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Foreword

This document contains lecture notes for a course taught at MIMUW in Spring 2025. The notes
are under construction and will be (hopefully) frequently updated. Orange text and orange boxes
■ indicate things left to be filled in. Comments (including typos) are very welcome.

Sections and subsections marked with (A) contain advanced/supplementary material. Those
marked with (B) review background material that would best fit a different course (perhaps one
you already attended).

Further versions of the notes, together with other course material, will be posted at

https://achinger.impan.pl/lecture25s.html

Notation.

(a) Both the neutral element of a group and the trivial group are denoted by 1.

(b) The notation ⟨x1, . . . ,xn |w1, . . . ,wr⟩, where xi are symbols and w j are words in the xi

and x−1
i , denotes the quotient of the free group on {x1, . . . ,xn} by the smallest normal

subgroup containing w1, . . . ,wr.

(c) References like [SP Tag 0ABC] refer to the Stacks Project.

♡ Acknowledgments. I thank the following people for their help: Maciej Borodzik, Christophe
Eyral, Dawid Kielak, Piotr Nowak, Adrian Langer, Jakob Stix, Alex Youcis.
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Part I

The topological fundamental group

1. Lecture 1: Fundamental groups of complex varieties

Summary. We give a short overview of the goals of this lecture course in §1.1 and review some
basic facts about the fundamental group of a topological space in §1.2. In §1.3 we discuss
additional related material: descent, torsors, equivariant sheaves, group cohomology, and a
characterization of K(π,1) spaces in terms of cohomology of local systems. In §1.4 we move to
algebraic geometry; we define the topological fundamental group of a complex variety and give
some examples. The final §1.5 discusses very basic corollaries of the Hodge decomposition.

1.1. Goals and motivation

Our goal is to study the fundamental groups of algebraic varieties, and more generally of
schemes. The definition from topology, using paths, really makes sense only over C and the first
part of the lecture will focus on the properties of π1(X(C)) for a complex variety X . Here X(C)
is the set of closed points of X endowed with the analytic topology.

For more general schemes, a considerable effort is put into actually defining a suitable
fundamental group in an algebraic way. This is a nontrivial task even for varieties defined
over subfields K ⊆ C, since (as first shown by Serre [Serre, 1964], see §3.3) the fundamental
group π1(X(C)) might depend on the choice of the complex embedding K ↪→ C. The simplest
(and maybe most useful) such definition is the étale fundamental group π ét

1 (X), introduced by
Grothendieck in SGA1 [Grothendieck, 1971]. Here X can be an arbitrary connected scheme,
and π ét

1 (X) is a profinite group (the inverse limit of finite groups); for example, if X = Spec(K)

for a field K, then π ét
1 (X) is the absolute Galois group Gal(Ksep/K), and if X is locally of finite

type over C, then π ét
1 (X) is the “profinite completion” (inverse limit of all finite quotients) of

π1(X(C)). The goal of the second part of the course will be the development of the theory of
the étale fundamental group.

There are (at least) two major reasons for studying fundamental groups of algebraic varieties:

(a) Classifying varieties up to homotopy is a first crude step in the classification process:
in a family of complex algebraic varieties (say, smooth and proper), all the fibers are
homeomorphic.
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(b) In algebraic geometry, topological invariants such as the fundamental group or cohomology
often come equipped with additional structures which actually vary within a family and
carry important geometric and arithmetic information.

For an example of (2), a complex elliptic curve can be recovered from its first integral coho-
mology endowed with its Hodge decomposition.1 In a different direction, if X is a variety over
Q, then the étale fundamental group of XC (which is the profinite completion of π1(X(C)) and
hence a rather concrete object) carries a continuous outer action of the Galois group Gal(Q/Q).
This action typically does not lift to an action on π1(X(C)). According to Grothendieck’s
anabelian conjectures, proved by Tamagawa and Mochizuki, a hyperbolic algebraic curve over
Q (e.g. a smooth projective curve of genus g≥ 2, or P1

Q \S with |S| ≥ 3) can be reconstructed
from this action. (Add references here)

1.2. Review of fundamental groups and covering spaces (B)

Even though we assume basic familiarity with the concept, we recall the definition of the
fundamental group of a topological space. We advise the reader to pay attention to left/right
actions which appear in the theory.

Definition 1.2.1. Let X be a topological space and let x ∈ X . The fundamental group of X
with base point x, denoted π1(X ,x), consists of homotopy class of loops in X based at x.

Here, a loop based at x is a continuous map γ : [0,1]→ X such that γ(0) = γ(1) = x, and
two loops γ0,γ1 are homotopic if there exists a continuous map H : [0,1]× [0,1]→ X such that
H(0,y) = γ0(y), H(1,y) = γ1(y), and H(t,0) = H(t,1) = x. The product γ · γ ′ is defined by first
traversing γ ′ and then γ (!), and the inverse γ−1 is represented by t 7→ γ(1− t).

If x′ ∈ X is another base point, and if λ : [0,1]→ X is a path from x to x′ (i.e. γ(0) = x and
γ(1) = x′), we obtain an isomorphism

π1(X ,x)−→ π1(X ,x′)

defined by mapping γ to λγλ−1.
We say that X is path connected if for every x,x′ ∈ X there exists a path from x to x′. We

say that X is simply connected if it is path connected and π1(X ,x) = 1 (this does not depend on
the choice of x).

The fundamental group admits a convenient description in terms of covering spaces.

Definition 1.2.2. Let X be a topological space. A covering of X is a map Y → X such that
there exists an index set I, and for every i ∈ I open subsets Ui ⊆ X covering X , sets Si, and
homeomorphisms

φi : Y ×X Ui ∼−−→Ui×Si

over Ui (i.e. making the natural triangle commute). A morphism of coverings (Y ′→ X)→ (Y →
X) is a map Y ′→ Y over X . We denote the category of coverings of X by CovX .

1Explicitly: E is the cokernel of H1(E,Z)→ H1(E,C)≃ H0(E,Ω1
E)⊕H1(E,OE)

proj.−−→ H0(E,Ω1
E).
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Note that a continuous map g : X ′→ X induces a functor in the opposite direction

g∗ : CovX −→ CovX ′, g∗(Y → X) = (Y ×X X ′→ X ′).

Covering spaces can also be characterized “internally” using sheaves.

Lemma 1.2.3. Let X be a topological space. Denote by LocX the category of locally constant
sheaves (of sets) on X. If Y → X is a covering space, then its sheaf of sections F defined by
F(U) = HomX(U,Y ) is locally constant. The association (Y → X) 7→ F defines an equivalence
of categories

CovX ∼−−→ LocX .

Proof. Worthwhile exercise.

Coverings enjoy the following unique lifting property with respect to paths: if f : Y → X
is a covering, γ : [0,1]→ X is a path, and y0 ∈ Y is a point with f (y0) = γ(0), then there exists
a unique path γ ′ : [0,1]→ Y such that γ ′(0) = y0 and γ = f ◦ γ ′. Thus, if γ is a loop based at
x (γ(0) = γ(1) = x), then it induces a map f−1(x)→ f−1(x) sending y0 to γ ′(1). This map
depends only on the homotopy class of γ and is compatible with composition, thus defining
a left action of π1(X ,x) on the fiber f−1(x). In turn, we obtain a functor from CovX to left
π1(X ,x)-sets sending f : Y → X to the fiber f−1(x) equipped with the action just described.

Theorem 1.2.4. Let X be a path connected and locally simply connected topological space.2

Then the functor

F : CovX −→ π1(X ,x)-sets, F( f : Y → X) = f−1(x) (1.2.1)

is an equivalence of categories.

Corollary 1.2.5. In the situation of the theorem, we obtain a bijection between the set of
isomorphism classes of connected coverings of X and the set of subgroups of π1(X ,x) up to
conjugation. If Y corresponds to H then π1(Y )≃ H.

The group π1(X ,x) defines an object of the category of left π1(X ,x)-sets. The corresponding
covering space X̃ → X is called the universal covering. By the above corollary, it is the unique
connected and simply connected covering of X .

Remarks 1.2.6. (a) The group π1(X ,x) operates on the right (!) on X̃ . Indeed, the right
multiplication action of π1(X ,x) on itself is an action in the category of left π1(X ,x)-sets.
This action is free, and X ≃ X̃/π1(X ,x) is the quotient space.

(b) In many contexts (e.g. topological spaces with bad local properties, or schemes...) the
theory of coverings is more robust than the theory of paths.

2There are about ten possible definitions of “locally simply connected.” Here we use the following: for
every x ∈ X and every open neighborhood U of x there exists an open neighborhood V of x contained in U with
π1(V,x) = 1.
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(c) One can recover π1(X ,x) from CovX . To make this canonical (an extra choice is needed
since CovX does not know of the base point x), we equip CovX with the fiber functor

F : CovX −→ Sets, F( f : Y → X) = f−1(x)

(via the equivalence (1.2.1) this corresponds to the forgetful functor from π1(X ,x)-sets to
sets). Then π1(X ,x) is canonically isomorphic to the automorphism group Aut(F) of the
functor F .

(d) To avoid confusion we will consistently use the term covering as in covering space and
the word cover as in open cover.

(e) The van Kampen theorem for an open cover X = U ∪V , W = U ∩V with U,V,W path
connected can be translated into (and in fact deduced from) the following gluing (descent)
statement:

CovX ≃ CovU ×CovW CovV ,

where the right-hand side is the category of triples (U ′→U,V ′→V,ϕ) where U ′→U
and V ′→V are coverings and ϕ is an isomorphism

ϕ : U ′×U W −→V ′×V W

in the category CovW . We will discuss more general descent statements soon.

1.3. Complements: torsors, equivariant sheaves, and group cohomology

In this section we review some additional material that will be very useful throughout the
semester. Not everything here has been discussed in the lecture.

Torsors. Let X be a space and let G be a sheaf of groups on X (for example, a constant sheaf).
A G-torsor on X (compare [SP Tag 03AH]) is a sheaf of sets F on X endowed with a right
action (in the category of sheaves):

µ : F×G−→ F

such that for every x ∈ X , the action of Gx on Fx is free and transitive. (In particular, this implies
that Fx is non-empty for every x ∈ X .) In this case, for every open U ⊆ X such that F(U) is
non-empty, the action of G(U) on F(U) is free and transitive as well (exercise). A morphism of
G-torsors is a map of sheaves F′→ F which is equivariant for the G-action (every such map
must be an isomorphism). We say that F is trivial if F ≃ G (the sheaf G is a G-torsor for the
right multiplication action), or equivalently if F(X) ̸= /0.

Let F be a G-torsor on X and let {Ui}i∈I be an open cover of X such that F(Ui) ̸= /0 (which
exists since Fx ̸= /0 for all x ∈ X). For each i ∈ I choose a section si ∈ F(Ui). Since the action of
G(Ui∩U j) on F(Ui∩U j) is free and transitive, there exists a unique gi j ∈ G(Ui∩U j) such that

s j|Ui∩U j = (si|Ui∩U j) ·gi j.
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The system {gi j} forms a 1-cocycle: on Ui∩U j ∩Uk we have gik = gi j · g jk. Conversely, for
any 1-cocycle {gi j} we can build a G-torsor F: its restriction Fi to Ui will be just G|Ui j , and the
gluing isomorphism Fi|Ui∩U j ≃ F j|Ui∩U j is given by the right multiplication by gi j. We define
the nonabelian first cohomology of G as the filtered colimit ■

Suppose that G is the constant sheaf (with value G). In this case, using Lemma 1.2.3,
G-torsors on X can be described as “principal G-bundles” or “G-coverings,” i.e. covering spaces
Y → X where Y is endowed with a free right G-action for which Y → X is invariant and induces
an isomorphism Y/G ∼−−→ X . If, in addition, X is path connected and locally simply connected,
Theorem 1.2.4 implies that G-torsors on X are equivalent to left π1(X ,x)-sets endowed with a
compatible transitive right G-action. Their isomorphism classes are in bijection with the set of
group homomorphisms π1(X ,x)→ G up to conjugation.

Equivariant sheaves. Let G be a group acting on a space Y on the right. A G-equivariant sheaf
is a sheaf on X endowed with a “compatible G-action.” A completely precise definition is given
below, where we denote the action by µ : Y ×G→ Y and the projection to Y by pr : Y ×G→ Y .

Definition 1.3.1. Let G be a group acting on a space Y on the right. A G-equivariant sheaf on
Y is the data of a sheaf F on Y and an isomorphism

φ : µ
∗F ≃ pr∗F on Y ×G

satisfying the following cocycle condition on Y ×G×G:

pr∗01φ ◦ (µ× idG)
∗
φ ≃ (idX ×m)∗φ

where m : G×G→ G is the multiplication map.

Thus concretely, a G-equivariant sheaf on Y is a sheaf F on Y together with the data of, for
every g ∈ G, an isomorphism

φg : g∗F ∼−−→ F

satisfying the compatibility condition that the following triangle commutes for every g,h ∈ G

(gh)∗F
φgh // F

g∗(h∗F)
g∗(φh)

// g∗F

φg

OO

The more abstract definition given above is useful for actions of non-discrete groups (in which
case one also wants to require that “the φg vary continuously with g”), for example for a linear
algebraic group acting on an algebraic variety.
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Descent. In general by “descent” we mean that certain objects (sheaves, their sections, covering
spaces etc.) can be defined locally, subject to “gluing isomorphisms on double overlaps”
satisfying a certain cocycle condition. We will focus on sheaves of sets; the category of sheaves
of sets on a space X will be denoted by Sh(X).

Recall that if Y → X is any map of spaces, we can build the simplicial space Y •+1
/X whose

n-th space is the (n+1)-fold fiber product of Y over X . We can picture it as a diagram

· · · Y ×X Y ×X Y Y ×X Y Y X

If F is a sheaf on Y , its pullback G= π∗F is equipped with additional structure: its further
pullbacks pr∗0G and pr∗1G are both identified with (π ◦pr0)

∗F= (π ◦pr1)
∗F; call this isomorphism

φ . The isomorphism φ satisfies the following “cocycle condition” on Y ×X Y ×X Y :

pr∗0G
pr∗02φ

//

pr∗01φ ""

pr∗2G

pr∗1G
pr∗12φ

<<
(1.3.1)

Definition 1.3.2 (see [SP Tag 026B]). The category of descent data DD(Y/X) is the category
of pairs (G,ϕ) where G is a sheaf on Y and ϕ : pr∗1G ∼−−→ pr∗2G is an isomorphism of sheaves on
Y ×X Y satisfying the cocycle condition (1.3.1).

The above discussion shows that π∗ can be upgraded to a functor

π
∗ : Sh(X)−→ DD(Y/X).

