PURITY FOR NEWTON POLYGONS OF F-CRYSTALS (AFTER DE JONG-OORT)

PIOTR ACHINGER

1. Statement of the results

Let S be a locally Noetherian scheme over \mathbf{F}_p . An *F*-crystal on S is a locally free crystal \mathscr{E} of $\mathscr{O}_{S/\mathbf{Z}_p}^{cris}$ -modules on the crystalline site $(S/\mathbf{Z}_p)_{cris}$, endowed with a homomorphism $F: F_S^* \mathscr{E} \to \mathscr{E}$; it is *nondegenerate* if both the kernel and cokernel of F are killed by a power of p.

If $S = \operatorname{Spec} k$ for an algebraically closed field k, then an F-crystal on S is a finite free W(k)-module E endowed with a Frobenius-semilinear endomorphism $F: E \to E$. If K is the fraction field of W(k), then the Dieudonné–Manin theorem states that $(E \otimes K, F)$ is characterized up to isomorphism by its Newton polygon $\operatorname{NP}(E)$, which is the graph of the piecewise linear continuous function $\lambda: [0, r] \to \mathbb{R}$ $(r = \dim E \otimes K)$ with f(0) = 0 and slope λ_i on [i - 1, i], where $\lambda_1 \leq \ldots \leq \lambda_r$ are the p-adic valuations of the eigenvalues of some matrix representing F.

Thus if $\overline{s} = \operatorname{Spec} k \to S$ is a geometric point, we get the associated Newton polygon $\operatorname{NP}(\mathscr{E}_{\overline{s}})$, which depends only on the image s of \overline{s} in S. We therefore get a stratification by Newton polygons

$$S = \bigsqcup_{\beta} S_{\beta}, \quad S_{\beta} = \{ s \in S \, | \, \operatorname{NP}(\mathscr{E}_{\overline{s}}) = \beta \}.$$

Each S_{β} is a constructible subset of S. Grothendieck's theorem [4, §2.3] states that the Newton polygon only goes up by specialization: if $s \in \overline{S}_{\beta}$, then $NP(\mathscr{E}_{\overline{s}}) \geq \beta$. Thus each S_{β} is in fact locally closed in S.

The goal of this talk is to sketch the proof of the following theorem of de Jong and Oort:

Theorem 1 ([3, Theorem 4.1]). The stratification by Newton polygons jumps only in codimension one. More precisely, if η is the generic point of a component of $\overline{S}_{\beta} \setminus S_{\beta}$, then the local ring $\mathcal{O}_{\overline{S}_{\beta},n}$ has dimension one.

This theorem is deduced (using an earlier result of de Jong on extending homomorphisms between F-crystals [2]) from the following inconspicuously looking result.

Theorem 2 ([3, Theorem 3.2]). Let $S = \operatorname{Spec} A$ be the formal germ of a normal surface singularity over an algebraically closed field k of characteristic p, i.e. A is a normal two-dimensional complete local k-algebra. Let $\widetilde{S} \to S$ be a resolution of singularities, let $U = S \setminus 0$ where $0 \in S$ is the closed point, and let $j: U \to \widetilde{S}$ be the inclusion. Then the induced map

$$j^* \colon H^1(\widetilde{S}, \mathbf{Q}_p) \longrightarrow H^1(U, \mathbf{Q}_p)$$

Date: December 12, 2018.

is an isomorphism.

As we shall explain first, this theorem is not so difficult (and known much earlier) if we replace \mathbf{Q}_p with \mathbf{Q}_ℓ ($\ell \neq p$) as coefficients.

2. Two notions of purity and the easy version of Theorem 2

The term *purity* is used in algebraic geometry in (at least) two different ways.

2.1. **Zariski–Nagata purity.** Zariski–Nagata purity is the statement that the locus over which a given map fails to be étale has (pure) codimension one. To state it formally, consider a cartesian square of the form

$$V \longrightarrow Y$$

$$f_U \downarrow \Box \downarrow f$$

$$U \longrightarrow X$$

where

- X is a regular scheme,
- j is an open immersion whose complement has codimension > 1,
- Y is normal,
- f is finite,
- f_U is étale.

