Problem Set 2

due March 25, 2025

For $n, m \ge 1$ we define the **Baumslag–Solitar group** BS(n, m) by the following presentation

$$BS(n,m) = \langle a,t \, | \, ta^n t^{-1} = a^m \rangle.$$

Problem 1. Show that for every homomorphism ϕ : BS(2,3) \rightarrow *G* into a finite group *G*, we have

$$\phi([a,tat^{-1}]) = 1.$$

We will show later (or not) that $[a, tat^{-1}] \neq 1$ (can you prove it?). Thus the group BS(2,3) is not residually finite, and hence (by Malcev's theorem) does not admit a faithful linear representation.

Problem 2. Consider the group $BS(1,2) = \langle a,t | tat^{-1} = a^2 \rangle$. Identify it with the group of affine linear transformations f(x) = Ax + B with $A \in 2^{\mathbb{Z}}$ and $B \in \mathbb{Z}[1/2]$. Conclude that the subgroups generated by *a* and *t* are infinite cyclic and intersect trivially.

For Problem 3, you will need the following theorem (which does not follow from "general nonsense").

Theorem. Let $H \to G_i$ (i = 1, 2) be injective group homomorphisms. Then the induced maps into their amalgamated product (pushout in the category of groups)

$$G_i \longrightarrow G_1 \star_H G_2$$

are injective for i = 1, 2. In particular, the map $H \rightarrow G_1 \star_H G_2$ is injective.

Moreover, if $G'_i \subseteq G_i$ (i = 1, 2) are two subgroups such that $G'_i \cap H = 1$, then the induced map

$$G_1' \star G_2' \longrightarrow G_1 \star_H G_2$$

is injective.

Problem 3. Consider the following group (the "Higman four group")

$$H = \langle x_1, x_2, x_3, x_4 | x_2 x_1 x_2^{-1} = x_1^2, x_3 x_2 x_3^{-1} = x_2^2, x_4 x_3 x_4^{-1} = x_3^2, x_1 x_4 x_1^{-1} = x_4^2 \rangle.$$

- (a) Show that every homomorphism from H into a finite group is trivial; in other words, the profinite completion \hat{H} is the trivial group.
- (b) Let $H_{123} = \langle x_1, x_2, x_3 | x_2 x_1 x_2^{-1} = x_1^2, x_3 x_2 x_3^{-1} = x_2^2 \rangle$. Show that x_1 and x_3 generate a free subgroup. (Use the theorem and Problem 2.)
- (c) Write *H* as an amalgamated product of H_{123} and a similarly defined H_{341} along an F_2 . Using the theorem again, conclude that *H* is nontrivial (and hence infinite by (a)).
- (d) Show that every finitely generated group contains a maximal proper normal subgroup. Conclude that if $H_0 \subseteq H$ is such a subgroup, then $G = H/H_0$ is a finitely generated infinite simple group.

Hint: Look at the orders of x_1, \ldots, x_4 (and their smallest prime factor).