We say that π is of effective descent if the above functor is an equivalence of categories.
A typical example of effective descent is when Y =

⋃
Ui is the disjoint union of a family of

open subsets Ui ⊆ X covering X . In this case, effective descent means that in order to define a
sheaf on X it is enough to define sheaves on Ui together with isomorphism on double overlaps
Ui∩U j satisfying the cocycle condition on Ui∩U j∩Uk. More generally, we have the following
result.

Proposition 1.3.3. Let π : Y → X be a surjective local homeomorphism. Then π is of effective
descent.

(A natural example of a local homeomorphism which does not come from an open cover is a
(surjective) covering space. We will come back to this shortly.) In topology, proper surjective
maps are also of effective descent [Reiterman and Tholen, 1994, Corollary 1.2]. This means in
particular that sheaves can be defined on a locally finite closed cover. For us, another important
example of effective descent comes from group quotients.

Descent along a free group quotient. Let G be a group and let π : Y → X be a G-torsor, so
that X = Y/G. Then Y ×X Y consists of pairs of y,y′ of points lying in the same G-orbit; since
the action is free, we have y′ = yg for a unique g ∈ G, and hence the data of (y,y′) is equivalent

9
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to the data (y,g). More generally, we have a commutative diagram (isomorphism of truncated
simplicial objects), with the horizontal arrows being isomorphisms

Y ×X Y ×X Y Y ×G×G

Y ×X Y Y ×G

Y Y

X X

∼

∼

∼

∼

This justifies the following proposition.

Proposition 1.3.4. We have equivalences of categories

ShG(Y )≃ DD(Y/X)≃ Sh(X).

Remark 1.3.5. Let Y be a space with a right action of a group G. The category of G-equivariant
sheaves ShG(Y ) is a stand-in for the category of sheaves on X in case the action of G is not free.
In other words, it can be thought of as the category of a possibly non-existent free quotient Y/G.
One can make this precise using stacks. An extreme example is when Y = ⋆ is the one-point
space, in which case ShG(X) is the category of G-sets. This category is the category of sheaves
on the “classifying space BG.” (In fact, in the theory of stacks one defines BG as the quotient
stack [⋆/G].)

The following fundamental result allows one to relate the cohomology of Y and of X =Y/G.

Proposition 1.3.6 ([Grothendieck, 1957, II 5.2]). Let π : Y → X be a G-torsor and let F be an
abelian sheaf on X. There is a spectral sequence, functorial in the sheaf F

E pq
2 = H p(G,Hq(Y,π∗F)) ⇒ H p+q(X ,F).

Proof. We first check that we have a commutative diagram of categories and functors

Sh(X ,Z)
π∗
∼ //

Γ(X ,−)

33ShG(Y,Z)
Γ(Y,−) //Mod(Z[G])

(−)G
////Mod(Z)

Now, the functors Γ(X ,−), Γ(Y,−) and (−)G above are left-exact and their derived functors
are respectively H∗(X ,−), H∗(Y,−), and H∗(G,−). The desired spectral sequence will be the
Grothendieck spectral sequence for the composition of functors (tacitly identifying Sh(X ,Z)
with ShG(Y,Z)).

In order to have the spectral sequence, we need to check that the first functor Γ(Y,−) sends
injective abelian sheaves on X to Z[G]-modules which are acyclic for the δ -functor H∗(G,−).
In fact, if F is an injective abelian sheaf on X , then the Z[G]-module

M = Γ(Y,π∗F)
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is injective. Indeed, let A ↪→ B be an injection of Z[G]-modules; we want to show that

HomG(B,M)−→ HomG(A,M)

is surjective. But

HomG(A,M) = HomG(A,Γ(Y,π∗F)) = HomShG(Y,Z)(AY ,π
∗F) = HomSh(X ,Z)(A

G
X ,F)

and similarly for B. Since AG
X → BG

X is injective, the map in question is surjective if F is
injective.

As a corollary of this spectral sequence, we get edge maps3

Hn(X ,F)−→ Hn(Y,π∗F)G. (1.3.2)

Hn(G,Γ(Y,π∗F))−→ Hn(X ,F) (1.3.3)

The following corollary is often very useful.

Corollary 1.3.7. Let G be a finite group of order n such that n : F→ F is an isomorphism (for
example, F is a sheaf of Q-vector spaces). Then the maps (1.3.2)

Hn(X ,F)−→ Hn(Y,π∗F)G

are isomorphisms for all n≥ 0.

Proof. It suffices to note that E pq
2 = 0 for p > 0, so that the spectral sequence collapses.

Group cohomology and sheaf cohomology. K(π,1) spaces. We will now focus on the other
map (1.3.3). We have the following corollary.

Corollary 1.3.8. Let X be a path connected and locally simply connected topological space, let
x ∈ X, and let X̃ → X be its universal cover (which is a π1(X ,x)-torsor by Remarks 1.2.6(1)).
Then for every locally constant sheaf of abelian groups F on X, we have the maps

ρ
n : Hn(π1(X ,x),Fx)−→ Hn(X ,F). (1.3.4)

These maps are isomorphisms for n = 0,1.

Proof. We apply Proposition 1.3.6 to the π1(X ,x)-torsor X̃ , noting that π∗F is the constant sheaf
on the connected space X̃ with value Fx, and that the action of π1(X ,x) on Γ(X̃ ,π∗F) = Fx

agrees with the monodromy action of π1(X ,x). The map ρn is then the edge map (1.3.3).
The spectral sequence trivially shows this is an isomorphism for n = 0. For n = 1, the

obstruction to this is the group

E01
2 = H0(π1(X ,x),H1(X̃ ,π∗F)).

But X̃ is simply connected, so that its first cohomology with values in any (locally) constant
sheaf vanishes. One can see this (again) by noting that classes in H1(X̃ ,Fx) correspond to
Fx-torsors on X̃ .

3For a concrete construction of (1.3.3) without the use of spectral sequences see [Mumford, 2008, Chapter I,
Appendix to §2].
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Definition 1.3.9. Let X be a path connected and locally simply connected topological space.
We say that X is (cohomologically) a K(π,1) space if for every local system F the map (1.3.4)
is an isomorphism for all n≥ 0.

Lemma 1.3.10. Let X be a connected CW complex. Then X is a K(π,1) space if and only if
πi(X) = 0 for i≥ 2.

Proof. By the fibration homotopy exact sequence, it suffices to show that the universal covering
X̃ is contractible. By Whitehead’s theorem for cohomology [■ ], this will follow if we know
that

Hn(X̃ ,Z) = 0 for n≥ 1.

We have Hn(X̃ ,Z) ≃ Hn(X ,π∗Z). Since X is a K(π,1), the latter group is isomorphic to
Hn(π1(X ,x),(π∗Z)x). The π1(X ,x)-module (π∗Z)x is isomorphic to Hom(π−1(x),Z) which
can be identified with the group algebra Z[π1(X ,x)]. Since this is a projective π1(X ,x)-module,
we have Hn(π1(X ,x),(π∗Z)x) = 0 for n≥ 1.

1.4. The fundamental group of a complex variety

Let X be a scheme locally of finite type over C. We denote by X(C) or by Xan its set of complex
points (by Nullstellensatz, this agrees with the set of closed points of X). We endow X(C) with
the analytic topology as follows. A subset Z ⊆ X(C) is closed if and only if for every ideal
I ⊆ C[T1, . . . ,Tn] and every map

W = Spec(C[T1, . . . ,Tn]/I)−→ X

the preimage of Z inside W (C)⊆ Cn is closed in the metric topology on Cn. The natural map

τX : X(C)−→ X

is then continuous (as Zariski closed subsets of Cn are also closed in the metric topology).
A morphism X ′ → X of schemes locally of finite type over C induces a continuous map
X ′(C)→ X(C) which commutes with τX and τX ′ .

Later on, we shall equip X(C) = Xan with a sheaf of holomorphic functions OXan , making it
into a complex analytic space and upgrading τX to a map of locally ringed spaces. For now we
will focus solely on the topological properties of X(C).

Theorem 1.4.1. Let X be a scheme locally of finite type over C. The space X(C) enjoys the
following properties.

(a) It is locally contractible (in particular, locally simply connected).

(b) The map τX induces a bijection on connected components

π0(X(C)) ∼−−→ π0(X).

(c) If X is of finite type, then X(C) has the homotopy type of a finite CW complex.
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Definition 1.4.2. Let X be a scheme locally of finite type over C and let x ∈ X(C). We set

π
top
1 (X ,x) = π1(X(C),x)

and call it the topological fundamental group of X .

Corollary 1.4.3. Let X be a scheme locally of finite type over C and let x ∈ X(C). Then the
topological fundamental group π

top
1 (X ,x) is finitely presented.

Example 1.4.4. (a) Let X = P1
C \S where S is a set of n+1 closed points. Then π

top
1 (X) is a

free group on n letters.

(b) Let X be a smooth projective curve of genus g. Then π
top
1 (X)≃ Γg is the genus g surface

group
Γg = ⟨a1,b1, . . . ,ag,bg | [a1,b1] · · · [ag,bg] = 1⟩.

According to the uniformization theorem, the universal covering of X is P1
C if g = 0, C if

g = 1, and the open disk D⊆ C if g≥ 2.

(c) Let X = An \V ( f ) where f is the polynomial

f = ∏
i< j

(Ti−Tj).

Thus X is the complement of a hyperplane arrangement; its C-points correspond tuples
(x1, . . . ,xn) of pairwise distinct complex numbers. Then π1(X) is the pure braid group Pn

on n strands.

(d) The space X in (3) admits a free action of the permutation group Sn. Let X ′ = X/Sn be
the quotient (whose C-points are smooth length n subschemes of A1

C). Then π
top
1 (X ′) is

the braid group Bn on n strands, sitting inside the extension

1 // Pn // Bn // Sn // 1

which corresponds to the Sn-torsor X → X ′.

(e) Let X be an abelian variety of dimension g. Then π
top
1 (X) ≃ Z2g. Indeed, X(C) is

homeomorphic to (S1)2g.

(f) More advanced example: let Ag be the moduli stack of principally polarized abelian
varieties of dimension g (it is a smooth Deligne–Mumford stack). Then

π
top
1 (Ag)≃ Sp(2g,Z).

By adding a suitable level structure, we obtain a finite covering Ag(n)→Ag which is a
smooth scheme; its fundamental group is the corresponding level n congruence subgroup

Γ(n) = ker(Sp(2g,Z)→ Sp(2g,Z/nZ)).

13



(g) Let X be a smooth Fano variety (X is smooth projective and −KX is ample). Then X is
simply connected. This is a consequence of Yau’s solution of the Calabi conjecture. Using
the Kodaira vanishing theorem, it is rather easy to show that X does not admit non-trivial
finite coverings.

(h) Let X be a K3 surface. Then X is simply connected.

(i) Some K3 surfaces admit a fixed-point free involution ι : X → X . The quotient Y = X/ι is
then an Enriques surface, and every Enriques surface (in characteristic ̸= 2) arises this
way. We thus have π

top
1 (Y )≃ Z/2Z. We will later see that every finite group arises as the

fundamental group of a smooth projective complex variety.

Definition 1.4.5. We say that a finitely presented group Γ belongs to class P if there exists a
smooth projective complex variety X with π

top
1 (X)≃ Γ.

1.5. Corollaries of the Hodge decomposition

While the proof of the Hodge decomposition theorem relies on analytic methods, it is in
fact possible to pin down the decomposition itself without going too deep. In particular, the
formulation below makes it clear that the Hodge decomposition is independent of the choice of
a Kähler form, at the same time avoiding the mention of harmonic forms etc. (besides, it is more
useful to say “the following defines a decomposition” instead of “there exists a decomposition.”)

Theorem 1.5.1. Let X be a complex manifold.

(a) (Poincaré lemma) The complex of sheaves

0 // C incl. // OX
d // Ω1

X
d // Ω2

X
d // · · · d // Ωn

X
// 0

is exact.

(b) (de Rham theorem) Consequently, we have an isomorphism

Hn(X ,R)⊗RC≃ Hn(X ,C)≃ Hn(X ,Ω•X),

where Ω•X = [OX →Ω1
X → ·· · ] is the holomorphic de Rham complex of X and Hn(X ,Ω•X)

is its (hyper)cohomology.

(c) (Hodge–de Rham degeneration) Suppose that X is compact Kähler or proper algebraic.
Let F pΩ•X = Ω

•≥p
X be the complex

0 // · · · // 0 // Ω
p
X

// Ω
p+1
X

// · · · .

Then {F pΩ•X} defines a decreasing filtration on the de Rham complex Ω•X , called the
Hodge filtration, which satisfies

grp
F(Ω

•
X) = F p

Ω
•
X/F p+1

Ω
•
X ≃Ω

p
X [−p].
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The associated spectral sequence of a filtered complex

E pq
1 = Hq(X ,Ωp

X) ⇒ H p+q(X ,Ω•X) = H p+q(X ,C)

(called the Hodge–de Rham spectral sequence) degenerates at the E2 page. Conse-
quently, the cohomology group Hn(X ,C) is endowed with a decreasing filtration, again
called the Hodge filtration,

F pHn(X ,C) = im(Hn(X ,F p
Ω
•
X)→ Hn(X ,Ω•X) = Hn(X ,C)),

which satisfies
grp

FHn(X ,C)≃ Hq(X ,Ωp
X), p+q = n.

(d) (The Hodge decomposition) Suppose that X is compact Kähler. Let (−) denote the complex
conjugation on Hn(X ,C) = Hn(X ,R)⊗RC. Then for p+q = n

Hn(X ,C) = (F pHn(X ,C))⊕ (Fq+1Hn(X ,C)).

Consequently, if we define

H p,q(X) = (F pHn(X ,C))⊕ (FqHn(X ,C))

then H p,q(X) ⊆ F pHn(X ,C) projects isomorphically onto grp
FHn(X ,C) = Hq(X ,Ωp

X),
and we have a direct sum decomposition

Hn(X ,C) =
⊕

p+q=n
H p,q(X)≃

⊕
p+q=n

Hq(X ,Ωp
X),

satisfying H p,q(X) = Hq,p(X). We have F pHn(X ,C) =
⊕

p′+q′=n, p′≥p H p′,n−q′ .

(e) (Hodge symmetry) Suppose that X is compact Kähler or proper algebraic. Then

dim(Hq(X ,Ωp
X)) = dim(H p(X ,Ω

q
X)).

Remark 1.5.2. Let X be a smooth and proper complex variety. Assertion (c) of Theo-
rem 1.5.1 is then equivalent (thanks to GAGA, see Lecture 3) to the analogous assertion
about the algebraic de Rham complex Ω•X/C. There exist entirely algebraic proofs of asser-
tion (c), due to Faltings [Faltings, 1988] (using p-adic Hodge theory) and Deligne–Illusie
[Deligne and Illusie, 1987] (relying on reduction modulo p). In contrast, as shown by Mumford
and others (see [Deligne and Illusie, 1987, 2.6(i)]), the result is false over fields of positive
characteristic, though the Deligne–Illusie paper gives useful criteria for it to hold.