Theorem (Zariski–Nagata purity, [SGA2, Exp. X, Thm. 3.4]). Under these assumptions f is étale.

In other words, the restriction map

 j^* : {finite étale schemes over X} \rightarrow {finite étale schemes over U}

is an equivalence, or $j_* \colon \pi_1(U) \to \pi_1(X)$ is an isomorphism.

The proof proceeds in a few steps:

- (1) Reduce to the case X local of dimension 2.
- (2) Show that f is flat. By miracle flatness [Matsumura 23.1], it is enough to show that Y is Cohen–Macaulay. But, since Y is normal, it is S_2 .
- (3) In the case when f is finite and flat, the locus where f fails to be étale can be described as the discriminant locus

 $V\left(\det\left(\operatorname{Tr}(xy)\colon \mathscr{O}_Y\otimes_{\mathscr{O}_X}\mathscr{O}_Y\to \mathscr{O}_X\right)\right)$

which is clearly a divisor in X.

2.2. Cohomological purity. There are several equivalent formulations, one of them concerns computing the cohomology of the complement of a snc divisor. Let X be again a regular scheme, let $D \subseteq X$ be an snc divisor, let $U = X \setminus D$, and let $j: U \to X$ be the inclusion. We are interested in the étale cohomology of U with coefficients $\Lambda = \mathbf{Z}/\ell^N \mathbf{Z}$ (ℓ a prime invertible on X). Since $H^*(U, \Lambda) =$ $H^*(X, R_{j*}\Lambda)$, we can write the spectral sequence

$$E_2^{ab} = H^a(X, R^b j_*\Lambda) \quad \Rightarrow \quad H^{a+b}(U, \Lambda).$$

The purity theorem explicates the sheaves $R^b j_* \Lambda$ appearing on the E_2 -page.

 $\mathbf{2}$

3

(It is easy to guess what the answer should be looking at the situation over C: if $P \in D$ and $D = V(x_1 \dots x_r)$ in local coordinates at P, then the stalk of $R^b j_* \mathbb{Z}$ at P is the cohomology of

 j^{-1} (small open ball around x) = { $(x_1, \ldots, x_n) \in \mathbf{C}^n | |x_i| < \varepsilon, x_1 \cdot \ldots \cdot x_r \neq 0$ }

which has the homotopy type of an r-dimensional torus.)

Let us try to compute $R^b j_* \Lambda$ using the Kummer sequence

$$1 \to \Lambda(1) \to \mathscr{O}_U^* \to \mathscr{O}_U^* \to 1, \quad \Lambda(1) := \mu_{\ell^N}$$

Applying Rj_* , we obtain a connecting map

$$\delta: j_* \mathscr{O}_U^* \otimes \Lambda \to R^1 j_* \Lambda(1)$$

The étale subsheaf $\mathscr{O}_X^* \subseteq j_* \mathscr{O}_U^*$ is *n*-divisible, so the source $j_* \mathscr{O}_U^* \otimes \Lambda = (j_* \mathscr{O}_U^*) / \mathscr{O}_X^* \otimes \Lambda$ is the sheaf of divisors supported on D with coefficients in Λ , which can be identified with $\eta_* \Lambda$ where $\eta \colon \widetilde{D} = \bigsqcup D_i \to D$ is the normalization map. Therefore δ induces a map

$$\overline{\delta}: \eta_*\Lambda \to R^1 j_*\Lambda(1) \quad \text{or} \quad \overline{\delta}: \eta_*\Lambda(-1) \to R^1 j_*\Lambda.$$

Theorem (Cohomological purity, Grothendieck). The maps induced by $\overline{\delta}$ by exterior product

$$\overline{\delta} \colon \wedge^b(\eta_*\Lambda(-1)) \to R^b j_*\Lambda$$

are isomorphisms for $b \ge 0$.

