Étale fundamental group - cheat sheet

For every connected scheme X, the category $\mathbf{F}\mathbf{\acute{E}t}_X$ of finite étale maps $Y \to X$ is a Galois category, OBQ8 and every geometric point $\overline{x} \to X$ induces a fiber functor $F_{\overline{x}}$: $\mathbf{F}\mathbf{\acute{E}t}_X \to \mathbf{FinSet}$. The **étale fundamental group** $\pi_1(X,\overline{x})$ is the Galois group of the pointed Galois category ($\mathbf{F}\mathbf{\acute{E}t}_X, F_{\overline{x}}$), i.e. the automorphism group $\operatorname{Aut}(F_{\overline{x}})$. It is a profinite group. A morphism $X \to X'$ induces a continuous group homomorphism $\pi_1(X,\overline{x}) \to \pi_1(X',\overline{x})$.

The étale fundamental group enjoys the following properties.

- 1. Topological invariance. Let $i: X \to X'$ be a universal homeomorphism (for example, a nilpotent OBQN closed immersion). Then $\pi_1(X, \bar{x}) \to \pi_1(X', i(\bar{x}))$ is an isomorphism.
- 2. Comparison with Galois theory. If X = Spec(K) for a field K, then finite étale K-algebras are finite OBNE products of finite separable extensions of K. If $\bar{x} \to X$ is a geometric point, let K^{sep} be the separable closure of K in $k(\bar{x})$. Then $\pi_1(X, \bar{x}) \simeq \text{Gal}(K^{\text{sep}}/K)$.
- 3. Comparison with topology. Let X be a connected scheme locally of finite type over \mathbb{C} . Then SGA1 XII 5.1 analytification induces an equivalence between $\mathbf{F\acute{E}t}_X$ and the category of finite coverings of X^{an} . Consequently, for $\bar{x} \in X(\mathbb{C})$ we obtain a homomorphism $\pi_1^{top}(X,\bar{x}) \to \pi_1(X,\bar{x})$ which induces an isomorphism $\pi_1^{top}(X,\bar{x})^{\wedge} \xrightarrow{\sim} \pi_1(X,\bar{x})$ where $(-)^{\wedge}$ denotes profinite completion.
- 4. **Torsors.** Let *X* be a connected scheme and let *G* be a finite group. Then the pointed set of isomorphism SGA1 IX §5 classes of étale *G*-torsors on *X* is in bijection with the set Hom $(\pi_1(X, \bar{x}), G)/G$ of conjugacy classes of continuous homomorphisms $\pi_1(X, \bar{x}) \to G$.
- 5. Link with étale cohomology. If G is abelian, then $\text{Hom}(\pi_1(X,\bar{x}),G) \simeq H^1(X_{\text{et}},G)$. In particular:
 - (a) **Kummer theory.** For $n \ge 1$ invertible on *X*, we have an exact sequence SGA1 IX 6.4

$$\mathcal{O}(X)^{\times n} \longrightarrow \operatorname{Hom}(\pi_1(X,\overline{x}),\mathbb{Z}/n\mathbb{Z}) \longrightarrow \operatorname{Pic}(X)[n]$$

(b) Artin–Schreier theory. If p is a prime and X is an \mathbb{F}_p -scheme, we have an exact sequence SGA1 IX 6.8

$$\operatorname{cok}(1-F: \mathcal{O}(X) \to \mathcal{O}(X)) \longrightarrow \operatorname{Hom}(\pi_1(X, \overline{x}), \mathbb{Z}/p\mathbb{Z}) \longrightarrow H^1(X, \mathcal{O}_X)^{F=1}.$$

- 6. Criteria for surjectivity. Let f: X → X' be a map of connected schemes and x̄ → X a geometric OBN6 point. The following are equivalent: (a) π₁(X, x̄) → π₁(X', f(ȳ)) is surjective, (b) the pull-back functor f*: FÉt_{X'} → FÉt_X is fully faithful, and (c) if Y' → X' is a connected finite étale covering, then f*(Y') = Y' ×_{X'}X is connected.
- 7. π_1 of a normal scheme. If *X* is an integral normal scheme, with generic point η , and $\overline{\eta} \to X$ is the SGA1 V 8.2 geometric generic point, then $\pi_1(X,\overline{\eta})$ is the quotient of $\operatorname{Gal}(k(\overline{\eta})/k(\eta))$ corresponding to the union of all finite separable extensions *L* of $k(\eta)$ contained in $k(\overline{\eta})$ such that the normalization of *X* in *L* is étale over *X*.
- 8. Homotopy exact sequence. let $f: X \to S$ be a be a flat proper morphism of finite presentation 0C0J between connected schemes whose geometric fibers are connected and reduced. Let $\overline{x} \to X$ be a geometric point and let $\overline{s} \to S$ be its image in *S*. Then the sequence of groups

$$\pi_1(X_{\overline{s}},\overline{x}) \longrightarrow \pi_1(X,\overline{x}) \longrightarrow \pi_1(S,\overline{s}) \longrightarrow 1$$

is exact.