Definition 1.5.3 (Betti numbers). For a topological space X we define

bn(X) = dimHn(X ,Q).

Corollary 1.5.4. Let X be a smooth and proper complex algebraic variety. Then bn(X(C)) is
even for n odd.
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Corollary 1.5.5. Let X be a smooth and proper complex algebraic variety and let Γ = π
top
1 (X).

Then dimH1(Γ,Q) is even.

Note that H1(Γ,Q) = Hom(Γ,Q) and its dimension is the rank of the (free part of the)
abelianization Γab = Γ/[Γ,Γ].

Corollary 1.5.6. The following groups are not isomorphic to the fundamental group of a smooth
and proper complex algebraic variety: Zn with n odd, Fn (free group on n letters) with n odd,
the braid group Bn.

Note that these groups appear as the fundamental groups of smooth quasi-projective varieties
(see Example 1.4.4). One can ask if every finitely presented group can be realized in this way.
The answer is no (see suggested term paper topics for some examples).

Moreover, the group Z is the fundamental group of a compact complex surface, the Hopf
surface H = (C2 \0)/qZ where 0 < |q|< 1, which is homeomorphic to S1×S3 (see [■ ]).

The group Z is also the fundamental group of a singular projective scheme, namely the
“triangle” V (x0x1x2) ⊆ P2

C. In fact, as we shall see in ■ , every finitely presented group can
be realized as the topological fundamental group of a projective scheme over C. (Simpson
[Simpson, 2011] has shown that every finitely presented group is the topological fundamental
group of a non-normal irreducible projective scheme. See also [Kapovich and Kollár, 2014].)

Remark 1.5.7. We say that a finitely presented group Γ is a Kähler group if there exists a
connected compact Kähler manifold X with π1(X)≃ Γ. Thus every group of class P is a Kähler
group. It is an open problem whether the converse holds.

16



2. Lecture 2: Lefschetz hyperplane theorem

Summary. We first review Morse theory in §2.1 in order to study the homotopy type of a smooth
affine complex variety in §2.2. This is used to prove the Lefschetz hyperplane theorem in §2.3.
Finally, in §2.4. we discuss the Godeaux–Serre construction of a smooth projective algebraic
variety with a given finite group as its fundamental group.

In the additional section §2.5, we show that every finitely presented group is the fundamental
group of a projective complex scheme (a union of linear subspaces of Pn).

2.1. Morse theory

On our way to the Lefschetz hyperplane theorem, we need to review some basic Morse theory.
The following discussion contains no improvement whatsoever over the excellent references:
[Milnor, 1963, I], [Voisin, 2002, REF] (or [Voisin, 2007, REF]), and [Lazarsfeld, 2004, §3.1].

The goal of Morse theory is to describe the homotopy type of a smooth manifold X using an
auxiliary function f : X → R (called a Morse function), by analyzing how the homotopy type
of

X≤t = f−1((∞, t])

changes as t crosses past critical values of f .

Example 2.1.1 (See Milnor’s book). Let X ⊆ R3 be the torus consisting of points at distance
r (0 < r < 1) from the unit circle in the xy-plane, and let f (x,y,z) = x. Then X≤t is homotopy
equivalent to

• the empty space if t <−1− r;

• a disc if −1− r < t <−1+ r;

• a tube S1× [0,1] if −1+ r < t < 1− r;

• a torus with an open disc removed if 1− r < t < 1+ r;

• a torus if 1+ r < t.

We note (draw a picture to see this!) that for i = 2,3,4,5 the space in (i) is homotopy equivalent
to a space obtained from the space in (i− 1) by attaching a cell of dimension k = 0,1,1,2.
In the local coordinates (t1, t2) = (y,z) around each of the four points (xi,0,0), where xi =

−1− r,−1+ r,1− r,1+ r, the function f takes the form

f (t1, t2) = t2
1 + t2

2 , −t2
1 + t2

2 , t2
1 − t2

2 , −t2
1 − t2

2

up to higher order terms. We conclude that the number of negative signs in the quadratic part
of the expansion of f at a critical point coincides with the dimension of the cell attached (e.g.
crossing a saddle point produces a 1-cell).

In general, crossing a non-degenerate critical point of “index k” will produce a k-cell. Let us
try to make it precise.
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Definition 2.1.2. Let X and X ′ topological spaces and let k ≥ 0. We say that X ′ is obtained
from X by attaching a k-cell if there exists a continuous map

φ : ∂Dk −→ X

from the boundary of the k-dimensional closed unit disc Dk and a pushout square

∂Dk //

��

Dk

��
X // X ′.

(2.1.1)

Thus, if X is a CW-complex, then so is X ′. The following lemma clarifies some subtleties
when we try to attach cells “up to homotopy.”

Lemma 2.1.3. Let X be a topological space.

(a) (Whitehead, see [Milnor, 1963, Lemma 3.6]) Let φ0,φ1 : ∂Dk→ X be two maps and let X ′0
and X ′1 be the corresponding pushouts (2.1.1). Then every homotopy between φ0 and φ1

gives rise to a homotopy equivalence between X ′0 and X ′1 restricting to the identity on X.

(b) (P. Hilton, see [Milnor, 1963, Lemma 3.7]) Let φ : ∂Dk→ X be a map and let f : Y → X
be a homotopy equivalence. Let X ′ be the pushout (2.1.1) and let Y ′ be the corresponding
pushout for f ◦φ : ∂Dk→ Y . Then f extends to a homotopy equivalence f ′ : X ′→ Y ′.

(c) (see [Milnor, 1963, proof of Theorem 3.5]) Suppose that X admits an open cover X =⋃
n∈NXn with Xn ⊆ Xn+1 satisfying the following conditions:

(a) X0 is empty;

(b) Xn+1 is homotopy equivalent to Xn with a kn-cell attached, for some kn ≥ 0;

(c) X has the direct limit topology.

Suppose in addition that X is dominated by a CW-complex4 Then X is homotopy equivalent
to a CW-complex with one k-cell for every n with k = kn.

Definition 2.1.4. Let X be a smooth manifold and let f : X → R be a smooth function. A point
x ∈ X is a nondegenerate critical point of f if the following conditions are satisfied

(a) x is a critical point of f , i.e. d f = 0 at x;

(b) in some (equiv. every) local coordinate system t1, . . . , tn at x, the matrix of second deriva-
tives (called the Hessian) [

∂ 2 f
∂ ti∂ t j

]n

i, j=1

is invertible (has rank n).
4For example, if X is a manifold in RN , it is a deformation retract of a tubular neighborhood, and hence

dominated by a CW-complex.
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The number of negative eigenvalues of the above square matrix (equal to the maximal dimension
of a subspace on which the associated quadratic form is negative definite; also coordinate
independent) is called the index of the critical point f .

Lemma 2.1.5 (Morse lemma). Let x ∈ X be a non-degenerate critical point of f with index k.
Then there exists a local coordinate system t1, . . . , tn at x in which f takes the form

f (t1, . . . , tn) = f (x)− t2
1 − . . .− t2

k + t2
k+1 + . . .+ t2

n .

An important corollary:

Corollary 2.1.6. Nondegenerate critical points are isolated.

Later on we will need the following simple fact.

Corollary 2.1.7. Suppose that f (x) ̸= 0. Then 1/ f has index n− k at x.

Morse theory setup. Let us now fix the following setup and notation. Let X be a fixed
(Hausdorff) smooth manifold and f : X → R a smooth function which satisfies the following
properties

(a) all critical points of f are non-degenerate;

(b) for every t ∈ R the set
X≤t = f−1((−∞, t])

is compact;

(c) for every two critical points x,x′ ∈ X we have f (x) ̸= f (x′).

A function f satisfying these properties will be called a Morse function. We also set X≥t =

f−1([t,∞)) and X[t,t ′] = f−1([t, t ′]). The latter is a compact set.
The above assumptions imply in particular that the set C of critical points of f is discrete

and forms a (possibly finite) sequence C = {x1,x2, . . .} with

f (x1)< f (x2)< · · ·

The above sequence of real numbers is discrete, thus either finite or divergent to +∞.
The main result of basic Morse theory is the following.

Theorem 2.1.8. In the above setup, the following assertions hold:

(a) Let t ≤ t ′ in R such that X[t,t ′]∩C = /0. Then Xt is a deformation retract of Xt ′ , so that the
inclusion Xt → Xt ′ is a homotopy equivalence. Moreover, the inclusion map Xt → Xt ′ is
isotopic to a diffeomorphism Xt ∼−−→ Xt ′ .

(b) Let x ∈C be a critical point of index k and f (x) = t, and let ε > 0 be such that X[t−ε,t+ε]∩
C = {x}. Then for ε ≪ 1, the space X≤t+ε is homotopy equivalent to a space obtained
from X≤t−ε by attaching a k-cell.
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Proof. (Write something?)

Corollary 2.1.9. In the situation of Theorem 2.1.8, X has the homotopy of a CW-complex with
one k-cell for each critical point of index k.

So far we have said nothing about how to construct a Morse function on a given X . In fact,
for X ⊆ Rn, the square distance function from a random point in Rn does the job.

Lemma 2.1.10. Let X ⊆ Rn be a smooth submanifold of dimension d. Then for p ∈ Rn outside
a nowhere dense subset of Rn, the square-distance function

fp(x) = ||x− p||22

on X is a Morse function.

Proof idea. The condition that X≤t is compact is clearly satisfied. We ensure that fp has only
non-degenerate critical points.

The condition that x is a critical point of fp means precisely that the vector v = p− x is
perpendicular to the tangent space TpX ⊆ TpRn = Rn. Consider the manifold (the total space of
the normal bundle of X in Rn)

N = {(x,v) : v ∈ (TpX)⊥},

and the map
Ψ : N −→ Rn, Ψ(x,v) = x+ v

(which is a map between n-dimensional manifolds). Thus if p = Ψ(x,v) then x is a critical point
of fp. One checks that this point is non-degenerate if and only if (x,v) is a critical point of Ψ.
By Sard’s theorem, the set of critical values of Ψ is nowhere dense, and we are done.

We omit the proof that one can ensure that every critical value is taken exactly once. (This is
not seriously needed for Theorem 2.1.8 either.)

2.2. Homotopy types of smooth affine varieties

We are going to use Morse theory to prove the following surprising result.

Theorem 2.2.1 (Andreotti–Frenkel, Bott, Thom). Let X ⊆ An
C be a smooth closed subscheme of

dimension d. Then X(C) has the homotopy type of a finite CW-complex of dimension at most d.

This is striking since X(C) is a manifold of dimension 2d! According to Corollary 2.1.9, in
order to show Theorem 2.2.1, we need to find a Morse function f : X(C)→ R whose critical
points all have indices ≤ d.

Proposition 2.2.2. Let X ⊆Cn be a smooth complex submanifold of dimension d, let x ∈ X, and
let p ∈ Cn \X be such that x is a nondegenerate critical point of fp of index k. Then k ≤ d.
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Proof. This is an enlightening but direct computation, see [Lazarsfeld, 2004, Proposition 3.1.7].
A change of coordinates and basic order estimates allow one to assume that X is given by a
single equation of degree two

zd+1 = 1+
d

∑
i, j=1

ai jziz j, ai j = a ji

with x = (0, . . . ,0,1,0, . . . ,0) ((d +1)-st basis vector) and p = (0, . . . ,0). Thereupon, writing
zi = xi +

√
−1yi, the symmetric matrix of second derivatives of f takes the block form[

A B
B −A

]
, A =

[
∂ 2 f

∂x j∂x j

]
, B =

[
∂ 2 f

∂x j∂y j

]
(check this; write out in terms of ai j) Then if (v,w) is a vector in block form with eigenvalue λ ,
then its “conjugate” (v,−w) is an eigenvector for −λ , which shows the assertion.

We are now ready to show the Andreotti–Frenkel theorem.

Proof of Theorem 2.2.1. Let p∈Cn\X be such that fp is a Morse function. Since X is algebraic
(in particular real algebraic considered as a subset of R2n) and fp is real algebraic, the set of
critical points of fp is real algebraic. But it is also discrete, and hence finite (by the Tarski–
Seidenberg theorem). By Proposition 2.2.2, each of these critical points has index at most d. We
conclude by Corollary 2.1.9.

Remark 2.2.3. The same strategy shows that a Stein manifold of dimension d has the homotopy
type of a (not necessarily finite) CW-complex of dimension ≤ d.

2.3. Lefschetz hyperplane theorem

We will now use Morse theory to establish Lefschetz’s theorem comparing the topology of a
smooth projective variety to that of its ample divisor.

Theorem 2.3.1 (Lefschetz, Thom–Bott). Let X be a complex projective variety and let Y ⊆ X
be an effective Cartier divisor. Denote by i : Y ↪→ X the inclusion map. Suppose that the line
bundle L=OX(Y ) is ample (for example, that X ⊆ Pn

C and Y = X ∩H for a hyperplane H), and
that U = X \Y is smooth of dimension d.

(a) The induced map on cohomology groups

i∗ : Hn(X(C),Z)−→ Hn(Y (C),Z)

is an isomorphism for n < d−1 and is injective for n = d−1.

(b) The induced map on homology groups

i∗ : Hn(Y (C),Z)−→ Hn(X(C),Z)

is an isomorphism for n < d−1 and is surjective for n = d−1.
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(c) Suppose that n > 1, and let x ∈Y . Then Y is connected and the induced map on homotopy
groups

i∗ : πn(Y (C),x)−→ πn(X(C),x)

is an isomorphism for n < d−1 and is surjective for n = d−1.

Proof. We will show the theorem under the additional assumption that Y is very ample, so that
there exists an embedding X ↪→ PN

C and a hyperplane H such that Y = H ∩X . We set U = X \Y ,
which is a smooth affine variety, embedded inside AN

C.
We first prove (H∗) using Theorem 2.2.1 (then H∗ follows similarly). The maps i∗ fit inside

a long exact sequence

· · · // Hn
c (U(C),Z) // Hn(X(C),Z) i∗ // Hn(Y (C),Z) // · · ·

where Hn
c (U(C),Z) are the cohomology groups with compact support (this is the cohomology

exact sequence of the short exact sequence of sheaves 0→ j!ZU → ZX → ZY → 0 where
j : U → X is the inclusion and j! denotes extension by zero). We deduce that to show (H∗) it
is enough to show that Hn

c (U(C),Z) = 0 for n < d. Since U(C) is an orientable manifold of
dimension 2d, by Poincaré duality, this group is dual to the homology group H2d−n(U(C),Z).
But this is zero for 2d−n > d since by Theorem 2.2.1 the space U(C) is homotopy equivalent
to a CW-complex of dimension d.

