~ (small open ball around ) = {(z1,...,2,) € C"||x;| <&, 21 ... -2, # 0}

which has the homotopy type of an r-dimensional torus.)
Let us try to compute R’j, A using the Kummer sequence

1=-AQ) = 05 — 05— 1, A(l) := pyn
Applying Rj., we obtain a connecting map
§: j 05 @ A — R, A1)
The étale subsheaf 0% C j. O}; is n-divisible, so the source j. O5QA = (j. 0F)/O%®
A is the sheaf of divisors supported on D with coefficients in A, which can be iden-

tified with n.A where n: D = | | D; — D is the normalization map. Therefore §
induces a map

6: A — le*A(l) or &:nuA(—1) — RYj.A.

Theorem (Cohomological purity, Grothendieck). The maps induced by & by exte-
rior product

5: AP(A(=1)) — RPjA

are isomorphisms for b > 0.

The same statement with coefficients Z; or Q, follows formally.

2.3. We note here that both notions of purity are philosophically present in the
paper by de Jong and Oort: Theorem 1 makes one think of Zariski-Nagata purity
(even though the scheme is no longer assumed to be regular), while the f-adic
version of Theorem 2 is closely related to cohomological purity.

Theorem. Let S = Spec A be the formal germ of a normal surface singularity
over an algebraically closed field k. Let S — S be a resolution of singularities, let
U= S5\0 where 0 € S is the closed point, and let j: U — S be the inclusion. Let ¢
be a prime invertible in k. Then the induced map

5% HY(S,Qu) — H'(U, Qu)
is an isomorphism.

Let (S,0) be a germ of a normal surface singularity, S — S a resolution of
singularities, U = S\ {0}, j: U — S the inclusion. Trying to compute the first
cohomology of U using the Leray spectral sequence for j, we obtain an exact se-
quence

0— H'(S,Q)) —» H'(U,Qq) — H°(S, R',Q0) & H*(S,Qu).

It is now enough to show that the map 0 is injective. Let us explicate its source
and target using cohomological purity:
e We have R'j,.Qs = 1.Qu(—1) = @ Qe g, (—1) where E = 771(0) = U E;
is the exceptional divisor and 7: E= || E; — E is the normalization map.
Thus the source H°(S, R'j, Q) ~ Qg(—l)’r"(é).
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e For the target, we note that H2(S, Q) = H2(E, Q) by proper base change.
Moreover, H2(E, Qq) ~ H2(E, Q;) ~ @ H2(E;, Q) = Q¢(—1)™ ) which
looks the same as the source.

e In these bases, the map 0 is not the identity, but can be easily seen to be
the intersection matrix (E; - E;) of the exceptional divisor E.

This matrix is well-known to be negative-definite, and hence 0 is injective as desired.
Lemma (Mumford). The matriz M = (E; - E;) is negative-definite.

Proof. Let f € A be anonzero element of the maximal ideal, and let D = V' (f) C S.
We can write D = D'+ > m,;E; where D’ is a nonzero effective divisor which does
not contain a component of £ and where all m; > 0. Note that

2 2
(0% (67 Q4
(B =30 | Smre ) | () = tmamom ) (5 =22 )
, , m; L m;  m;
) J 1<)
Now 3>, (m;E; - m;E;) = —(m;E; - D), which is < 0 for all i and < 0 for at least
one i, and (m;E; - m;E;) > 0 for ¢ # j, so all terms above are non-positive. Thus
if (3 a;m;E;)? =0, then a; = 0 for some i by looking at the first sum, but then
aj = 0 for all j such that Ej; intersects £; by looking at the second sum. But E is
connected (by Zariski’s main theorem), so «; must all be zero. (]

3. PROOF OF THEOREM 2

3.1. Preliminaries. The restriction map H'(S,Q,) — H(U,Q,) is injective
(e.g. by looking at the Leray spectral sequence); we need to show surjectivity. To
this end, let o be a nonzero element of H'(U, Q,), which we view as a continous
homomorphism a: 71 (U) — Q,. Normalizing, we can assume that the image of «
is Zy; in this case, one can view « as a system of (connected) étale Z/p™-coverings

U, — U. We need to prove that a extends to S.

