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(AFTER DE JONG–OORT)
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1. Statement of the results

Let S be a locally Noetherian scheme over Fp. An F -crystal on S is a locally
free crystal E of Ocris

S/Zp
-modules on the crystalline site (S/Zp)cris, endowed with a

homomorphism F : F ∗SE → E ; it is nondegenerate if both the kernel and cokernel
of F are killed by a power of p.

If S = Spec k for an algebraically closed field k, then an F -crystal on S is a
finite free W (k)-module E endowed with a Frobenius-semilinear endomorphism
F : E → E. If K is the fraction field of W (k), then the Dieudonné–Manin theorem
states that (E ⊗K,F ) is characterized up to isomorphism by its Newton polygon
NP(E), which is the graph of the piecewise linear continuous function λ : [0, r]→ R
(r = dimE ⊗K) with f(0) = 0 and slope λi on [i− 1, i], where λ1 ≤ . . . ≤ λr are
the p-adic valuations of the eigenvalues of some matrix representing F .

Thus if s = Spec k → S is a geometric point, we get the associated Newton
polygon NP(Es), which depends only on the image s of s in S. We therefore get a
stratification by Newton polygons

S =
⊔
β

Sβ , Sβ = {s ∈ S |NP(Es) = β}.

Each Sβ is a constructible subset of S. Grothendieck’s theorem [4, §2.3] states that

the Newton polygon only goes up by specialization: if s ∈ Sβ , then NP(Es) ≥ β.
Thus each Sβ is in fact locally closed in S.

The goal of this talk is to sketch the proof of the following theorem of de Jong
and Oort:

Theorem 1 ([3, Theorem 4.1]). The stratification by Newton polygons jumps only
in codimension one. More precisely, if η is the generic point of a component of
Sβ \ Sβ, then the local ring OSβ ,η has dimension one.

This theorem is deduced (using an earlier result of de Jong on extending ho-
momorphisms between F -crystals [2]) from the following inconspicuously looking
result.

Theorem 2 ([3, Theorem 3.2]). Let S = SpecA be the formal germ of a normal
surface singularity over an algebraically closed field k of characteristic p, i.e. A is

a normal two-dimensional complete local k-algebra. Let S̃ → S be a resolution of

singularities, let U = S \ 0 where 0 ∈ S is the closed point, and let j : U → S̃ be the
inclusion. Then the induced map

j∗ : H1(S̃,Qp) −→ H1(U,Qp)
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is an isomorphism.

As we shall explain first, this theorem is not so difficult (and known much earlier)
if we replace Qp with Q` (` 6= p) as coefficients.

2. Two notions of purity and the easy version of Theorem 2

The term purity is used in algebraic geometry in (at least) two different ways.

2.1. Zariski–Nagata purity. Zariski–Nagata purity is the statement that the
locus over which a given map fails to be étale has (pure) codimension one. To state
it formally, consider a cartesian square of the form

V //

fU
��

�

Y

f

��
U

j
// X

where

• X is a regular scheme,
• j is an open immersion whose complement has codimension > 1,
• Y is normal,
• f is finite,
• fU is étale.

Theorem (Zariski–Nagata purity, [SGA2, Exp. X, Thm. 3.4]). Under these as-
sumptions f is étale.

In other words, the restriction map

j∗ : {finite étale schemes over X} → {finite étale schemes over U}

is an equivalence, or j∗ : π1(U)→ π1(X) is an isomorphism.
The proof proceeds in a few steps:

(1) Reduce to the case X local of dimension 2.
(2) Show that f is flat. By miracle flatness [Matsumura 23.1], it is enough to

show that Y is Cohen–Macaulay. But, since Y is normal, it is S2.
(3) In the case when f is finite and flat, the locus where f fails to be étale can

be described as the discriminant locus

V (det (Tr(xy) : OY ⊗OX OY → OX))

which is clearly a divisor in X.

2.2. Cohomological purity. There are several equivalent formulations, one of
them concerns computing the cohomology of the complement of a snc divisor. Let
X be again a regular scheme, let D ⊆ X be an snc divisor, let U = X \ D, and
let j : U → X be the inclusion. We are interested in the étale cohomology of
U with coefficients Λ = Z/`NZ (` a prime invertible on X). Since H∗(U,Λ) =
H∗(X,Rj∗Λ), we can write the spectral sequence

Eab2 = Ha(X,Rbj∗Λ) ⇒ Ha+b(U,Λ).