In order to show (π∗), we need a variant of this argument, due to Thom and Bott. Let
p ∈ CN \U(C) be such that the square distance function fp(x) = ||x− p||22 is a Morse function
on U(C) (Lemma 2.1.10). Let T be an open tubular neighborhood of Y (C) in X(C), so that Y (C)
is a deformation retract of T . (Find a reference for the tubular neighborhood.) Choose R> 0 large
enough so that the ball ||x− p||22 < R contains the compact set U(C)\T . Consider the function
1/ fp, which is again Morse function on U(C), but now its indices are ≥ d (Corollary 2.1.7).
Thus U(C) is obtained from the manifold M = { fp ≥ R} ⊆ T by attaching cells of dimension
≥ d.

By the exact sequence of relative homotopy groups

· · · // πn(Y (C),x) // πn(X(C),x) // πn(X(C),Y (C)) // · · ·

we see that what we want is that the πn(X(C),Y (C)) is trivial for n < d. Let f : Dn→ X(C)
be a continuous map with f (∂Dn) ⊆ Y . Then f can be deformed (clarify this!) into a map
f ′ : Dn→M∪Y (C)⊆ T . Using the deformation retraction of T onto Y (C), we can then deform
f ′ into a map which lands in Y (C).

Suppose that X is smooth. Using the Bertini theorem, one can always find a smooth
hyperplane section of a smooth X ⊆ Pn

C. By induction, we deduce:

Corollary 2.3.2. Let Γ be a group isomorphic to the fundamental group of a smooth projective
complex variety. Then there exists a smooth projective complex surface of general type with
fundamental group X. Moreover, there exists a g≥ 0 and a surjective homomorphism Γg→ Γ

where Γg is the genus g surface group.
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Remark 2.3.3. The “moreover” part of Corollary 2.3.2 is a bit silly, since the surface group Γg

surjects onto the free group Fg (for example, via the map sending ai and bi to the i-th generator
xi), and hence every finitely generated group admits a surjection from Γg for some g. However,
a concrete surjection from a surface group is very useful in practice. Moreover, as we shall see
later in the course, in the case of the étale fundamental group, finite generation will be proved
using an analog of this fact (so that the question can be reduced to finite generation for curves).

An almost-corollary of the above corollary is the following.

Corollary 2.3.4. Let X ⊆ Pn
C be a smooth complete intersection of dimension at least two. Then

X is connected and π
top
1 (X) = 1.

This will be shown a degeneration argument from [Atiyah and Hirzebruch, 1962]. We first
review Ehresmann’s theorem.

Theorem 2.3.5 (Ehresmann). Let f : X → S be a proper submersion between smooth mani-
folds. Then f is a locally trivial fibration; more precisely, for every s ∈ S there exists an open
neighborhood s ∈U ⊆ S and an diffeomorphism

X×S U ≃ Xs×U

over U, where Xs = f−1(s). In particular, for every s,s′ ∈ S in the same connected component
of S, the fibers Xs and Xs′ are diffeomorphic.

Corollary 2.3.6. Let f : X → S be a smooth and proper morphism of schemes of finite type
over C, with connected fibers and S connected. Then for every s,s′ ∈ S(C) there exists an
isomorphism

π1(Xs(C))≃ π1(Xs′(C)).

We are now ready to prove Corollary 2.3.4.

Proof of Corollary 2.3.4. Write Y = Y1∩ . . .∩Yc, with Yi ⊆ Pn
C a hypersurface of degree di ≥ 1.

Suppose first that the intersections

Y1, Y1∩Y2, . . . , Y1∩ . . .∩Yc (2.3.1)

are all smooth. Then the assertion follows by an iterated application of the Lefschetz hyperplane
theorem.

We reduce to the above situation by a degeneration argument. Let Vi = H0(Pn
C,O(di)) be

the space of degree di homogeneous polynomials in n+ 1 variables, and let Pi = PV ∗i be the
associated projective space parameterizing degree di hypersurfaces in Pn

C. Let

U ⊆ P1×·· ·×Pc

be the subscheme parameterizing tuples (Y1, . . . ,Yc) for which the intersections (2.3.1) are
smooth. Let V ⊆ P1×·· ·×Pc be the subscheme defined by the condition Y1∩·· ·∩Yc is smooth.
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We claim that U is a non-empty open subscheme. This follows by an iterated application of
Bertini’s theorem. Let (Y ′1, . . . ,Y

′
c)∈V and let Y ′=Y ′1∩ . . .∩Y ′c be the corresponding intersection.

We have shown that π1(Y ′) = 1.
Since P1×·· ·×Pc is irreducible and V is a non-empty open, the scheme V is connected.

Consider the “universal family” Y→V over V :

Y= {((Y1, . . . ,Yc),y) ∈V ×Pn
C : y ∈ Y1∩ . . .∩Yc} ⊆V ×Pn

C −→V.

The fiber over (Y1, . . . ,Yc) is thus Y1∩ . . .∩Yc, which is smooth. It is not difficult to see that in
fact Y→V is a smooth morphism.

By Corollary 2.3.6, the fibers of Y(C)→V (C) are diffeomorphic to one another. It follows
from π1(Y ′) = 1 that all intersections Y1∩ . . .∩Yc are simply connected.

2.4. The Godeaux–Serre construction

We shall use Corollary 2.3.4 to prove the following theorem.

Theorem 2.4.1 (Serre5). Let G be a finite group. Then there exists a smooth projective variety6

X over C with π
top
1 (X)≃ G.

Proof. The proof will proceed in several steps.

Step 1. We construct a G-representation ρ : G→ PGL(V ) such that the “non-free” locus in
P = P(V ) defined by

Z =
⋂
g̸=1

Fix(g) = {x ∈ P : Gx ̸= 1} ⊆ P

is of codimension at least three. For example V = C[G]⊕C[G]⊕C[G] will do.

Step 2. Let Q = P/G. Then Q is a (possibly singular) projective variety. The quotient map
π : Q→ P is finite. If U = P\Z is the open subset on which G acts freely, and V = π(U)⊆ Q,
then the restricted map π : V →U is finite étale (and the covering V (C)→U(C) is a G-torsor).
The closed subset Q\V has codimension ≥ 3.

Step 3. Let X ⊆ Q be a smooth complete intersection of dimension 2 such that X ⊆V . It exists
by the Bertini theorem [Jouanolou, 1983, 6.11]. Let Y = π−1(X). Then Y → X is finite étale,
and in particular X is smooth. It is also a complete intersection (since Pic(P) = Z, so that every
effective Cartier divisor is a hypersurface of some degree).

Step 4. By the Lefschetz hyperplane theorem, since dim(Y ) > 1, we have that Y is simply
connected (Corollary 2.3.4), and hence Y (C)→ X(C) is the universal covering of X(C). We
conclude that π1(X ,x) = Aut(Y/X) = G.

Remark 2.4.2. The same argument shows that for every finite group G and every algebraically
closed field k there exists a smooth projective variety X over k whose étale fundamental group is
isomorphic to G.

5The canonical reference seems to be [Serre, 1958, §16], but the exact statement is not there.
6One can take X to be a surface of general type, by taking intersections with high degree hypersurfaces.
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Example 2.4.3 ([Serre, 1964]). Consider G = Z/p (p prime) acting on P(Cp) = Pp−1
C by

cyclically permuting the coordinates. Then the hypersurface Y given by the Fermat equation

xp
1 + · · ·+ xp

p = 0

is G-stable and the action of G on Y is free. Thus X = Y/G has π
top
1 (X)≃ G.

Remark 2.4.4 (Nonliftable variety). Serre [Illusie, 2005, Appendix] has used a related construc-
tion to produce an example of a smooth projective variety over a field of characteristic p which
does not lift to characteristic zero. Here are some details of this lovely construction:

Let k be an algebraically closed field of characteristic p > 0, and let n ≥ 3. The group
PGLn+1(k) = Aut(Pn

k) contains a large finite p-group G, namely the group of strictly upper-
triangular matrices with entries in Fp. As in the proof of Theorem 2.4.1, we construct a complete
intersection Y in Pn

k of dimension ≥ 3 on which G acts freely, then define X = Y/G. Suppose
that A is an Noetherian local ring with residue field k and X̃ → Spec(A) a smooth and proper
morphism with X̃⊗A k ≃ X . Serre proves that we must have pA = 0.

To show this, we may assume that A is Artinian. Using topological invariance of the étale
fundamental group (to be reviewed later in the course) one sees that the G-torsor Y → X lifts to
a G-torsor Ỹ → Y . Thus Ỹ → Spec(A) is an infinitesimal deformation of Y . Since dim(Y )≥ 3,
we have H2(Y,OY ) = 0 = H1(Y,OY ), and hence Pic(Ỹ )→ Pic(Y ) is an isomorphism. The line
bundle L=OY (1) lifts to a line bundle L̃ on Ỹ . Since H1(Y,L) = 0, the map H0(Ỹ , L̃)→H0(Y,L)
is surjective, and hence we obtain an embedding Ỹ ↪→ Pn

A. One shows rather easily that the
action of G on Ỹ extends to an action on Pn

A and hence produces a map in the diagram below

G

��vv
PGLn+1(A) // PGLn+1(k).

One shows that such a dotted arrow cannot exist, for linear algebra reasons. (Check this)

2.5. Projective schemes with given fundamental group (A)

Our goal is to construct, for every finitely presented group Γ, a projective scheme (not a variety!)
with topological fundamental group Γ. We first prove a descent statement (see §1.3 for a
discussion of effective descent).

Lemma 2.5.1. Consider a commutative square of topological spaces

Y ′ //

��

X ′

��
Y // X

Assume that

(a) the maps Y → X and Y ′ → X ′ are of effective descent (at least for locally constant
sheaves);

25



(b) the map Y ′→ Y is an isomorphism on π0 and π1 (with any basepoint);

(c) the map Y ′×X ′ Y ′→ Y ×X Y is an isomorphism on π0 and a surjection on π1 (with any
basepoint);

(d) the map Y ′×X ′ Y ′×X ′ Y ′→ Y ×X Y ×X Y is a surjection on π0.

Then, the map X ′→ X induces isomorphisms on π0 and π1 (with any basepoint).

Proof. The assertion is equivalent to saying that the pull-back functor CovX → CovX ′ is an
equivalence. This in turn is an exercise in descent. By assumption (a) and Proposition REF we
need to show that the pull-back functor on descent data

DD(Y/X)−→ DD(Y ′/X ′)

is an equivalence. An object of DD(Y/X) consists of a covering Z → Y together with an
isomorphism φ : pr∗1Z ≃ pr∗2Z over Y ×X Y satisfying the cocycle condition, which is an equality
of two maps over Y ×X Y ×X Y . By assumption (b) the pull-back functor

CovY −→ CovY ′

is an equivalence, so each such Z→ Y corresponds to a unique Z′→ Y ′. By assumption (c), the
pull-back functor

CovY×XY → CovY ′×X ′Y ′

is fully faithful, so each φ corresponds to a unique φ ′ : pr∗1Z′ ≃ pr∗2Z′. Finally, assumption (d)
implies that the pull-back functor

CovY×XY×XY → CovY ′×X ′Y ′×X ′Y ′

is faithful; thus φ satisfies the cocycle condition if and only if φ ′ does. This establishes that
DD(Y/X)→ DD(Y ′/X ′) is an equivalence.

We now proceed with the construction.

Definition 2.5.2. An (abstract) simplicial complex consists of a set V of vertices and a family
of non-empty finite subsets S⊆ 2V closed under taking non-empty subsets and containing all
singletons.

Let (V,S) be an abstract simplicial complex. Its geometric realization is the subspace
∆(V,S) of the simplex

∆(V ) = { f : V → [0,1] : f (v) = 0 for almost all v and ∑
v∈V

f (v) = 1}

(with the direct limit topology when we write V as a filtered colimit of its finite subsets), cut out
by the condition

f ∈ ∆(V,S) ⇔ {v ∈V : f (v) ̸= 0} ∈ S.

In other words, ∆(V,S) is the union of the simplices ∆(σ) for all σ ∈ S.
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Lemma 2.5.3. Let Γ be a finitely presented group. Then there exists a finite simplicial complex
(V,S) with ∆(V,S) connected and

π1(∆(V,S))≃ Γ.

Proof. Take the usual construction of a two-dimensional CW-complex with π1 = Γ (the first
steps of the construction of the classifying space BΓ), then subdivide every loop in three, and
each disc into pizza slices. The details are tedious and omitted.

We now define the projective realization of a finite simplicial complex similarly, by replacing
simplices with complex projective spaces:

P(V,S) := {(xv) ∈ P(CV ) : {v : xv ̸= 0} ∈ S}.

There is an obvious inclusion map

ϕ : ∆(V,S)−→ P(V,S).

Theorem 2.5.4. Let ∆ be a finite simplicial complex. Then the map ϕ : ∆(V,S)→P(V,S) induces
isomorphisms on π0 and π1 (with any basepoint).

Proof. Let P′(V,S) be the disjoint union of the projective spaces P(Cσ ) for each σ ∈ S. Thus

P′(V,S)→ P(V,S)

is a proper surjection (a finite closed cover). We define ∆′(V,S) similarly as the disjoint union of
simplices ∆(σ). We have a commutative square

P′(V,S) //

��

P(V,S)

��
∆′(V,S) // ∆(V,S)

to which we wish to apply Lemma REF. The horizontal arrows are proper surjections and hence
of effective descent (see REF). Assumptions (b), (c), and (d) of the lemma follow from the fact
that for every σ ∈ S, the inclusion

∆(σ)−→ P(Cσ )

induces an isomorphism on π0 (both spaces are connected) and on π1 (both spaces are simply
connected).

Remark 2.5.5. Simpson [Simpson, 2011] showed that every finitely presented group is the
fundamental group of an integral (irreducible and reduced) projective scheme over C. See also
[Kapovich and Kollár, 2014].
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3. Lecture 3: GAGA

Summary. We define complex analytic spaces and the analytification functors in §3.1 In §3.2,
we sketch the proof of Serre’s GAGA theorem: on a proper scheme, analytic and algebraic
coherent sheaves coincide. We also derive numerous corollaries from this result, particularly
those pertaining to topology of algebraic varieties. In §3.3 we discuss a beautiful example,
again due to Serre, of a variety of a number field whose topological fundamental group depends
on the embedding of the base field into C.

In the final §3.4 we prove Malcev’s theorem that finitely generated linear groups are residu-
ally finite.

3.1. Complex analytic spaces and analytification

We briefly introduce complex analytic spaces. See the first sections of [Serre, 1956] or the first
chapter of [Grauert and Remmert, 1984] for more.

We denote by O the sheaf of holomorphic functions on Cn. It is a sheaf of C-algebras whose
stalks are noetherian (and henselian) local rings whose completions are isomorphic to the power
series ring CJt1, . . . , tnK.

