Problem Set 4

due May 28, 2025

Problem 1. Compute $\pi_1^{\text{et}}(X)$ for the following schemes:

- 1. A nodal cubic in $\mathbb{P}^2_{\mathbb{C}}$.
- 2. The "triangle" $X = \{x_0 x_1 x_2 = 0\} \subseteq \mathbb{P}^2_{\mathbb{C}}$.
- 3. The punctured plane $X = \mathbb{A}^2_{\mathbb{C}} \setminus \{(0,0)\}.$

Problem 2. Let (\mathcal{C}, F) and (\mathcal{C}', F') be two pointed Galois categories and let $G: \mathcal{C} \to \mathcal{C}'$ be an exact functor such that $F = F' \circ G$. Prove that the following are equivalent:

- (a) The induced homomorphism of profinite groups $\pi_1(\mathcal{C}', F') \to \pi_1(\mathcal{C}, F)$ is injective.
- (b) For every object X of \mathcal{C} there exists a diagram

$$X \longleftrightarrow Y \longrightarrow G(Z)$$

where $Y \to X$ is an epimorphism and $Y \to G(Z)$ is a monomorphism.

Problem 3. Let $f: Y \to X$ be a dominant map of normal varieties. Show that the image of $\pi_1(Y) \to \pi_1(X)$ is an open subgroup. Give an example showing that the normality assumption is necessary.

Problem 4. Let *E* be an elliptic curve over an algebraically closed field *k*. Compute $\pi_1(E)$ (the answer depends on the characteristic of *k* and on the Hasse invariant of *E*).

Problem 5. Let $k = \overline{\mathbb{F}}_p$ and let $U \subseteq \mathbb{A}_k^1$ be an open subset. Prove that there exists a finite étale morphism $U \to \mathbb{A}_k^1$.

Hint: Play with adding *p*-th powers.