The purity theorem explicates the sheaves Rbj∗Λ appearing on the E2-page.
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(It is easy to guess what the answer should be looking at the situation over C:
if P ∈ D and D = V (x1 . . . xr) in local coordinates at P , then the stalk of Rbj∗Z
at P is the cohomology of

j−1(small open ball around x) = {(x1, . . . , xn) ∈ Cn | |xi| < ε, x1 · . . . · xr 6= 0}

which has the homotopy type of an r-dimensional torus.)
Let us try to compute Rbj∗Λ using the Kummer sequence

1→ Λ(1)→ O∗U → O∗U → 1, Λ(1) := µ`N

Applying Rj∗, we obtain a connecting map

δ : j∗O
∗
U ⊗ Λ→ R1j∗Λ(1)

The étale subsheaf O∗X ⊆ j∗O∗U is n-divisible, so the source j∗O∗U⊗Λ = (j∗O∗U )/O∗X⊗
Λ is the sheaf of divisors supported on D with coefficients in Λ, which can be iden-

tified with η∗Λ where η : D̃ =
⊔
Di → D is the normalization map. Therefore δ

induces a map

δ : η∗Λ→ R1j∗Λ(1) or δ : η∗Λ(−1)→ R1j∗Λ.

Theorem (Cohomological purity, Grothendieck). The maps induced by δ by exte-
rior product

δ : ∧b(η∗Λ(−1))→ Rbj∗Λ

are isomorphisms for b ≥ 0.

The same statement with coefficients Z` or Q` follows formally.

2.3. We note here that both notions of purity are philosophically present in the
paper by de Jong and Oort: Theorem 1 makes one think of Zariski–Nagata purity
(even though the scheme is no longer assumed to be regular), while the `-adic
version of Theorem 2 is closely related to cohomological purity.

Theorem. Let S = SpecA be the formal germ of a normal surface singularity

over an algebraically closed field k. Let S̃ → S be a resolution of singularities, let

U = S \ 0 where 0 ∈ S is the closed point, and let j : U → S̃ be the inclusion. Let `
be a prime invertible in k. Then the induced map

j∗ : H1(S̃,Q`) −→ H1(U,Q`)

is an isomorphism.

Let (S, 0) be a germ of a normal surface singularity, S̃ → S a resolution of

singularities, U = S \ {0}, j : U → S̃ the inclusion. Trying to compute the first
cohomology of U using the Leray spectral sequence for j, we obtain an exact se-
quence

0→ H1(S̃,Q`)→ H1(U,Q`)→ H0(S̃, R1j∗Q`)
∂−→ H2(S̃,Q`).

It is now enough to show that the map ∂ is injective. Let us explicate its source
and target using cohomological purity:

• We have R1j∗Q` = η∗Q`(−1) =
⊕

Q`,Ei(−1) where E = π−1(0) =
⋃
Ei

is the exceptional divisor and η : Ẽ =
⊔
Ei → E is the normalization map.

Thus the source H0(S̃, R1j∗Q`) ' Q`(−1)π0(Ẽ).
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• For the target, we note that H2(S̃,Q`) = H2(E,Q`) by proper base change.

Moreover, H2(E,Q`) ' H2(Ẽ,Q`) '
⊕
H2(Ei,Q`) = Q`(−1)π0(Ẽ), which

looks the same as the source.
• In these bases, the map ∂ is not the identity, but can be easily seen to be

the intersection matrix (Ei · Ej) of the exceptional divisor E.

This matrix is well-known to be negative-definite, and hence ∂ is injective as desired.

Lemma (Mumford). The matrix M = (Ei · Ej) is negative-definite.

Proof. Let f ∈ A be a nonzero element of the maximal ideal, and let D = V (f) ⊆ S̃.
We can write D = D′+

∑
miEi where D′ is a nonzero effective divisor which does

not contain a component of E and where all mi > 0. Note that

(
∑

αiEi)
2 =

∑
i

∑
j

(miEi ·mjEj)

( αi
mi

)2

−
∑
i<j

(miEi ·mjEj)

(
αi
mi
− αj
mj

)2

.

Now
∑
j(miEi ·mjEj) = −(miEi ·D′), which is ≤ 0 for all i and < 0 for at least

one i, and (miEi ·mjEj) ≥ 0 for i 6= j, so all terms above are non-positive. Thus
if (
∑
αimiEi)

2 = 0, then αi = 0 for some i by looking at the first sum, but then
αj = 0 for all j such that Ej intersects Ei by looking at the second sum. But E is
connected (by Zariski’s main theorem), so αi must all be zero. �

3. Proof of Theorem 2

3.1. Preliminaries. The restriction map H1(S̃,Qp) → H1(U,Qp) is injective
(e.g. by looking at the Leray spectral sequence); we need to show surjectivity. To
this end, let α be a nonzero element of H1(U,Qp), which we view as a continous
homomorphism α : π1(U)→ Qp. Normalizing, we can assume that the image of α
is Zp; in this case, one can view α as a system of (connected) étale Z/pn-coverings

Un → U . We need to prove that α extends to S̃.