We describe the local models of complex analytic spaces. Let U ⊆ Cn be an open polydisc
and let f1, . . . , fr ∈ O(U) be holomorphic functions on U . Let

Z =V ( f1, . . . , fr) = {x ∈U : f1(x) = . . .= fr(x) = 0}.

be their vanishing locus. Denote the inclusion by i : Z ↪→U and set

OZ = i−1OU/( f1, . . . , fr).

The space (Z,OZ) is a locally ringed space. The stalks of OZ are local rings: we have OZ,x =

OU,x/( f1, . . . , fr).

Definition 3.1.1. A complex analytic space is a locally ringed space over C (that is, equipped
with a morphism to Spec(C)) which is locally isomorphic (over C) to one of the spaces Z
constructed above. A morphism of complex analytic spaces is a morphism of locally ringed
spaces over C. We denote the category of complex analytic spaces by AnC.

For example, every complex manifold is in particular a complex analytic space. One can
also produce complex analytic spaces by analytifying schemes.

Definition 3.1.2. Let X be a scheme locally of finite type over C. Its analytification is a complex
analytic space Xan together with a map of locally ringed spaces over C

ε : Xan −→ X

such that every morphism Y → X of locally ringed spaces over C where Y is a complex analytic
space factors uniquely through ε .
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Usual definitions and constructions apply: open and closed immersions, smoothness, fiber
products etc.

Proposition 3.1.3. Let X be a scheme locally of finite type over C. Then X admits an analytifi-
cation ε : Xan→ X. The map ε maps Xan bijectively onto X(C).

Proof (boring). Recall [SP Tag 01I1] that an affine scheme Spec(A) represents the functor

Y 7→ Hom(A,Γ(Y,OY ))

on all locally ringed spaces (not just schemes). Suppose that X = Spec(A) is affine, and choose
a presentation A = C[T1, . . . ,Tn]/( f1, . . . , fr). Let Xan be the zero set V ( f1, . . . , fr)⊆ Cn defined
as before Definition 3.1.1. Then a map Y → Cn is a tuple (g1, . . . ,gn) ∈ Γ(Y,OY ). For this
map to factor (uniquely) through Xan it is necessary and sufficient that fi(g1, . . . ,gn) = 0 for
i = 1, . . . ,r. This means that

HomAnC(Y,X
an) = HomC(A,Γ(Y,OY )) = HomC(Y,X),

confirming that the obvious map ε : Xan→ X has the required universal property. The assertion
that Xan ∼−−→ X(C) is also clear.

We also easily check that if U = D( f )⊆ X = Spec(A) is a distinguished affine open, then
Uan ⊆ Xan is defined by the condition { f ̸= 0}. Consequently, affine open covers produce open
covers of the analytification.

Suppose now that X is arbitrary, and admits an open cover X =
⋃

Xi such that Xan
i and

(Xi ∩X j)
an exist. Then (Xi ∩X j)

an → Xan
i are open immersions, along which we can stitch

together a complex analytic space X ′. One then checks easily that the induced X ′→ X produces
an analytification of X .

Lemma 3.1.4. Let X be a scheme locally of finite type over C. Then X is n-dimensional (reduced,
normal, smooth, proper) if and only if Xan is n-dimensional (reduced, normal, smooth, compact).

Proof. Conditions on singularities can be checked on complete local rings in both cases. For
properness vs compactness see [■ ].

3.2. GAGA

We define analytic coherent sheaves (again, see [Serre, 1956] or the book [Grauert and Remmert, 1984]
a more detailed treatment). Recall that for a locally ringed space (X ,OX), an OX -module F is
coherent7 if it satisfies the following two conditions

(a) F is of finite type; that is, locally on X there exists a surjection On
X → F for some n≥ 0;

(b) for every open U ⊆ X and every map φ : On
X → F for some n≥ 0, the kernel ker(φ) is of

finite type.

7For locally noetherian schemes, this is equivalent to the usual notion “locally on Spec(A) isomorphic to M̃ for
some finitely generated A-module M” (e.g. [Hartshorne, 1977, III.5]).
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We denote by Coh(OX) (or simply by Coh(X)) the full subcategory of Mod(OX) consisting of
coherent OX -modules (we often call them simply “coherent sheaves”).

According to Oka’s coherence theorem ([Grauert and Remmert, 1984, Chapter 2, §5]), the
sheaf OCn of holomorphic functions of Cn is coherent (as a module over itself). More generally,
if Z ⊆U ⊆ Cn are as above Definition 3.1.2, then OZ is a coherent OU -module. It follows
formally that for every complex analytic space X , the structure sheaf OX is coherent. This is
important because they imply that an OX -module is coherent if and only if locally on X it is
isomorphic to the cokernel of a map Om

X → On
X for some n,m≥ 0. Consequently, for any map

f : Y → X of complex analytic spaces the pull-back functor f ∗ : Mod(OX)→Mod(OY ) induces

f ∗ : Coh(OX)−→ Coh(OY ).

Moreover, one has the usual correspondence between closed immersions i : Z→ X and coherent
ideals I⊆ OX .

Similarly, if X is a scheme locally of finite type over C, pull-back along the analytification
map ε∗ : Xan→ X induces a functor

ε
∗ : Coh(X)−→ Coh(Xan). (3.2.1)

We often denote ε∗F simply by Fan and call it its analytification.

Example 3.2.1. We have (Ω1
X/C)

an ≃Ω1
X .

Lemma 3.2.2. The functor (3.2.1) is faithful, conservative, and exact. For every coherent
OX -module F, the map Γ(X ,F)→ Γ(Xan,Fan) is injective.

Proof. For every x ∈ Xan = X(C), the homomorphism of local rings OX ,x→ OXan,x induces an
isomorphism on completions and is (therefore) flat. Thus, if f : G→ F is a map in Coh(X), then
f = 0 if and only if for every x ∈ X(C), the induced map of completed stalks Ĝx→ F̂x is zero.
But this map can be recovered from Gan→ Fan, and hence is zero if the latter one is. This shows
faithfulness and, using G= OX , the injectivity on global sections. Similarly, exactness in both
Coh(X) and Coh(Xan) can be checked on completed stalks, which shows that the functor is
exact. Conservativity then follows since a map is an isomorphism if and only if 0→ G→ F→ 0
is exact.

In addition to Oka’s theorem, the second key result about analytic coherent sheaves is the
finiteness theorem.

Theorem 3.2.3 (Cartan–Serre [Grauert and Remmert, 2004, VI]). Let X be a compact complex
analytic space, and let F be a coherent OX -module. Then dimCHn(X ,F) is finite for all n≥ 0
(and zero for n > dim(X)).8

We are now ready to state and prove Serre’s GAGA theorem.

8Grauert [Grauert, 1960], [Grauert and Remmert, 1984, Chapter 10] generalized this to the relative case: for a
proper morphism f : X → S, the higher direct images Rn f∗F are coherent OS-modules for n≥ 0.
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Theorem 3.2.4 ([Serre, 1956], [Grothendieck, 1971, Exp. XII]). Let X be a proper scheme over
C. Then (3.2.1) is an equivalence. Moreover, for every coherent OX -module F, the map

ε
∗ : H p(X ,F)−→ H p(Xan,Fan)

is an isomorphism for p≥ 0.

Proof. The proof will proceed in several steps: X = Pn
C, X projective, X proper.

Step 1: The case X = Pn
C. The first deal with the crucial case X = Pn

C. As we shall see, the only
non-trivial analytic input is the finiteness result Theorem 3.2.3.

Step 1.1: Cohomology for F = O(m). We know how to compute H p(Pn
C,O(m)) for all p,n,m.

A similar computation on (Pn)an shows that they agree.

Step 1.2: Cohomology for a general F. Let F be a coherent sheaf on Pn
C. By Hilbert’s syzygy

theorem, F admits a finite resolution of the form

0 //Mq // · · · //M0 // F // 0

where q ≤ n and where each Mi is a finite direct sum of O(mi j) for some integers mi j. We
proceed by induction on the length q of this resolution. If q = 0, then F is a finite direct
sum of O(mi) for some mi and we use Step 1.1. For the induction step, suppose q ≥ 1 and
let F′ = ker(M0→ F), so that [Mq→ ·· · →M1] is a resolution of F′ of length q− 1. Thus
the statement holds for F′, and the assertion about F follows by the five lemma applied to the
following diagram whose rows are the cohomology exact sequences on Pn and its analytification:

· · · // H p(Pn
C,F

′) //

��

H p(Pn
C,M0) //

��

H p(Pn
C,F)

//

��

H p+1(Pn
C,F

′) //

��

H p+1(Pn
C,M0) //

��

· · ·

· · · // H p(Pn,an
C ,(F′)an) // H p(Pn,an

C ,Man
0 ) // H p(Pn,an

C ,Fan) // H p+1(Pn,an
C ,(F′)an) // H p+1(Pn,an

C ,Man
0

// · · ·

Step 1.3: Fully faithfulness. We have Hom(F,G)=H0(Pn
C,Hom(F,G)) and the sheaf Hom(F,G)

is coherent. Moreover, we have

Hom(F,G)an ≃Hom(Fan,Gan)

and thus the assertion follows from the cohomology comparison in Step 1.2.

Step 1.4: Global generation of analytic coherent sheaves. This is the key step. We prove: if F is
an object of Coh(Pn,an

C ), then for m≫ 0 the sheaf F(m) = F⊗O(1)⊗m is globally generated.
We proceed by induction on n, the case n = 0 being trivial. For x ∈ Pn,an

C we need to show
that for m≫ 0 the map

αm,x : H0(Pn,an
C ,F(m))−→ F(m)x

is surjective. Indeed, then αm,x is surjective in an open neighborhood of x, and so is αm′,x for
m′ ≥ m (over the same neighborhood). Since Pn,an

C is compact, it follows that we can choose
m≫ 0 for which every αm,x is surjective, and then

H0(Pn,an
C ,F)⊗O−→ F
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is surjective, i.e. F is globally generated.
Let H ≃ Pn−1

C be a hyperplane passing through x, defined by a section ℓ ∈H0(Pn
C,O(1)). By

induction, it suffices to show that the restriction map

αm : H0(Pn,an
C ,F(m))−→ H0(Han,F|Han(m)) (3.2.2)

is surjective for m≫ 0. The obstruction to this surjectivity lies the H1 of the kernel. This leads
us to the study of coherent cohomology. Note that we have an exact sequence in Coh(Pn,an

C ) (for
every m ∈ Z)

0 // K(m) // F(m−1) ℓ // F(m) // F|Han(m) // 0

which breaks into two short exact sequences

0 // K(m) // F(m−1) // ℓF(m) // 0

0 // ℓF(m) // F(m) // F|Han(m) // 0

(3.2.3)

Note that K and F|Han are naturally objects of Coh(Han) = Coh(Pn−1,an
C ). In particular, by

induction assumption there exists objects K0 and F0 of Coh(Han) with K≃Kan
0 and F|H ≃ Fan

0 .
Then, by the cohomology comparison of Step 1.2 and by [Hartshorne, 1977, III, Theorem 5.2],
for m≫ 0 we have

H p(Han,K(m))≃H p(H,K0(m))= 0 and H p(Han,F|H(m))≃H p(H,F0(m))= 0 for p > 0.

Now let us look at the relevant pieces of the cohomology exact sequences associated to (3.2.3):

H0(Pn,an
C ,F(m)) H0(Han,F|Han(m))

H1(Pn,an, ℓF(m)) H1(Pn,an
C ,F(m)) H1(Han,F|Han(m))︸ ︷︷ ︸

0

αm

βm

(3.2.4)

which shows that βm is surjective for m≫ 0, and

H1(Pn,an
C ,F(m−1))

γm // H1(Pn,an, ℓF(m)) // H2(Han,K(m))︸ ︷︷ ︸
0

which shows that γm is surjective for m≫ 0. We conclude that the map

ℓ= βm ◦ γm : H1(Pn,an
C ,F(m−1))−→ H1(Pn,an,F(m)) (3.2.5)

is surjective for m≫ 0. But these cohomology groups are of finite dimension by Theorem 3.2.3.
It follows that for m≫ 0 the dimension of H1(Pn,an

C ,F(m)) stabilizes, which forces the map
(3.2.5) to be an isomorphism. Then βm and γm are isomorphisms as well. Looking at the exact
sequence (3.2.4) again, we obtain the desired surjectivity of αm.
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Step 1.5: Essential surjectivity. Let F be an object of Coh(Pn,an
C ). Pick m large enough so that

F(m) is globally generated. We obtain a surjection O(−m)r→ F; let K be its kernel. We pick
m′ large enough so that K(m′) is globally generated. We obtain a surjection O(−m′)r′→K, and
together the two surjections combine into a presentation for F of the form

O(−m′)r′ ϕ // O(−m)r // F // 0.

Now ϕ is an m′×m matrix of homogeneous polynomials of degree r− r′. We can thus define a
coherent sheaf F0 on Pn

C as the cokernel of

ϕ : O(−m′)r′ −→ O(−m)r.

Since the analytification functor is exact, we have Fan
0 ≃ F. This finishes the proof of Step 1.

Step 2: projective schemes. Let X be a projective scheme over C, and let i : X → Pn
C be a closed

immersion. Then coherent sheaves on X are identified with coherent sheaves on Pn
C which are

annihilated by the ideal of X in Pn
C. The result then follows simply from the case X = Pn

C.

Step 3: proper schemes. This part of the proof deduces the proper case from the projective case
by means of Chow’s lemma [Grothendieck, 1961, 5.6.1]. See [Grothendieck, 1971, Exp. XII,
§4] for the details.

Corollary 3.2.5 (Chow’s theorem). Let X be a proper scheme over C. Then closed subschemes
of X correspond bijectively to closed analytic subspaces of Xan.

Proof. A closed subscheme Z ⊆ X corresponds to a surjective map OX → F in Coh(X) (where
F=OZ and Z = supp(F)). The same assertion holds on the analytic side, and thus the statement
follows from Theorem 3.2.4.

Corollary 3.2.6. The analytification functor, restricted to proper schemes over C, is fully faithful.

Proof. A map Y → X corresponds to a closed subscheme Z ⊆ Y ×X such that the projection
Y ×X → Y induces an isomorphism Z ∼−−→ Y . The same holds on the analytic side, and the
assertion follows from Corollary 3.2.5.

Thanks to the above corollary, we can use without causing confusion the following terminol-
ogy. We shall say that a compact complex analytic space is algebraic if it is of the form Xan for
a proper C-scheme X . Without the compactness assumptions, the “algebraic structure” might
not be unique.

For the next corollary, we recall that for a locally noetherian scheme X , finite morphism of
schemes Y → X correspond contravariantly to commutative coherent OX -algebras, i.e. coherent
sheaves A endowed with an OX -linear multiplication map A⊗A→A giving A the structure of
a sheaf of commutative rings. This correspondence sends f : Y → X to A= f∗OY and A to its
“relative spectrum” Spec(A).