(VRS

FIGURE 1. The situation in Theorem 2
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By Zariski-Nagata purity, it is enough to show that a extends to generic points
of the E;. Since Q, is torsion free, one shows easily that one can pass to a finite
normal dominant 7" — S.

3.2. Globalize S. Using algebraization (Artin) and alterations (de Jong), one can
reduce to the following situation:

o m: X — Speck][t]] is a projective semistable curve (i.e. X is regular, 7 is
flat, and X is a reduced snc divisor),

e F C Xy is a union of connected components,

e p: X — X' is proper and birational, an isomorphism outside F, and maps
E to a point P € X',

e Oxip~Aand S~ p!(SpecA).

LT
T Spe- &L

FI1GURE 2. The situation in Theorem 2 after globalizing in §3.2

3.3. Globalize o (I). We wish to extend « from U (which can be viewed as a
tiny neighborhood of F in X) to X \ E. First, we extend a|§\E to all of X\ E.

Let D be the closure of X\ E and let DN E = {z1,...,z,}. Let 0; = ﬁAD’xi,
K; = Frac(0;). Then A — 0; is local, so « induces «;: Galg, — Z,.

Lemma. There exists an ap: m1(Xo \ E) = Z, inducing all o;.
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Proof. We can assume that D\ FE is affine. First, we show the statement with Z/p
coefficients using Artin—Schreier theory. The short exact sequence

0— 0p = juOp\p — @Ki/@ —0

together with the Artin—Schreier sequences induce a diagram with exact rows and
columns

HY(D\ E, 0) DK,/ 0; HY(D, 6p) —0

H(D \Z,lﬁ) ® K;; - Hl(D,Fﬁ_;) — =0

HY(D\ E,Z/p) — @D H'(Ki,Z/p) * 0
0 0 0

where * = 0, being the cokernel of F' — 1 on a finite dimensional k-vector space.
This shows surjectivity of the bottom map as desired. Finally, the Z,-case can be
deduced formally for the above. O

3.4. Globalize a (II). If we replace X with X,, = X ® k[[t]]/(t™1), then

e X,, is the union of X,, \ E and XWE (the completion of X,, along E),
glued along their intersection, which is (a thickening of) | | Spec K,

e « defines a system of flat Z/p™-covers of )A(m, g (the completion of X,,, along
E),

e ap defines a system of finite étale Z/p"-covers of Xy \ F, and hence of
X \ E (by invariance of the étale site under nilpotent thickenings),

e ap and « agree on Spec K; by definition.

This suggest that we can glue a with ap to obtain a global system of flat Z/p™-

covers of X,,,. The gluing is done by means of the following result:

Theorem ([1, §4.6]). Let A be a noetherian ring, I C A an ideal, A the I-adic
completion, X = Spec A, Z = SpecA/I, U =X\Z,Y = Spec A, U’ = U\Z =
U xx Y. Then the natural functor

COh(X) — COh(U) XCOh(U’) CJOh(Yv>7

F = (Flu, Zly, Flvlv = Flylv)
s an equivalence of categories.

Passing to the limit and algebraizing (thanks to Grothendieck’s existence theo-
rem), we obtain a system of flat Z/p™-covers Y,, — X which are unramified away
from F, i.e. a cohomology class 8 € H'(X \ E,Z,). We need to show that 3
extends to X.
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3.5. Use Neron models to view a geometrically. Let J be the Neron model
of J, = Jac(X,)) over k[[t]]. Since X is semistable, J is a semiabelian variety.
Choose a k[[t]]-rational point of X which sends Speck to a smooth point of Xy \ E.
This induces a map X,, — J, and hence (by the universal property of a Neron
model) a map X — J.

The class 8, € H'(X,, Z,,) corresponds to a homomorphism ¢: J,[p™] = Q,/Z,
in the following way: the Z/p"-covering J, ,, — J,, can be obtained as the pushout

n

P

0 —— Jy[p"] Iy I 0
el |
0 Z/p" In.y JIn 0.