Figure 1. The situation in Theorem 2
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By Zariski–Nagata purity, it is enough to show that α extends to generic points
of the Ei. Since Qp is torsion free, one shows easily that one can pass to a finite
normal dominant T → S.

3.2. Globalize S. Using algebraization (Artin) and alterations (de Jong), one can
reduce to the following situation:

• π : X → Spec k[[t]] is a projective semistable curve (i.e. X is regular, π is
flat, and X0 is a reduced snc divisor),
• E ⊆ X0 is a union of connected components,
• ρ : X → X ′ is proper and birational, an isomorphism outside E, and maps
E to a point P ∈ X ′,
• ÔX′,P ' A and S̃ ' ρ−1(SpecA).

Figure 2. The situation in Theorem 2 after globalizing in §3.2

3.3. Globalize α (I). We wish to extend α from U (which can be viewed as a
tiny neighborhood of E in X) to X \ E. First, we extend α|S̃\E to all of X0 \ E.

Let D be the closure of X0 \ E and let D ∩ E = {x1, . . . , xr}. Let Oi = ÔD,xi ,
Ki = Frac(Oi). Then A→ Oi is local, so α induces αi : GalKi → Zp.

Lemma. There exists an αD : π1(X0 \ E)→ Zp inducing all αi.
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Proof. We can assume that D \E is affine. First, we show the statement with Z/p
coefficients using Artin–Schreier theory. The short exact sequence

0→ OD → j∗OD\E →
⊕

Ki/Oi → 0

together with the Artin–Schreier sequences induce a diagram with exact rows and
columns

H0(D \ E,O)

F−1
��

//⊕Ki/Oi

F−1
��

// H1(D,OD)

F−1
��

// 0

H0(D \ E,O)

��

//⊕Ki/Oi

��

// H1(D,OD)

��

// 0

H1(D \ E,Z/p)

��

//⊕H1(Ki,Z/p)

��

// ∗

��

// 0

0 0 0

where ∗ = 0, being the cokernel of F − 1 on a finite dimensional k-vector space.
This shows surjectivity of the bottom map as desired. Finally, the Zp-case can be
deduced formally for the above. �

3.4. Globalize α (II). If we replace X with Xm = X ⊗ k[[t]]/(tm+1), then

• Xm is the union of Xm \ E and X̂m,E (the completion of Xm along E),
glued along their intersection, which is (a thickening of)

⊔
SpecKi,

• α defines a system of flat Z/pn-covers of X̂m,E (the completion of Xm along
E),
• αD defines a system of finite étale Z/pn-covers of X0 \ E, and hence of
Xm \ E (by invariance of the étale site under nilpotent thickenings),
• αD and α agree on SpecKi by definition.

This suggest that we can glue α with αD to obtain a global system of flat Z/pn-
covers of Xm. The gluing is done by means of the following result:

Theorem ([1, §4.6]). Let A be a noetherian ring, I ⊆ A an ideal, Â the I-adic

completion, X = SpecA, Z = SpecA/I, U = X \ Z, Y = Spec Â, U ′ = U \ Z =
U ×X Y . Then the natural functor

Coh(X)→ Coh(U)×Coh(U ′) Coh(Y ),

F 7→ (F |U ,F |Y ,F |U |U ′ ' F |Y |U ′)

is an equivalence of categories.

Passing to the limit and algebraizing (thanks to Grothendieck’s existence theo-
rem), we obtain a system of flat Z/pn-covers Yn → X which are unramified away
from E, i.e. a cohomology class β ∈ H1(X \ E,Zp). We need to show that β
extends to X.
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3.5. Use Neron models to view α geometrically. Let J be the Neron model
of Jη = Jac(Xη) over k[[t]]. Since X is semistable, J is a semiabelian variety.
Choose a k[[t]]-rational point of X which sends Spec k to a smooth point of X0 \E.
This induces a map Xη → Jη and hence (by the universal property of a Neron
model) a map Xsm → J .

The class βη ∈ H1(Xη,Zp) corresponds to a homomorphism ϕ : Jη[p∞]→ Qp/Zp
in the following way: the Z/pn-covering Jn,η → Jη can be obtained as the pushout

0 // Jη[pn] //

ϕ[pn]

��

Jη
pn //

��

Jη // 0

0 // Z/pn // Jn,η // Jη // 0.