An analogous statement holds for complex analytic spaces. For simplicity, let us call a map
of complex analytic spaces f : Y → X finite if it is proper and its fibers are finite. Then f∗OY is
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a coherent commutative OX -algebra. One can show that this construction again establishes a
correspondence between finite maps to X and commutative algebras in Coh(X). The inverse
functor, the analog of the relative spectrum, sends A to Y → X characterized uniquely by
HomX(Z,Y ) = Hom(A,g∗OZ) in the slice category of maps g : Z → X of complex analytic
spaces over X .

Corollary 3.2.7. Let X be a proper scheme over C. The analytification functor establishes an
equivalence between finite schemes over X and finite complex analytic spaces over Xan.

Note that the case of closed immersions (Corollary 3.2.5) is a special case of this result.
Another one is:

Corollary 3.2.8. Let X be a proper scheme over C. Finite étale morphisms Y → X corresponds,
via analytification, to finite covering spaces of Xan.

Proof. Let Y ′→ Xan be a finite covering space. There exists a unique structure of a complex
analytic space on Y ′ making this map into a local isomorphism. The resulting map of complex
analytic spaces is finite, and hence is the analytification of a unique finite map Y → X .

It remains to show that for a finite map of schemes Y → X , its analytification Y an→ Xan is a
local isomorphism if and only if Y → X is étale. We will learn more about étale morphisms in
subsequent lectures, but now it is sufficient to know this: a map of C-schemes locally of finite
type Y → X is étale if and only if for every y ∈Y (C) mapping to x ∈ X(C), the resulting map of
completed local rings

ÔX ,x −→ ÔY,y

is an isomorphism. The assertion then follows from the (already used) fact that

ÔX ,x ≃ ÔXan,x and ÔY,y ≃ ÔY an,Y

Example 3.2.9 (Non-unique algebraic structure). We show that if we drop the properness
assumption, there exist pairs of non-isomorphic complex algebraic varieties with isomorphic
analytifications. This example is again due to Serre (I know, right?) and is explained beautifully
in [Hartshorne, 1970, VI 3.2]. We explain it slightly differently. Let Z2 ≃ Λ⊆ C be a lattice,
which we let act on C2 by

λ · (x1,x2) = (x1 +λ ,x2 +λ ).

This action is free and properly discontinuous. Denote the quotient complex surface C2/Z2 by
X .

The first projection C2→ C induces a map to the elliptic curve E = C/Λ:

C2 //

��

C

��
X // E

and we check easily that X → E is an C-bundle. Note that affine line bundles (as opposed
to line bundles) on E are classified by H1(E,OE), which is one-dimensional. The variety
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X corresponds to the unique non-split extension F of OE by OE . This interpretation gives
X an algebraic structure: X ≃ Y an where Y = P(F) \E. The variety Y is not affine because
H0(Y,OY ) = C.

On the other hand, the action is isomorphic to the action

(n1,n2) · (x1,x2) = (x1 +n1,x2 +n2)

of Z2 on C2. The quotient by this action is

(C/Z)× (C/Z) ≃ C××C×

and hence X is also the analytification of the affine variety Z =Gm×Gm.
Note that in this example Z is affine and Y is not. In particular, X = Y an is Stein while Y is

not affine.

Remark 3.2.10 (Warning). Given the fully faithfulness statement Corollary 3.2.6, one could
naively hope that if S is a projective variety and f : X → San is a proper morphism of complex
analytic spaces which locally on S is algebraizable, then f is algebraizable and in particular X is
algebraic. The following example shatters this hope.

Let q be a complex number with 0 < |q|< 1 and let Hq = (C2 \0)/qZ be the Hopf surface.
There is the obvious map Hq→ P1 = (C2 \0)/C× whose fibers are all isomorphic to the genus
one curve Eq = C×/qZ. Topologically, we have

Hq ∼ S1×S3, Eq ∼ S1×S1, P1 ∼ S2,

and the fibration Hq→ P1 is I think? the projection S1× S3 followed by the Hopf fibration
S3→ S2 with fiber S1. The restriction of the family Hq→ P1 to every affine open U ⊆ P1 is
isomorphic to the projection Eq×U →U . However, Hq is not algebraic (for example, because
H1(Hq,Z)≃ Z).

The GAGA theorem also implies the following seemingly obvious fact.

Corollary 3.2.11. Let X be a scheme locally of finite type over C. Then the map ε induces a
bijection π0(Xan) ∼−−→ π0(X).

Proof. Surjectivity is easy: if Z ⊆ X is a connected component, then Zan is nonempty since
Z(C) ̸= /0. We prove injectivity.

We first deal with the case X proper. We have

Γ(X ,OX) = HomCoh(X)(OX ,OX) = HomCoh(X)(OX ,OX) = Γ(Xan,OXan).

But connected components of X correspond to irreducible idempotent elements in Γ(X ,OX),
and similarly for Γ(Xan,OXan).

The general case can be reduced to the case X affine normal connected. See [Grothendieck, 1971,
ExpẊII] for the details.

Suppose now X is affine, normal, and connected. We need to show that Xan is connected.
Let X ⊆ X be a normal projective compactification of X . One can construct it by embedding X
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in An, taking the closure in Pn, then taking the normalization. Since X is connected and proper,
we have already proved that Xan is connected.

It remains to use the following fact: a non-empty Zariski open subset of a connected
normal complex analytic space is connected. We omit the proof, see [Grothendieck, 1971, Exp.
XII].

Note that the assertion of Corollary 3.2.11 is false over R. For example, if X is the elliptic
curve given by the equation y2 = x3− x, then X(R) has two connected components.

3.3. Serre’s examples of conjugate varieties

Let X be a scheme locally of finite type over C. We deal with the following general question:

Which topological properties of X(C) can be defined algebraically? (3.3.1)

While we will not make this question completely precise, a property which is “defined alge-
braically” should, in particular, be preserved by field automorphisms of C. The following
paragraph explains why this question is nontrivial.

Let σ be an automorphism of C. Then σ is continuous if and only if it is either the identity
or conjugation. If X is a scheme locally of finite type over C, we can form the “twist of X by σ”
as the pullback

Xσ //

��

X

��
Spec(C)

σ
// Spec(C)

(we treat Xσ as a scheme over C via the left vertical map). Note that Xσ → X is an isomorphism
of schemes, but not of C-schemes. In simple terms, Xσ is obtained from X by applying σ to the
coefficients defining X . For example, the twist of the elliptic curve

Eλ =V (y2z− x(x− z)(x−λ z))⊆ P2
C, λ ∈ C\{0,1}

is the elliptic curve Eσ(λ ). Since σ might be discontinuous, the induced map Xσ (C)→ X(C) is
not always continuous either. Thus there is no map

π1(Xσ ,x) × // π1(X ,x)

(one can of course substitute their favorite homotopy invariant in place of π1.)
Anyway, we expect that Xσ (C) should be topologically similar to X(C). For example, we

just saw that if X is an elliptic curve then so is Xσ , so the two spaces are homeomorphic in this
case. Invariants for which the answer to Question (3.3.1) is positive include:

(a) The Betti numbers bn(X(C)) = dimHn(X(C),Q). If X is smooth and projective, this can
be seen using GAGA and the Hodge decomposition: we have

bn(X(C)) = ∑
p+q=n

dimHq(Xan,Ω
q
Xan) = ∑

p+q=n
dimHq(X ,Ω

q
X/C),
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so not only the Betti numbers but even the Hodge numbers are algebraically defined. If
X is smooth (but possibly non-proper), we can use Grothendieck’s comparison theorem
[Grothendieck, 1966]:

bn(X(C)) = dimHn(Xan,Ω•Xan) = dimHn(X ,Ω•X/C).

The result is true for X singular as well, and one can even deal with torsion. Perhaps this
is easiest to show using ℓ-adic cohomology. Note that we do not claim here that we can
define the cohomology groups Hn(X(C),Z) algebraically, but only their isomorphism
type as a finitely generated abelian group.

(b) The profinite completion of the fundamental group π
top
1 (X). For X proper, GAGA implies

that finite étale coverings of X(C) correspond to finite étale maps Y → X (see Corol-
lary 3.2.8). As we shall later see, this statement is true even if X is not proper. The
profinite completion of π

top
1 (X) is identified with the étale fundamental group of X .

The goal of this section is to construct, following Serre [Serre, 1964], a smooth projective
variety X over a number field F and two embeddings φ0,φ1 : F → C such that the topological
fundamental groups

π
top
1 (Xφ0) and π

top
1 (Xφ1

are not isomorphic, where for φ : F → C we denote by Xφ the base change of X along φ . In
particular, Xφ0(C) and Xφ1(C) are not homotopy equivalent. (In order to turn this into a problem
of conjugating a complex variety by an automorphism of C, embed F into C by φ0 and then
extend φ1 : F → C to an isomorphism σ : C→ C.)

Remark 3.3.1. The theory of the étale fundamental group developed later will imply that the
groups π

top
1 (Xφ0) and π

top
1 (Xφ1) have isomorphic pro-finite completions. Moreover, Deligne’s

results [Deligne, 1970] show that the categories of complex representations of the two groups
are equivalent. This makes the example even more surprising.

Remark 3.3.2. It is an open question whether there exists an example with Xφ0(C) simply
connected and Xφ1(C) not. The corresponding group would have to have trivial profinite
completion (an example of such a group, the Higman four group, is given in the homework
problems).

Serre’s example is based on the theory of complex multiplication for elliptic curves (reviewed
below). It begins with the following observation: if E is an elliptic curve over C with complex
multiplication by the ring of integers OK in an imaginary quadratic number field K =Q(

√
−p)

(meaning that End(E)≃ OK), then

π
top
1 (E) = H1(E(C),Z)≃ Z2

carries the structure of a projective OK-module of rank one. This produces a class c(E) in the
(finite) class group Cl(OK) = Pic(Spec(OK)). If we apply an automorphism of C, the resulting
scheme Eσ is still an elliptic curve with complex multiplication by OK . However, the resulting
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class c(Eσ ) might be different from c. In other words, the group Aut(C) operates nontrivially
on the finite group Cl(OK). This means that the topological invariant H1(E(C),Z) is actually
sensitive to automorphisms of C, but only if we treat it as an invariant of the variety E together
with an endomorphism. Serre found a way to construct from E an abelian variety A such
that the extra endomorphism of E gives rise to an order p automorphism of A, in such a way
that H1(A(C),Z) ≃ Z2dim(A) is still sensitive to the action of σ , but now if we treat it as a
Z[Z/p]-module. In the final step, the abelian variety A is replaced with a smooth projective
variety X whose fundamental group is an extension of Z/p by H1(A(C),Z), which “encodes”
the Z/p-action on H1(A(C),Z). Then π

top
1 (X) will change when we replace X with Xσ for

suitable σ .

Facts from algebraic number theory. A number field is a finite extension K of Q. The
integral closure of Z in K is the ring of integers OK , which is a Dedekind domain (its local
rings are discrete valuation rings). The class group of K is by definition the class group
Cl(OK) = Pic(Spec(OK)). It is trivial if and only if OK is a UFD; in general, it is a finite group
whose order is called the class number of K.

• If K is an imaginary quadratic number field K = Q(
√
−d), d ≥ 1 squarefree, then OK

is spanned by 1 and (1+
√
−d)/2 if d ≡−1 mod 4, and by 1 and

√
−d otherwise. The

class number grows to infinity with d.

• If K = Q(ζn) is the cyclotomic field (adjoining a primitive n-th root of unity), then
OK = Z[ζn]. The class number of Q(ζp) for p prime plays an important role in early
attempts at proving Fermat’s last theorem for some exponents p.

The Grothendieck group of OK-modules is equal to Z×Cl(OK); for a projective module M of
rank r, the corresponding class is (r,detM) where detM =

∧r M. In fact, M ≃ Or−1
K ⊕det(M)

(see e.g. [Rosenberg, 1994, §1.4] or Theorem 7.2 in Peter May’s notes9).
The Kronecker–Weber theorem asserts that every finite extension K/Q with abelian Galois

group is contained in a cyclotomic field Q(ζn). In particular, this implies that
√
−d is a rational

combination of roots of unity. Here is a concrete fact we will need:

Lemma 3.3.3. Let p be a prime congruent to −1 mod 4. Then Q(
√
−p)⊆Q(ζp).

Proof. Consider the quadratic Gauss sum G = ∑
p−1
i=0

(
i
p

)
ζ i

p. The assumption on p implies that

−1 is not a square mod p, and therefore G =−G, so G is purely imaginary. On the other hand,
one can compute |G|2 = GG to be equal to p. See [Ireland and Rosen, 1990, Proposition 6.3.2]
for the details.

If L/K is a finite extension of number fields of degree r, then OL is a projective OK-module
of rank r. It is endowed with the trace map tr : OL→OK . The map OL→O∨L = HomOK(OL,OK)

9https://www.math.uchicago.edu/~may/MISC/Dedekind.pdf
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sending x to the homomorphism y 7→ tr(xy) induces by taking the r-th exterior powers a map
between rank one projectives

det(OL)→ det(OL)
∨,

or equivalently a map det(OL)
×2→ OK . Its image is a nonzero ideal of OK called the discrimi-

nant of L/K. We conclude that the class of this ideal in Cl(OK) is twice of the class det(OL) of
OL. The discriminant can be computed in many cases:

• For Q(
√
−d)/Q it equals d if d ≡−1 mod 4 and 4d otherwise.

• For Q(ζp) it equals pp−1.

We deduce the following fact:

• If p is a prime congruent to −1 mod 4, then Q(ζp)/Q(
√
−p) is an extension of degree

(p−1)/2 and discriminant a power of p. ■

Complex multiplication. Let E be an elliptic curve over C. Then E(C)≃ C/Λ where Λ⊆ C
is a discretely embedded copy of Z2. Note that Λ = H1(E(C),Z) = π

top
1 (E). Conversely, every

such quotient defines an elliptic curve, and two lattices Λ,Λ′ give rise to isomorphic curves
if and only if Λ = zΛ′ for some z ∈ C×. The endomorphism ring End(E) can be described as
the set of all z ∈ C such that zΛ⊆ Λ. It is either isomorphic to Z or is a subring Z ̸= R⊆ OK ,
K = Q(

√
−d), and in the latter case Λ is a projective R-module of rank one, defining a class

c(Λ) = c(E) ∈ Pic(R). If J ⊆ R is an invertible ideal of class c, then C/J (for the natural
embedding of J into C) defines an elliptic curve E(J) with c(E(J)) = c. This construction
establishes a bijection between isomorphism classes of complex elliptic curves with End(E) = R
and Pic(R). We say that E has complex multiplication by R if End(E)≃ R (and R ̸= Z). If E
has complex multiplication (by some R ̸= Z), then j(E) is an algebraic number, as its conjugates
under Aut(C) are j-invariants of elliptic curves with endomorphism ring R and hence are finite
in number. Therefore every elliptic curve with complex multiplication is defined over a number
field.