9. Fundamental exact sequence. Let X be a qcqs scheme of finite type over a field k, let \overline{k} be an OBTX algebraic closure of k and $\overline{x} \to X$ a \overline{k} -valued point. If $X_{\overline{k}}$ is connected, then the sequence of groups

 $1 \longrightarrow \pi_1(X_{\overline{k}}, \overline{x}) \longrightarrow \pi_1(X, \overline{x}) \longrightarrow \operatorname{Gal}(\overline{k}/k) \longrightarrow 1$

is exact.

- 10. **Zariski–Nagata purity of the branch locus.** Let *X* be a regular connected scheme and let $U \subseteq X$ be SGA1 X 3.3 a non-empty open subset such that $\operatorname{codim}(X \setminus U) \ge 2$. Then *U* is connected and $\pi_1(U, \overline{x}) \to \pi_1(X, \overline{x})$ is an isomorphism.
- 11. Lefschetz hyperplane theorem. Let X be a connected projective scheme over a field k and let SGA2 X 2.2+3.10 Y ⊆ X be an ample effective Cartier divisor, x̄ → Y a geometric point. Suppose that X \ Y is regular of dimension ≥ 2 (resp. ≥ 3). Then Y is connected and π₁(Y,x̄) → π₁(X,x̄) is surjective (resp. an isomorphism).
- 12. **Birational invariance.** Let $f: Y \to X$ be a proper birational morphism of connected regular schemes SGA1 X 3.4 and $\overline{y} \to Y$ a geometric point. Then $\pi_1(Y, \overline{y}) \to \pi_1(X, f(\overline{y}))$ is an isomorphism.
- 13. **Effective descent.** Let $f: Y \to X$ be surjective map which is either proper or flat+qcqs. Then SGA1 IX 6.8 $\mathbf{F\acute{E}t}_X \to \mathbf{DD}(Y/X, \mathbf{F\acute{E}t})$ is an equivalence. That is, finite étale maps to *X* are equivalent to finite étale maps to *Y* endowed with an isomorphism of the two pull-backs to $Y \times_X Y$ satisfying the cocycle condition on $Y \times_X Y \times_X Y$.
- 14. **Specialization.** Let \emptyset be a complete discrete valuation ring, let $S = \text{Spec}(\emptyset)$, and let *s* and η be its OBUQ closed and generic point, respectively. Let *X* be a proper scheme over *S*. Then, $\mathbf{F} \acute{\mathbf{E}} \mathbf{t}_X \to \mathbf{F} \acute{\mathbf{E}} \mathbf{t}_{X_s}$ is an equivalence. As a result, if $X \to S$ has connected fibers, we obtain the specialization homomorphism

$$\pi_1(X_\eta) \longrightarrow \pi_1(X) \simeq \pi_1(X_s)$$

which is surjective if X is normal.

Suppose that $X \to S$ has connected geometric fibers. Then, we have a specialization homomorphism SGA1 X 2.4 for the geometric fundamental groups

$$\pi_1(X_{\overline{\eta}}) \longrightarrow \pi_1(X_{\overline{s}})$$

which is surjective if $X_{\overline{s}}$ is reduced. If $X \to S$ is smooth, and *p* is the residue characteristic exponent SGA1 X 3.9 of \mathcal{O} , the map induces an isomorphism on prime-to-*p* completions.

- 15. Finite generation. Let *X* be a connected scheme of finite type over an algebraically closed field *k*. SGA1 X 2.9 Suppose that either char(k) = 0 or that *X* is proper. Then $\pi_1(X)$ is topologically finitely generated (admits a dense finitely generated subgroup).
- 16. **Künneth formula.** Let *X* and *Y* be locally noetherian connected schemes over an algebraically closed SGA1 X 1.7 field *k*. Suppose that either char(*k*) = 0 and *X* is of finite type over *k*, or *X* is proper over *k*. Then $\pi_1(X \times Y) \simeq \pi_1(X) \times \pi_1(Y)$.
- 17. Change of base field (π_1 -properness). Let *X* be a connected scheme of finite type over an algebraically closed field *k* and let *k'* be an algebraically closed extension of *k*. Suppose that either char(k) = 0 or *X* is proper over *k*. Then $\pi_1(X_{k'}) \rightarrow \pi_1(X)$ is an isomorphism.