The same statement with coefficients \mathbf{Z}_{ℓ} or \mathbf{Q}_{ℓ} follows formally.

2.3. We note here that both notions of purity are philosophically present in the paper by de Jong and Oort: Theorem 1 makes one think of Zariski–Nagata purity (even though the scheme is no longer assumed to be regular), while the ℓ -adic version of Theorem 2 is closely related to cohomological purity.

Theorem. Let $S = \operatorname{Spec} A$ be the formal germ of a normal surface singularity over an algebraically closed field k. Let $\widetilde{S} \to S$ be a resolution of singularities, let $U = S \setminus 0$ where $0 \in S$ is the closed point, and let $j: U \to \widetilde{S}$ be the inclusion. Let ℓ be a prime invertible in k. Then the induced map

$$j^* \colon H^1(S, \mathbf{Q}_\ell) \longrightarrow H^1(U, \mathbf{Q}_\ell)$$

is an isomorphism.

Let (S, 0) be a germ of a normal surface singularity, $\tilde{S} \to S$ a resolution of singularities, $U = S \setminus \{0\}$, $j: U \to \tilde{S}$ the inclusion. Trying to compute the first cohomology of U using the Leray spectral sequence for j, we obtain an exact sequence

$$0 \to H^1(\widetilde{S}, \mathbf{Q}_\ell) \to H^1(U, \mathbf{Q}_\ell) \to H^0(\widetilde{S}, R^1 j_* \mathbf{Q}_\ell) \xrightarrow{\partial} H^2(\widetilde{S}, \mathbf{Q}_\ell).$$

It is now enough to show that the map ∂ is injective. Let us explicate its source and target using cohomological purity:

• We have $R^1 j_* \mathbf{Q}_{\ell} = \eta_* \mathbf{Q}_{\ell}(-1) = \bigoplus \mathbf{Q}_{\ell, E_i}(-1)$ where $E = \pi^{-1}(0) = \bigcup E_i$ is the exceptional divisor and $\eta: \widetilde{E} = \bigsqcup E_i \to E$ is the normalization map. Thus the source $H^0(\widetilde{S}, R^1 j_* \mathbf{Q}_{\ell}) \simeq \mathbf{Q}_{\ell}(-1)^{\pi_0(\widetilde{E})}$.

PIOTR ACHINGER

- For the target, we note that $H^2(\widetilde{S}, \mathbf{Q}_{\ell}) = H^2(E, \mathbf{Q}_{\ell})$ by proper base change. Moreover, $H^2(E, \mathbf{Q}_{\ell}) \simeq H^2(\widetilde{E}, \mathbf{Q}_{\ell}) \simeq \bigoplus H^2(E_i, \mathbf{Q}_{\ell}) = \mathbf{Q}_{\ell}(-1)^{\pi_0(\widetilde{E})}$, which looks the same as the source.
- In these bases, the map ∂ is not the identity, but can be easily seen to be the intersection matrix $(E_i \cdot E_j)$ of the exceptional divisor E.

This matrix is well-known to be negative-definite, and hence ∂ is injective as desired.

Lemma (Mumford). The matrix $M = (E_i \cdot E_j)$ is negative-definite.

Proof. Let $f \in A$ be a nonzero element of the maximal ideal, and let $D = V(f) \subseteq S$. We can write $D = D' + \sum m_i E_i$ where D' is a nonzero effective divisor which does not contain a component of E and where all $m_i > 0$. Note that

$$\left(\sum \alpha_i E_i\right)^2 = \sum_i \left(\sum_j (m_i E_i \cdot m_j E_j)\right) \left(\frac{\alpha_i}{m_i}\right)^2 - \sum_{i < j} (m_i E_i \cdot m_j E_j) \left(\frac{\alpha_i}{m_i} - \frac{\alpha_j}{m_j}\right)^2$$