Let Jn be the Neron model of J . It is also semiabelian, as Jn,η is isogenous to
Jη. We claim that to show that β extends to X, it is enough to show that the maps
Jn → J are étale. Indeed, if J◦ is the connected Neron model of J , then Jn → J
is a Z/pn-torsor over J◦. But there exists an N such that [N ] : J → J lands in J◦.
This means that N · β extends to J . Now Xsm maps to J , so N · β extends to Xsm

and hence to X, by Zariski–Nagata purity.

3.6. Prove Jn → J is étale. The following result of de Jong is an equicharacter-
istic version of an earlier result of Tate [6].

Theorem 3 ([2]). Let R be a discrete valuation ring of characteristic p > 0 with
fraction field K. Then the restriction functor

{p-divisible groups on R} → {p-divisible groups on K}

is fully faithful. If moreover R has a p-basis [5], then the restriction functor

{F -crystals on R} → {F -crystals on K}

is fully faithful as well.

For now, we only need the p-divisible group part. The p-divisible groups Jη[p∞],
resp. Jn,η[p∞] admit filtrations

0→ Gfη → Jη[p∞]→ Eη → 0, resp. 0→ Gfn,η → Jn,η[p∞]→ En,η → 0,

where Gfη (resp. Gfn,η) is the generic fiber of the finite part of J [p∞] (resp. Jn[p∞])
and where Eη and En,η extend to étale p-divisible groups over k[[t]].

By Theorem 3, the restriction of ϕ : Jη[p∞] → Qp/Zp to Gfη extends to a map

Gf → Qp/Zp. Suppose for simplicity that Gf [p] → Z/pZ is surjective (otherwise
we replace ϕ by ϕ/p etc.). One then observes that Gfn → Gf has kernel Z/pnZ and
hence is étale.

4. Proof of Theorem 1

4.1. Preliminaries. It suffices to show that if E is an F -crystal on SpecA where
A is a local noetherian Fp-algebra of dimension > 1, and if E has constant Newton
polygon on SpecA \ {m}, then E has constant Newton polygon everywhere.

Standard reductions allow one to assumeA is complete, normal, and 2-dimensional,
with algebraically closed residue field (as in Theorem 2).
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4.2. Slope filtration. Let K be the fraction field of A. One extend the arguments
of Katz in [4] to show that E ⊗K admits a slope filtration

0 ⊆ E1 ⊆ E2 ⊆ . . . ⊆ E ⊗K
by sub-F -isocrystals. If ri is the rank of Ei, then the determinant ∧riEi is an F -
crystal of rank one with integral slope ni. The Newton polygon of E ⊗K has the
points (ri, ni) as vertices.

By Grothendieck’s semicontinuity theorem for Newton polygons, NP (E ⊗ k) ≥
NP (E ⊗K), thus it is enough to show that the points (ri, ni) lie on NP (E ⊗ k).

It is therefore enough to extend the rank one F -crystal ∧riEi to S̃ and extend the

map ∧riEi → ∧riE ⊗K to S̃, or at least to a generic point of a component of E.

4.3. Extending the F -crystal ∧riEi. Let L = (∧riEi)(−i). This is an F -crystal
on K of rank one and slope zero (unit root). Consider the étale sheaf L F=1, this is
a locally constant Zp-sheaf of rank one. As proved by Katz, for any Fp-scheme this
association gives an equivalence between unit root F -crystals and Zp-local systems.

Thus L F=1 extends to a representation π1(U) → GL1(Qp) ∼= Zp × Z × F×p ×
(Z/2 if p = 2). By passing to a finite ramified covering of S, we can assume that
the image of ρ is Zp. We are now in the situation when we can apply Theorem 2:

we see that ρ extends to S̃. By the aforementioned equivalence of categories, the

rank one F -crystal ∧riEi extends to an F -crystal on S̃.

4.4. Extending the inclusion ∧riEi → E ⊗K. Let R be the completion of the
local ring of the generic point η of a component of E. This is a discrete valuation
ring admitting a p-basis [5]. We can now apply the second part of Theorem 3 to
extend the inclusion ∧riEi → E ⊗K to R, thus showing that the Newton polygon
of E at η contains the point (ri, ni). This ends the proof.

5. Further developments

Vasiu [7] obtained a much more refined result: the strata of the Newton stratifi-
cation are always affine (over any base scheme), using completely different methods.

Yang [8] proved that in the situation consider by de Jong and Oort, the set where
the Newton polygons have a common breakpoint has complement of codimension
> 1 in the closure of the stratum.

References
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300, 2006.



PURITY FOR NEWTON POLYGONS OF F -CRYSTALS (AFTER DE JONG–OORT) 9

[8] Yanhong Yang. An improvement of de Jong-Oort’s purity theorem. Münster J. Math., 4:129–

140, 2011.

Institute of Mathematics, Polish Academy of Sciences
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