Problem Set 3

due April 17, 2025

Problem 1. Let *X* be a smooth projective connected curve over \mathbb{C} and let $U \subseteq X$ be a non-empty open subset. Let $f: V \to U$ be a finite étale covering, with *V* connected, and let *Y* be the unique smooth projective curve containing *V* as a dense open subset. Find a relation between the degree *d* of *f*, the genus *g* of *X*, the genus *g'* of *Y*, the cardinality *n* of $X \setminus U$, and the cardinality *n'* of $Y \setminus V$.

Problem 2. A ring *R* is **perfect** if $\mathbb{F}_p \subseteq R$ and the Frobenius map $F : R \to R$ (defined by $F(x) = x^p$) is an isomorphism. *Example:* The perfection of the polynomial ring $\mathbb{F}_p[T^{1/p^{\infty}}] = \bigcup_{n \ge 0} \mathbb{F}_p[T^{1/p^n}]$.

- 1. Show that a perfect domain is noetherian if and only if it is a field.
- 2. Show that for every perfect \mathbb{F}_p -algebra R we have $\Omega^1_{R/\mathbb{F}_p} = 0$.
- 3. Find an example of a map of rings $A \rightarrow B$ which is formally étale but not flat.
- Find an example of a map of rings A → B which is formally unramified and flat, but not formally étale.

Problem 3. Let \mathcal{C} be a Galois category with fiber functor $F : \mathcal{C} \to \text{sets}$, and let \mathcal{C}' be a full subcategory of \mathcal{C} . Show that \mathcal{C}' is a Galois category with fiber functor $F|_{\mathcal{C}'}$ if and only if the following conditions are satisfied:

- (a) if $X' \to X$ is an epimorphism and X' is isomorphic to an object of \mathcal{C}' , then so is X,
- (b) an object of C is isomorphic to an object of C' if and only if all of its connected components are,
- (c) the product of two objects in C' is isomorphic to an object of C'.

Problem 4. Let $\{A_{\lambda}\}_{\lambda \in I}$ be an inductive system of rings indexed by a filtering poset *I* with smallest element 0, and let $A = \varinjlim_{\lambda} A_{\lambda}$ be its direct limit. Let $A_0 \to B_0$ be a finitely presented homomorphism, and for every $\lambda \in I$ define $B_{\lambda} = B_0 \otimes_{A_0} A_{\lambda}$. Thus $\{B_{\lambda}\}_{\lambda \in I}$ forms an inductive system with direct limit $B = B_0 \otimes_{A_0} A$. Suppose that $A \to B$ is étale. Show that $A_{\lambda} \to B_{\lambda}$ is étale for some $\lambda \in I$.

Hint: Use Riemann-Hurwitz.

Hint: You can assume that C is the category of finite Γ -sets for a profinite group Γ , with *F* the forgetful functor.

Hint: First show that if $A \to B$ is standard étale, then $A_{\lambda} \to B_{\lambda}$ is standard étale for large enough λ .