Now $\sum_{j} (m_i E_i \cdot m_j E_j) = -(m_i E_i \cdot D')$, which is ≤ 0 for all i and < 0 for at least one i, and $(m_i E_i \cdot m_j E_j) \geq 0$ for $i \neq j$, so all terms above are non-positive. Thus if $(\sum \alpha_i m_i E_i)^2 = 0$, then $\alpha_i = 0$ for some i by looking at the first sum, but then $\alpha_j = 0$ for all j such that E_j intersects E_i by looking at the second sum. But E is connected (by Zariski's main theorem), so α_i must all be zero.

3. Proof of Theorem 2

3.1. Preliminaries. The restriction map $H^1(\widetilde{S}, \mathbf{Q}_p) \to H^1(U, \mathbf{Q}_p)$ is injective (e.g. by looking at the Leray spectral sequence); we need to show surjectivity. To this end, let α be a nonzero element of $H^1(U, \mathbf{Q}_p)$, which we view as a continous homomorphism $\alpha \colon \pi_1(U) \to \mathbf{Q}_p$. Normalizing, we can assume that the image of α is \mathbf{Z}_p ; in this case, one can view α as a system of (connected) étale \mathbf{Z}/p^n -coverings $U_n \to U$. We need to prove that α extends to \widetilde{S} .

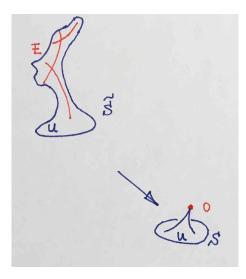


FIGURE 1. The situation in Theorem 2

4

By Zariski–Nagata purity, it is enough to show that α extends to generic points of the E_i . Since \mathbf{Q}_p is torsion free, one shows easily that one can pass to a finite normal dominant $T \to S$.

3.2. Globalize S. Using algebraization (Artin) and alterations (de Jong), one can reduce to the following situation:

- $\pi: X \to \operatorname{Spec} k[[t]]$ is a projective semistable curve (i.e. X is regular, π is flat, and X_0 is a reduced snc divisor),
- $E \subseteq X_0$ is a union of connected components,
- $\rho: X \to X'$ is proper and birational, an isomorphism outside E, and maps E to a point $P \in X'$,
- $\hat{\mathcal{O}}_{X',P} \simeq A$ and $\widetilde{S} \simeq \rho^{-1}(\operatorname{Spec} A)$.

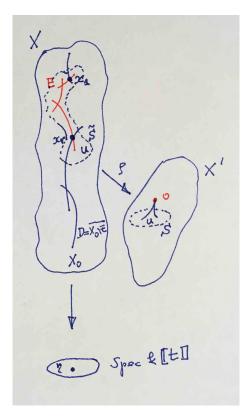


FIGURE 2. The situation in Theorem 2 after globalizing in $\S3.2$

3.3. Globalize α (I). We wish to extend α from U (which can be viewed as a tiny neighborhood of E in X) to $X \setminus E$. First, we extend $\alpha|_{\widetilde{S} \setminus E}$ to all of $X_0 \setminus E$.

Let D be the closure of $X_0 \setminus E$ and let $D \cap E = \{x_1, \ldots, x_r\}$. Let $\mathscr{O}_i = \widehat{\mathscr{O}}_{D,x_i}$, $K_i = \operatorname{Frac}(\mathscr{O}_i)$. Then $A \to \mathscr{O}_i$ is local, so α induces $\alpha_i \colon \operatorname{Gal}_{K_i} \to \mathbf{Z}_p$.

Lemma. There exists an $\alpha_D \colon \pi_1(X_0 \setminus E) \to \mathbf{Z}_p$ inducing all α_i .