An important fact we shall use is the Weber–Fueter theorem [Serre, 1967]: let E and E ′ be
two complex elliptic curves with complex multiplication by OK , K =Q(

√
−d). Then j(E) and

j(E ′) are conjugate (under Gal(Q/Q). The full picture is the following:

Theorem 3.3.4. Let K =Q(
√
−d). There exists a Galois extension F/K with an isomorphism

Gal(F/K) ≃ Cl(OK)
10, an elliptic curve E over F with End(E) ≃ OK , and an embedding

φ0 : F → C such that for every c ∈ Cl(OK), if we denote by φc : F → C the composition of φ0

with the automorphism of F/K corresponding to c, and by Ec the base change of E along φc,
then H1(Ec(C),Z) is an invertible OK-module of class c.

10In fact F is the Hilbert class field of K, the maximal abelian unramified extension.

39



Construction of E. Fix a prime p congruent to −1 mod r and let K =Q(
√
−p). We denote

the class number of K by h. For reasons soon to become apparent, we assume that h > 1 and
that h is prime to p−1. For example, this happens for p = 23 with h = 3. Let c ∈ Cl(OK) be a
nonzero class.

We set F/K to be the Hilbert class field of K as in Theorem 3.3.4, endowed with the complex
embeddings φc : F → C (c ∈ Cl(OK) = Gal(F/K)) and the elliptic curve E over F . We set
φ0 : F → C to be the embedding corresponding to 0 ∈ Cl(OK) and φ1 = φc : F → C to be the
embedding corresponding to the nonzero class c.

By construction, we we have that H1(Eφ0(C),Z) is a free OK-module and H1(Eφ1(C),Z) is
not.

Construction of A. By our assumption on p, we have K ⊆Q(ζp). Set G = Z/p with generator
σ and note that Z[ζp] = Z[G]/(τ) where τ = 1+σ + · · ·+σ p−1 (as σ p−1 = τ(σ −1)). Thus
Z[ζp] is both an OK-module and a Z[G]-module.

We claim that Z[ζp] is a free OK-module (of rank (p−1)/2). Indeed, it is free if and only if
its determinant

∧(p−1)/2Z[ζp] is free, but by the assertion in REF its square is the class of the
discriminant of F/K, which is a power of p and hence principal. Since h = #Cl(OK) is odd, we
conclude that

∧(p−1)/2Z[ζp] is free as well, and hence so is Z[ζp].
We define the abelian variety A = E(p−1)/2). The ring of endomorphisms End(A) is the ring

of (p−1)/2× (p−1)/2 matrices over End(E) = OK , and hence picking a basis of Z[ζp] it can
be identified with the module of OK-module endomorphisms of Z[ζp]. This choice gives us an
action of Z[ζp], and hence of G = Z/p, on A.

We claim that H1(Aφ0(C),Z) is a free Z[ζp]-module and H1(Aφ1(C),Z) is not. We have

H1(Aφi(C),Z)≃ H1(Eφi(C),Z)⊗OK Z[ζp],

so the first assertion is clear. For the second assertion, we check the stronger claim that
H1(Aφ1(C),Z) is not free as an OK-module. To this end, we check that the class of its determinant
is (p−1)/2 times the class c of H1(Eφ1(C),Z). Since c ̸= 1 and h = #Cl(OK) is prime to p−1,
the assertion follows.

Construction of X . We have constructed an abelian variety A over F with an action of G =Z/p.
By Theorem 2.4.1 there exists a simply connected smooth projective variety Y with a free G-
action (which we may construct already over F). (As Serre remarks, in this situation it is
sufficient to take for Y the Fermat hypersurface of degree p in Pp−1.) Thus G acts freely on
Y ×A, and we can take the quotient

X = (Y ×A)/G.

Thus X is a smooth projective variety admitting Y ×A as a G-covering space, and hence for any
embedding φ : F → C we have a short exact sequence

1 // H1(Aφ (C),Z) // π
top
1 (Xφ ) // G // 1,

a nonabelian extension of Z/p by Zp−1. We finally arrive at:
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Theorem 3.3.5. The groups π
top
1 (Xφ0) and π

top
1 (Xφ1) are not isomorphic.

Proof. We first claim11 that for every φ , the subgroup

M = H1(Aφ (C),Z)⊆ π
top
1 (Xφ ) = Π

is the unique abelian normal subgroup of index p. Indeed, suppose M′ ⊆ Π is another such,
with M ̸= M′. Then M′ contains an element x mapping to the generator σ of G. This forces
M ∩M′ to be a trivial G-submodule of M of index p. Indeed, the action of the generator
σ ∈ G on M is given by m 7→ xmx−1. Thus if m ∈M∩M′, then σm = xmx−1 = m since M′ is
abelian. However, in our situation M is a nonzero projective Z[G]/(τ) = Z[ζp]-module (here
τ = 1+σ + · · ·+σ p−1). If it has a trivial (i.e. annihilated by σ −1) submodule of index p, then
the whole module would be annihilated by (σ −1)2. But Z[ζp] is a Dedekind domain, and M is
torsion free.

Now, suppose that there exists an isomorphism π
top
1 (Xφ0)

∼−−→ π
top
1 (Xφ1). By the result of the

previous paragraph, it extends to an isomorphism of extensions

1 // H1(Aφ0(C),Z) //

��

π
top
1 (Xϕ0)

//

��

G //

��

1

1 // H1(Aφ1(C),Z) // π
top
1 (Xϕ1)

// G // 1.

This means that the G-modules H1(Aφ0(C),Z) and H1(Aφ1(C),Z) differ by an automorphism of
G. But the element τ = 1+σ + · · ·+σ p−1 ∈ Z[G] is preserved by all automorphisms of G, and
so is the property “M is annihilated by τ and is free as a Z[G]/(τ)-module.” But H1(Aφ0(C),Z)
has this property while H1(Aφ1(C),Z) does not, a contradiction.

Remark 3.3.6. Since Serre’s paper, numerous examples of pairs of conjugate varieties with
different topological properties have been constructed. See in particular [Milne and Suh, 2010]
for examples coming from Shimura varieties and Charles [Charles, 2009] who used elliptic
curves with complex multiplication to construct a pair with non-isomorphic real cohomology
rings H∗(Xσ (C),R) ̸≃ H∗(X(C),R).

3.4. Malcev’s theorem (A)

Definition 3.4.1. A group Γ is residually finite if the intersection of its finite index subgroups
is the trivial group, or equivalently if the profinite completion map Γ→ Γ̂ is injective.

Theorem 3.4.2. Let Γ be a finitely generated group. Suppose that Γ admits a faithful represen-
tation

ρ : Γ−→ GLn(K)

for some field K. Then Γ is residually finite.
11I hope that’s what he meant by On vérifie sans difficultés que... [Serre, 1964, bottom of p. 4195]
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Proof. Let γ ∈ Γ. We shall find a representation valued in a finite field k,

ρ
′ : Γ−→ GLn(k)

with ρ ′(γ) ̸= 1. Then ker(ρ ′)⊆ Γ is a subgroup of finite index which does not contain γ . Since
we can find such a subgroup for every γ ∈ Γ, it follows that Γ is residually finite.

Consider the following functor Repn(Γ) on the category of Z-algebras:

Repn(Γ)(R) = Hom(Γ,GLn(R)).

It is represented by a scheme of finite type over Z (which we denote by X). Indeed, let
γ1, . . . ,γr ∈ Γ be a finite set of generators; then giving a representation Γ→GLn(R) is equivalent
to giving a system of r invertible matrices A1, . . . ,Ar of size n×n with coefficients in r such that
for every relation

w ∈ ker(Fr −→ Γ)

between γ1, . . . ,γr, we have
w(A1, . . . ,Ar) = 1,

which translates into a system of polynomial relations between the entries of the matrices Ai.
Note that since Z is noetherian, finitely many of these equations suffice to describe Repn(Γ),
even though Γ might not be finitely presented. Thus

X ≃Spec
(
Z[ai jk (i≤ r,1≤ j,k ≤ n),di (i≤ r)]/(di det([ai jk] j,k)−1, (relations coming from Γ)

)
.

We now define the subfunctor Yγ ⊆X by the condition that the element γ is sent to 1∈GLn(R).
It is clearly a closed subscheme of X . We define Uγ ⊆ X to be its open complement, which is
again a scheme of finite type over Z, though it might no longer be affine.

Note that the faithful representation ρ provides a point

[ρ] ∈Uγ(K).

In particular, Uγ is non-empty, and hence it contains a closed point u ∈Uγ . The residue field
k = k(u) is a finite field. By the modular interpretation of Uγ we obtain a representation

ρ
′ : Γ−→ GLn(k)

with ρ ′(γ) ̸= 1, as desired.
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A. Complements to Part I

(todo: Summary (no proofs) of what is known in 2025 about Kähler groups, groups of class P,
fundamental groups of smooth/normal quasiprojective varieties, fundamental group of curve
complements and complements of hyperplane arrangements. Fanos/rc varieties are simply
connected (Debarre). Maybe examples of quotients of abelian varieties by finite group actions.
Corollaries of Yau/BB decomposition: CY have virtually abelian pi1. Something about strange
surfaces of general type? Double covers of P2?)
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Part II

The étale fundamental group

4. Lecture 4: Étale morphisms and Galois categories

Summary. Having discussed the topological fundamental group of complex varieties, we turn
our attention towards étale fundamental groups of schemes. We review étale morphisms in
§4.1–§4.2, and in §4.3 we reinterpret Galois theory of fields in terms of étale algebras. This
serves as a motivation for the definition of Galois categories in §4.4. In the final §4.5 we
introduce the key example of a Galois category: the category of finite étale coverings of a
connected scheme (part of the proof is postponed to Lecture 5). This allows us to define the étale
fundamental group as the Galois group of this Galois category.

In addition to [Grothendieck, 1971], a good reference for this part of the lecture are the
relevant chapters of the Stacks Project [SP Chapter 024J] and [SP Chapter 0BQ6]. For a great
review of étale morphisms, with detailed proofs, see [Raynaud, 1970].

4.1. Étale morphisms

The notion of an étale morphism of schemes is motivated by the implicit function theorem,
which says that a map of smooth manifolds f : Y → X is a diffeomorphism onto its image in an
open neighborhood of a point y ∈ Y if and only if the mapping on tangent spaces TyY → Tf (y)X
is an isomorphism. In local coordinates t1, . . . , tn at Y and f1, . . . , fn at f (y), the latter condition
can be expressed in terms of the Jacobian determinant:

det
[

d fi

dx j

]
(y) ̸= 0.

In algebraic geometry, being a local isomorphism is much stronger than the above differential
condition, which for maps of smooth varieties is equivalent to being étale. For example, the map
f (z) = zn : A1

k→A1
k is not a local isomorphism, but it is étale away from zero if the characteristic

of k does not divide n.
Recall that if X is a variety (or a scheme) over a field k, and x ∈ X(k) is a rational point, then

tangent vectors v ∈ TxX = (mx/m
2
x)
∨ correspond to maps

v : Spec(k[ε]/(ε2))−→ X
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which reduce to x : T0 =Spec(k)→X modulo ε . (If you haven’t seen this before, see [Hartshorne, 1977,
Exercise II 2.8] and Lemma 4.1.2 below.) Diagrammatically, one can picture the tangent space
TxX as the set of dotted arrows making the diagram below commute

T0 = Spec(k) x //

��

X

��
T = Spec(k[ε]/(ε2)) //

v

33

Spec(k).

Let now f : Y → X be a map of k-schemes and let y ∈Y (k) with f (y) = x. Then lifts w ∈ TyY of
a tangent vector v ∈ TxX correspond to dotted arrows making a similar diagram commute

T0 = Spec(k)
y //

��

Y

f
��

T = Spec(k[ε]/(ε2)) v
//

w

44

X .

In particular, the map on tangent spaces d f : TyY → TxX is an isomorphism for every y ∈ Y (k)
over x if and only if the map

i∗ : HomX(T,Y )−→ HomX(T0,Y )

is bijective.
It is convenient to formulate the definition of an étale morphism, as well as the closely

related notions of smooth and unramified morphisms, in terms of “infinitesimal lifting problems.”
A nilpotent thickening is a closed immersion of schemes T0→ T such that the corresponding
ideal sheaf I⊆ OT is locally nilpotent. A square zero thickening is one for which I2 = 0. Note
that in this case we have

I= I/I2 = I⊗OT OT0

and hence I is naturally an OT0-module. Moreover, every nilpotent thickening with In+1 = 0
(globally) is a composition of square zero thickenings:

T0 ↪→ T1 ↪→ ··· ↪→ Tn = T, Ti =V (In+1).

Definition 4.1.1. An infinitesimal lifting problem is a commutative square in the category of
schemes of the shape

T0

i
��

// Y

f
��

T //

??

X
where T0→ T is a square zero thickening of affine schemes. Dotted arrows making the resulting
diagram commute are called its solutions.

We note that solutions of the lifting problem are precisely the preimages of the top arrow
(T0→ Y ) under the map

i∗ : HomX(T,Y )−→ HomX(T0,Y ) (4.1.1)

The following lemma establishes a close relationship between infinitesimal lifting problems
and derivations.
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Lemma 4.1.2. Let A→ B and f : B→ R be a map of rings, I ⊆ R an ideal with I2 = 0, and
δ : B→ I an A-linear map. The following are equivalent:

(a) the map f +δ : B→ R is an A-algebra homomorphism;

(b) δ is an A-linear derivation of B into the B-module I.

Proof. For b,b′ ∈ R we write

( f (b)+δ (b))( f (b′)+δ (b′)) = f (b) f (b′)+( f (b)δ (b′)+ f (b′)δ (b))+δ (b)δ (b′)︸ ︷︷ ︸
0

,

which is equal to f (bb′)+δ (bb′) if and only if δ satisfies the Leibniz rule.

Corollary 4.1.3. Given an infinitesimal lifting problem

T0

i
��

u0 // Y

f
��

T //

??

X ,

there is a natural action of Hom(u∗0Ω1
Y/X ,I) on its set of solutions. If this set is non-empty, this

action is free and transitive.

Hopefully we now have enough motivation to digest the following definition.

Definition 4.1.4. Let f : Y → X be a morphism of schemes.

(a) We say that f is formally étale (resp. formally smooth, formally unramified) if for
every ring R, every ideal I ⊆ R with I2 = 0, every lifting problem

T0 = Spec(R/I) //

��

Y

f
��

T = Spec(R) //

44

X ,

has a unique solution (resp. at least one solution, at most one solution). In other words,
for every map T = Spec(R)→ X , the map

HomX(T,Y )−→ HomX(T0,Y )

is bijective (resp. surjective, resp. injective).

(b) We say that f is étale (resp. smooth, unramified) if f is formally étale (resp. smooth,
unramified) and locally of finite presentation (resp. locally of finite presentation, locally
of finite type).