Let J,, be the Neron model of J. It is also semiabelian, as J, , is isogenous to
Jp- We claim that to show that § extends to X, it is enough to show that the maps
Jn — J are étale. Indeed, if J° is the connected Neron model of J, then J, — J
is a Z/p™-torsor over J°. But there exists an N such that [N]: J — J lands in J°.
This means that N - § extends to J. Now X*™ maps to J, so N - 5 extends to X*™
and hence to X, by Zariski-Nagata purity.

3.6. Prove J, — J is étale. The following result of de Jong is an equicharacter-
istic version of an earlier result of Tate [6].

Theorem 3 ([2]). Let R be a discrete valuation ring of characteristic p > 0 with
fraction field K. Then the restriction functor

{p-divisible groups on R} — {p-divisible groups on K}
is fully faithful. If moreover R has a p-basis [5], then the restriction functor
{F-crystals on R} — {F-crystals on K}
is fully faithful as well.

For now, we only need the p-divisible group part. The p-divisible groups J,,[p>],
resp. Jp,n[p™>°] admit filtrations

0— Gf, — Jyp>*] = E, — 0, resp. 0 — wa = Junp™] = Epy — 0,

where G (resp. G, ) is the generic fiber of the finite part of J[p>] (resp. J,[p™])
and where E, and E, , extend to étale p-divisible groups over k[[t]].

By Theorem 3, the restriction of ¢: J,[p™] = Q,/Z, to G{; extends to a map
G/ — Q,/Z,. Suppose for simplicity that G/ [p] — Z/pZ is surjective (otherwise
we replace ¢ by ¢/p etc.). One then observes that G, — G has kernel Z/p"Z and
hence is étale.

4. PROOF OF THEOREM 1

4.1. Preliminaries. It suffices to show that if & is an F-crystal on Spec A where
A is a local noetherian F-algebra of dimension > 1, and if & has constant Newton
polygon on Spec A \ {m}, then & has constant Newton polygon everywhere.

Standard reductions allow one to assume A is complete, normal, and 2-dimensional,
with algebraically closed residue field (as in Theorem 2).
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4.2. Slope filtration. Let K be the fraction field of A. One extend the arguments
of Katz in [4] to show that & ® K admits a slope filtration

by sub-F-isocrystals. If r; is the rank of &;, then the determinant A™&; is an F-
crystal of rank one with integral slope n;. The Newton polygon of & ® K has the
points (r;,n;) as vertices.

By Grothendieck’s semicontinuity theorem for Newton polygons, NP(& ® k) >
NP(& ® K), thus it is enough to show that the points (r;,n;) lie on NP(& Q k).
It is therefore enough to extend the rank one F-crystal A"&; to S and extend the
map A"ié&; - A& @ K to S, or at least to a generic point of a component of E.

4.3. Extending the F-crystal A"i&;. Let £ = (A"&;)(—4). This is an F-crystal
on K of rank one and slope zero (unit root). Consider the étale sheaf #¥=1, this is
a locally constant Z,-sheaf of rank one. As proved by Katz, for any F,-scheme this
association gives an equivalence between unit root F-crystals and Zj-local systems.

Thus Z"=! extends to a representation m(U) — GL1(Qp) = Z, X Z X F X
(Z/2 if p = 2). By passing to a finite ramified covering of S, we can assume that
the image of p is Z,,. We are now in the situation when we can apply Theorem 2:

we see that p extends to S. By the aforementioned equivalence of categories, the
rank one F-crystal A"i&; extends to an F-crystal on S.

4.4. Extending the inclusion A&, — & ® K. Let R be the completion of the
local ring of the generic point 7 of a component of E. This is a discrete valuation
ring admitting a p-basis [5]. We can now apply the second part of Theorem 3 to
extend the inclusion A" &; — & @ K to R, thus showing that the Newton polygon
of & at n contains the point (r;,n;). This ends the proof.

5. FURTHER DEVELOPMENTS

Vasiu [7] obtained a much more refined result: the strata of the Newton stratifi-
cation are always affine (over any base scheme), using completely different methods.

Yang [8] proved that in the situation consider by de Jong and Oort, the set where
the Newton polygons have a common breakpoint has complement of codimension
> 1 in the closure of the stratum.
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