Proof. We can assume that $D \setminus E$ is affine. First, we show the statement with \mathbf{Z}/p coefficients using Artin–Schreier theory. The short exact sequence

$$0 \to \mathscr{O}_D \to j_*\mathscr{O}_{D \setminus E} \to \bigoplus K_i/\mathscr{O}_i \to 0$$

together with the Artin–Schreier sequences induce a diagram with exact rows and columns

where * = 0, being the cokernel of F - 1 on a finite dimensional k-vector space. This shows surjectivity of the bottom map as desired. Finally, the \mathbf{Z}_p -case can be deduced formally for the above.

3.4. Globalize α (II). If we replace X with $X_m = X \otimes k[[t]]/(t^{m+1})$, then

- X_m is the union of $X_m \setminus E$ and $\hat{X}_{m,E}$ (the completion of X_m along E), glued along their intersection, which is (a thickening of) \bigsqcup Spec K_i ,
- α defines a system of flat \mathbb{Z}/p^n -covers of $\hat{X}_{m,E}$ (the completion of X_m along E),
- α_D defines a system of finite étale \mathbb{Z}/p^n -covers of $X_0 \setminus E$, and hence of $X_m \setminus E$ (by invariance of the étale site under nilpotent thickenings),
- α_D and α agree on Spec K_i by definition.

This suggest that we can glue α with α_D to obtain a global system of flat \mathbb{Z}/p^n covers of X_m . The gluing is done by means of the following result:

Theorem ([1, §4.6]). Let A be a noetherian ring, $I \subseteq A$ an ideal, \hat{A} the I-adic completion, $X = \operatorname{Spec} A$, $Z = \operatorname{Spec} A/I$, $U = X \setminus Z$, $Y = \operatorname{Spec} \hat{A}$, $U' = U \setminus Z = U \times_X Y$. Then the natural functor

$$\operatorname{Coh}(X) \to \operatorname{Coh}(U) \times_{\operatorname{Coh}(U')} \operatorname{Coh}(Y),$$
$$\mathscr{F} \mapsto (\mathscr{F}|_U, \mathscr{F}|_Y, \mathscr{F}|_U|_{U'} \simeq \mathscr{F}|_Y|_{U'})$$

is an equivalence of categories.

Passing to the limit and algebraizing (thanks to Grothendieck's existence theorem), we obtain a system of flat \mathbf{Z}/p^n -covers $Y_n \to X$ which are unramified away from E, i.e. a cohomology class $\beta \in H^1(X \setminus E, \mathbf{Z}_p)$. We need to show that β extends to X.

7

3.5. Use Neron models to view α geometrically. Let J be the Neron model of $J_{\eta} = \operatorname{Jac}(X_{\eta})$ over k[[t]]. Since X is semistable, J is a semiabelian variety. Choose a k[[t]]-rational point of X which sends Spec k to a smooth point of $X_0 \setminus E$. This induces a map $X_{\eta} \to J_{\eta}$ and hence (by the universal property of a Neron model) a map $X^{\mathrm{sm}} \to J$.

The class $\beta_{\eta} \in H^1(X_{\eta}, \mathbb{Z}_p)$ corresponds to a homomorphism $\varphi \colon J_{\eta}[p^{\infty}] \to \mathbb{Q}_p/\mathbb{Z}_p$ in the following way: the \mathbb{Z}/p^n -covering $J_{n,\eta} \to J_{\eta}$ can be obtained as the pushout

$$\begin{array}{cccc} 0 \longrightarrow J_{\eta}[p^{n}] \longrightarrow J_{\eta} \stackrel{p^{n}}{\longrightarrow} J_{\eta} \longrightarrow 0 \\ & & & & \\ \varphi[p^{n}] & & & & \\ 0 \longrightarrow \mathbf{Z}/p^{n} \longrightarrow J_{n,\eta} \longrightarrow J_{\eta} \longrightarrow 0. \end{array}$$

Let J_n be the Neron model of J. It is also semiabelian, as $J_{n,\eta}$ is isogenous to J_{η} . We claim that to show that β extends to X, it is enough to show that the maps $J_n \to J$ are étale. Indeed, if J° is the connected Neron model of J, then $J_n \to J$ is a \mathbb{Z}/p^n -torsor over J° . But there exists an N such that $[N]: J \to J$ lands in J° . This means that $N \cdot \beta$ extends to J. Now X^{sm} maps to J, so $N \cdot \beta$ extends to X^{sm} and hence to X, by Zariski–Nagata purity.

3.6. Prove $J_n \to J$ is étale. The following result of de Jong is an equicharacteristic version of an earlier result of Tate [6].

Theorem 3 ([2]). Let R be a discrete valuation ring of characteristic p > 0 with fraction field K. Then the restriction functor

 $\{p\text{-}divisible groups on R\} \rightarrow \{p\text{-}divisible groups on K\}$

is fully faithful. If moreover R has a p-basis [5], then the restriction functor

 $\{F\text{-}crystals \ on \ R\} \rightarrow \{F\text{-}crystals \ on \ K\}$

is fully faithful as well.

For now, we only need the *p*-divisible group part. The *p*-divisible groups $J_{\eta}[p^{\infty}]$, resp. $J_{n,\eta}[p^{\infty}]$ admit filtrations

$$0 \to G_{\eta}^f \to J_{\eta}[p^{\infty}] \to E_{\eta} \to 0, \quad \text{resp. } 0 \to G_{n,\eta}^f \to J_{n,\eta}[p^{\infty}] \to E_{n,\eta} \to 0,$$

where G_{η}^{f} (resp. $G_{n,\eta}^{f}$) is the generic fiber of the finite part of $J[p^{\infty}]$ (resp. $J_{n}[p^{\infty}]$) and where E_{η} and $E_{n,\eta}$ extend to étale *p*-divisible groups over k[[t]].

By Theorem 3, the restriction of $\varphi: J_{\eta}[p^{\infty}] \to \mathbf{Q}_p/\mathbf{Z}_p$ to G_{η}^f extends to a map $G^f \to \mathbf{Q}_p/\mathbf{Z}_p$. Suppose for simplicity that $G^f[p] \to \mathbf{Z}/p\mathbf{Z}$ is surjective (otherwise we replace φ by φ/p etc.). One then observes that $G_n^f \to G^f$ has kernel $\mathbf{Z}/p^n\mathbf{Z}$ and hence is étale.

4. Proof of Theorem 1

4.1. Preliminaries. It suffices to show that if \mathscr{E} is an *F*-crystal on Spec *A* where *A* is a local noetherian \mathbf{F}_p -algebra of dimension > 1, and if \mathscr{E} has constant Newton polygon on Spec $A \setminus \{m\}$, then \mathscr{E} has constant Newton polygon everywhere.

Standard reductions allow one to assume A is complete, normal, and 2-dimensional, with algebraically closed residue field (as in Theorem 2).

PIOTR ACHINGER

4.2. Slope filtration. Let *K* be the fraction field of *A*. One extend the arguments of Katz in [4] to show that $\mathscr{E} \otimes K$ admits a slope filtration

$$0 \subseteq \mathscr{E}_1 \subseteq \mathscr{E}_2 \subseteq \ldots \subseteq \mathscr{E} \otimes K$$

by sub-*F*-isocrystals. If r_i is the rank of \mathscr{E}_i , then the determinant $\wedge^{r_i} \mathscr{E}_i$ is an *F*-crystal of rank one with integral slope n_i . The Newton polygon of $\mathscr{E} \otimes K$ has the points (r_i, n_i) as vertices.

By Grothendieck's semicontinuity theorem for Newton polygons, $NP(\mathscr{E} \otimes k) \geq NP(\mathscr{E} \otimes K)$, thus it is enough to show that the points (r_i, n_i) lie on $NP(\mathscr{E} \otimes k)$. It is therefore enough to extend the rank one *F*-crystal $\wedge^{r_i}\mathscr{E}_i$ to \widetilde{S} and extend the map $\wedge^{r_i}\mathscr{E}_i \to \wedge^{r_i}\mathscr{E} \otimes K$ to \widetilde{S} , or at least to a generic point of a component of *E*.

4.3. Extending the *F*-crystal $\wedge^{r_i} \mathscr{E}_i$. Let $\mathscr{L} = (\wedge^{r_i} \mathscr{E}_i)(-i)$. This is an *F*-crystal on *K* of rank one and slope zero (unit root). Consider the étale sheaf $\mathscr{L}^{F=1}$, this is a locally constant \mathbf{Z}_p -sheaf of rank one. As proved by Katz, for any \mathbf{F}_p -scheme this association gives an equivalence between unit root *F*-crystals and \mathbf{Z}_p -local systems.

association gives an equivalence between unit root F-crystals and \mathbf{Z}_p -local systems. Thus $\mathscr{L}^{F=1}$ extends to a representation $\pi_1(U) \to GL_1(\mathbf{Q}_p) \cong \mathbf{Z}_p \times \mathbf{Z} \times \mathbf{F}_p^{\times} \times (\mathbf{Z}/2 \text{ if } p = 2)$. By passing to a finite ramified covering of S, we can assume that the image of ρ is \mathbf{Z}_p . We are now in the situation when we can apply Theorem 2: we see that ρ extends to \widetilde{S} . By the aforementioned equivalence of categories, the rank one F-crystal $\wedge^{r_i} \mathscr{E}_i$ extends to an F-crystal on \widetilde{S} .

4.4. Extending the inclusion $\wedge^{r_i} \mathscr{E}_i \to \mathscr{E} \otimes K$. Let R be the completion of the local ring of the generic point η of a component of E. This is a discrete valuation ring admitting a p-basis [5]. We can now apply the second part of Theorem 3 to extend the inclusion $\wedge^{r_i} \mathscr{E}_i \to \mathscr{E} \otimes K$ to R, thus showing that the Newton polygon of \mathscr{E} at η contains the point (r_i, n_i) . This ends the proof.

5. FURTHER DEVELOPMENTS

Vasiu [7] obtained a much more refined result: the strata of the Newton stratification are always affine (over any base scheme), using completely different methods.

Yang [8] proved that in the situation consider by de Jong and Oort, the set where the Newton polygons have a common breakpoint has complement of codimension > 1 in the closure of the stratum.

References

- A. J. de Jong. Crystalline Dieudonné module theory via formal and rigid geometry. Inst. Hautes Études Sci. Publ. Math., (82):5–96 (1996), 1995.
- [2] A. J. de Jong. Homomorphisms of Barsotti-Tate groups and crystals in positive characteristic. Invent. Math., 134(2):301–333, 1998.
- [3] A. J. de Jong and F. Oort. Purity of the stratification by Newton polygons. J. Amer. Math. Soc., 13(1):209-241, 2000.
- [4] Nicholas M. Katz. Slope filtration of F-crystals. In Journées de Géométrie Algébrique de Rennes (Rennes, 1978), Vol. I, volume 63 of Astérisque, pages 113–163. Soc. Math. France, Paris, 1979.
- [5] Tetsuzo Kimura and Hiroshi Niitsuma. Regular local ring of characteristic p and p-basis. J. Math. Soc. Japan, 32(2):363–371, 1980.
- [6] J. T. Tate. p-divisible groups. In Proc. Conf. Local Fields (Driebergen, 1966), pages 158–183. Springer, Berlin, 1967.
- [7] Adrian Vasiu. Crystalline boundedness principle. Ann. Sci. École Norm. Sup. (4), 39(2):245– 300, 2006.

[8] Yanhong Yang. An improvement of de Jong-Oort's purity theorem. *Münster J. Math.*, 4:129–140, 2011.

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES UL. ŚNIADECKICH 8, 00-656 WARSAW, POLAND *Email address*: pachinger@impan.pl