Example 4.1.5. (a) Every closed immersion is unramified.12

12This justifies why we did not impose local finite presentation on unramified morphisms in the above definition:
not every closed immersion is finitely presented!

46



(b) Every open immersion is étale.

(c) The map An
X → X is smooth.

(d) Let A = k[x] and let n≥ 1 be an integer invertible in k. Set

B = k[x1/n] = (A[T ]/(T n− x))x.

Then A→ B is étale.

Generalizing the above example, we have the following notion.

Definition 4.1.6. Let A be a ring. An A-algebra B is called standard étale if there exist a
monic polynomial f ∈ A[T ] and an element g ∈ A[X ]/( f ) such that the image of f ′ = d f/dT in
(A[T ]/( f ))g is invertible, and an isomorphism B≃ (A[T ]/( f ))g over A.

Lemma 4.1.7. Let A be a ring and let B be a standard étale A-algebra. Then Spec(B)→ Spec(A)
is étale.

Proof. Note that we can replace g with f ′. Suppose we are given a lifting problem

R/I (A[T ]/( f ))goo

xxR

OO

Aoo

OO

This translates to: an A-algebra R with I ⊆ R of square zero and an element t ∈ R/I such
that f (t) = 0 and f ′(t) ∈ (R/I)×, which we wish to uniquely lift to t ∈ R with f (t) = 0 and
f ′(t) ∈ R×. Note that the latter condition is automatic: since I is nilpotent, an element of R is
invertible if and only if its image in R/I is. Let t0 be any lifting of t, so that f (t0) ∈ I, and we
need to show that there exists a unique δ ∈ I such that f (t0 + δ ) = 0. But, since δ 2 = 0, we
have the “Taylor expansion”

f (t0 +δ ) = f (t0)+δ f ′(t0),

and δ =− f (t0)/ f ′(t0) is the unique solution.

Lemma 4.1.8. Each of the classes of morphisms: étale, smooth, and unramified, is

(a) closed under composition,

(b) closed under pull-back,

(c) local on source and target.

Moreover, unramified and étale satisfy cancellation:

(d) If Y → X and Z → X are unramified (resp. étale), then every map Z → Y over X is
unramified (resp. étale).
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Proof. Parts (a) and (b) are formal and left as an exercise, and so is (c) for étale and unramified
morphisms. Assertion (c) for smooth morphisms will be shown later (see ■ ). For (d) we use
the well-known trick expressing Z→Y as the vertical composition in the diagram with cartesian
squares

Z

��

//

□

Y
∆Y/X
��

Z

��
□

Z×X Yoo

��

// Y ×X Y

X Yoo

This diagram shows that if P is any property of morphisms stable under composition and pull-
back, and Z→ Y → X are such that Z→ X and ∆Y/X : Y → Y ×X Y have P, then Z→ Y has
P.

We are now left with showing that the relative ∆Y/X is unramified (resp. étale) if Y → X is
unramified (resp. étale). This follows from the stronger assertion below.

Lemma 4.1.9. If f : Y → X is unramified then ∆Y/X : Y → Y ×X Y is an open immersion.

Proof. These assertions are local, so we may assume that Y → X is separated, so that ∆Y/X
is a closed immersion defined by an ideal sheaf I. Then Ω1

Y/X = ∆∗Y/XI = I/I2. Since f is
unramified, we have Ω1

Y/X = 0, and hence I= I2. The ideal I is of finite type: indeed, this can
be checked locally, and if X = Spec(A) and Y = Spec(B) with x1, . . . ,xn ∈ B generating B as an
A-algebra, then I = ker(B⊗A B→ B) is generated as an ideal by the elements xi⊗1−1⊗xi. By
Nakayama, we have I= 0 in a neighborhood of Y , so that ∆Y/X is an open immersion.

The following three theorems are cornerstones of the theory. We will prove them in subse-
quent sections.

Theorem 4.1.10 (Characterizations of unramified morphisms). Let f : Y → X be a map locally
of finite type. The following are equivalent:

(U1) f is unramified;

(U2) Ω1
Y/X = 0;

(U3) the diagonal ∆Y/X : Y → Y ×X Y is an open immersion;

(U4) for every y ∈ Y there exists an open affine neighborhood U = Spec(A) of f (y), an open
neighborhood V = Spec(B) of y mapping to U, a standard étale A-algebra C, and a
surjection of A-algebras C→ B. Diagrammatically:

Y

��

U

��

cl. imm. //oo W

std. ét.
wwX Voo
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Theorem 4.1.11 (Characterizations of étale morphisms). Let f : Y → X be a map locally of
finite presentation. The following are equivalent:

(E1) f is étale;

(E2) f is flat and unramified;

(E3) for every y ∈ Y there exists an open affine neighborhood U = Spec(A) of f (y), an open
neighborhood V = Spec(B) of y mapping to U, a monic polynomial f ∈ A[T ], an ele-
ment g ∈ A[X ] such that the image of f ′ = d f/dT in (A[T ]/( f ))g is invertible, and an
isomorphism of A-algebras

(A[T ]/( f ))g ∼−−→ B;

(E4) for every y ∈ Y there exists an open affine neighborhood U = Spec(A) of f (y), an open
neighborhood V = Spec(B) of y mapping to U, and a presentation

B≃ A[T1, . . . ,Tn]/( f1, . . . , fn)

such that det(d fi/dTj) ∈ B×.

Theorem 4.1.12 (Characterizations of smooth morphisms). Let f : Y → X be a map locally of
finite presentation. The following are equivalent:

(S1) f is smooth;

(S2) f is flat and Ω1
Y/X is locally free of rank equal to dim(Y/X) (i.e. at a point y ∈ Y we have

Ω1
Y/X ,y ≃ Or

Y,y where r = dim(OY,y/mX , f (y)OY,y));

(S3) locally on Y there exists an integer n≥ 0 and a factorization Y →An
X → X where Y →An

X
is étale;

(S4) for every y ∈ Y there exists an open affine neighborhood U = Spec(A) of f (y), an open
neighborhood V = Spec(B) of y mapping to U, and a presentation

B≃ A[T1, . . . ,Tn]/( f1, . . . , fc)

with n≥ c such that det(d fi/dTj)
c
i, j=1 ∈ B×.

[Grothendieck, 1971, Exp. I] [Bost et al., 2000]

4.2. Proofs

We will prove Theorems 4.1.10 and 4.1.12, leaving Theorem 4.1.12 for another occasion. We
first deal with the easy implications.

(U1)⇔(U2): The⇒ part follows directly from Corollary 4.1.3. For the converse, in order to
show Ω1

Y/X is zero, it is enough to show that for every map u0 : T0 = Spec(R0)→ Y , we have
u∗0Ω1

Y/X = 0. Call this module I. Set R to be the trivial square zero extension of R0 by I, that is
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R = R0⊕ I with (r,ω)(r′,ω ′) = (rr′,rω ′+ r′ω). We thus have R0 = R/I, and since Y → X is
unramified there is at most one extension u : Spec(R)→ Y . But these extensions are permuted
by the group Hom(I, I), which therefore must be zero. So idI = 0 and I = 0.

(U2)⇔(U3): This is Lemma 4.1.9.

(U4)⇔(U1): The given condition expresses f locally as the composition of a closed immersion
(which is unramified) and an étale morphism (Lemma 4.1.7).

(E3)⇔(E2): Unramifiedness has just been established. To show flatness, note that the map is the
composition of Spec(A[T ]/( f ))→Spec(A) and the open immersion Spec(B)→Spec(A[T ]/( f )).
But since f is monic, A[T ]/( f )≃

⊕deg( f )−1
i=0 AT i is a free A-module and hence flat.

(E3)⇔(E4): This follows from the presentation

(A[T ]/( f ))g = A[T,S]/( f ,Sg−1)

(E4)⇔(E1): This is a multi-variable variant of the argument of Lemma 4.1.7. Given an infinites-
imal lifting problem

R/I A[T1, . . . ,Tn]/( f1, . . . , fn) = B
(t1,...,tn)oo

(t1,...,tn)
ssR

OO

Aoo

OO

we pick any lifts t ′i ∈ R of the images t i of Ti in R/I. Setting ti = t ′i + δi for the sought for
solutions, we thus seek δ1, . . . ,δn ∈ I such that

f j(t ′1 +δ1, . . . , t ′n +δn) = 0 j = 1, . . . ,n.

But

f j(t ′1 +δ1, . . . , t ′n +δn) = f (t ′1, . . . , t
′
n)+

n

∑
i=1

δi
∂ f j

∂xi

and we arrive at a system of linear equations which has a unique solutions since the determinant
is invertible by assumption.

With what we know so far, we are left with showing (U3)⇒(U1), (E1)⇒(E3), and (E2)⇒(E3).
We note here that characterization (U2) in particular means (by Nakayama) that being unramified
is a fiberwise notion. That is, a map locally of finite type f : Y → X is unramified if and only if
for every x ∈ X , the fiber Yk(x)→ Spec(k(x)) is unramified. We are thus led to study unramified
schemes over spectra of fields.

Lemma 4.2.1. Let Y be a scheme locally of finite type over a field k. Then Y → Spec(k) is
unramified if and only if it is étale if and only if Y is the disjoint union of Spec(ki) for a family
of finite separable extensions ki of k.
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Proof. By the primitive element theorem, a finite separable field extension is standard étale.
Thus the last condition implies étale, which implies unramified. Suppose that Y → Spec(k) is
unramified and let k be an algebraic closure of k. At every closed point y of Yk we have my =m2

y .
This implies that Yk is the disjoint union of copies of Spec(k), and that Y is the disjoint union
of Spec(ki) for some finite field extensions ki of k. Then ki⊗k k is a product of copies of k and
hence reduced. Suppose that α ∈ ki with α p ∈ k, then the element

β = α⊗1−1⊗α ∈ ki⊗k k

satisfies β p, and hence β = 0, so that α ∈ k, and ki is separable over k.

Corollary 4.2.2. An unramified morphism is quasi-finite.

This allows us to apply Zariski’s main theorem in the following form:

Theorem 4.2.3 ([SP Lemma 00QB], [Raynaud, 1970, IV]). Let f : Y → X be a quasi-finite
morphism of schemes. Then locally on X and Y the map f factors as an open immersion Y →Y ′

and a finite morphism Y ′→ X.

We are now ready to prove the remaining assertions in Theorems 4.1.10 and 4.1.11.

(U3)⇔(U4): We try to lift the presentation from a fiber. Let y∈Y , x = f (y), k = k(x). Since k(y)
is finite separable over k(x) = k, by the primitive element theorem, we can write k(y) = k[T ]/( f )
for f separable and irreducible. By Zariski’s main theorem Theorem 4.2.3, we may assume that
X = Spec(A), Y = Spec(B) and B = B′h for a finite A-algebra B′ and some element h ∈ B′. We
may find t ∈ B′ whose image in k(y) is the generator T and which vanishes on the rest of the
fiber of Spec(B′)→ Spec(A) = X over x. Let C = A[t]⊆ B′ be the A-subalgebra generated by
t. We claim that g : Y = Spec(B)→ Spec(C) is an isomorphism in a neighborhood of y. First,
this map is quasi-finite and y is the unique point in its fiber by construction. This implies that
OSpec(C),g(y)→ OY,y is finite. Since this map is surjective on the fiber over x, it is surjective by
Nakayama. But it is injective by construction. Thus we may assume that B =Cg for some g ∈C.
But C ≃ A[T ]/( f ) with f monic, and we win.

(E1)⇔(E3): By (U4) we may assume that X = Spec(A) and Y = Spec(B) where B =C/J for
some standard étale A-algebra C and a finitely generated ideal J ⊆C. We want to show that
J = 0 in a neighborhood of y ∈ Y . By Nakayama it is again enough to show J = J2. Now we
look at the infinitesimal lifting problem

C/J B

~~
C/J2

OO

A

OO

oo

A solution will split the exact sequence

0 // J/J2 //C/J2 // B // 0
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and hence it will stay exact upon restricting to the fiber over f (y). But C and B have the same
fiber, so J/J2 is zero on the fiber, and hence zero by Nakayama.

(E2)⇔(E3): We argue as above using (U4) and note that the short exact sequence

0 // J //C // B // 0

will stay exact on the fiber since B is flat over A.

4.3. Étale algebras over a field

Let K/k be a (possibly infinite) Galois extension of fields. Let {kα}α∈I be the family of all
intermediate extensions k ⊆ kα ⊆ K such that kα/k is finite and Galois. We treat the index set
I as a partially ordered set: α ≤ β if kα ⊆ kβ . It is then a filtering poset: for every α,α ′ ∈ I
there Galois closure kβ of the compositum kα · kβ contains both kα and kα ′ . For β ≥ α , every
automorphism of kβ/k preserves kα and induces an automorphism of kα/k. We thus obtain
a (surjective) homomorphism of finite groups Gal(kβ/k)→ Gal(kα/k). Similarly, we obtain
compatible surjections Gal(K/k)→ Gal(kα/k). Together, these assemble into an isomorphism
of groups

Gal(K/k) ∼−−→ lim←−
α∈I

Gal(kα/k),

endowing Gal(K/k) with the structure of a profinite group. Explicitly, a subset U of Gal(K/k)
is an open neighborhood of 1 if and only if there exists a kα/k such that every element of U acts
trivially on kα .

For a profinite group Γ, we denote by Γ-sets the category of finite sets endowed with a
continuous action of Γ. Explicitly, continuity of the action means that it factors through an
action of Γ/H for some open normal subgroup H ⊆ Γ.

(todo: eventually the notes should contain a proper review of profinite groups and profinite
completion)

Theorem 4.3.1 (Galois theory). Let k be a field and let ksep be a separable closure of k. Let
Γ = Gal(ksep/k). Then the functor

F(A) = Homk(A,ksep) : {finite étale k-algebras} −→ Γ-sets

is an equivalence.

Proof. By Lemma 4.2.1, a finite dimensional k-algebra A is étale if and only if A⊗k ksep is
isomorphic to ∏

r
i=1 ksep. Thus, by Galois descent (include review of Galois descent?), finite

étale k-algebras correspond to ksep-algebras of the form ∏
r
i=1 ksep endowed with a compatible

Γ-action which factors through Γ/H for an open normal subgroup H ⊆ Γ. It is easy to check
that such an action permutes the factors and is uniquely determined by the induced permutation.
In other words, finite étale k-algebras correspond to finite sets with a continuous Γ-action. (too
sketchy?)
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4.4. Galois categories

In view of Theorem 4.3.1, it makes sense to try and axiomatize categories of the form Γ-sets for
a profinite group Γ.

Definition 4.4.1. Let C be a category.

(a) We say that C is a Galois category if there exists a profinite group Γ and an equivalence

C≃ Γ-sets.

(b) A functor F : C→ sets to the category of finite sets is a fiber functor if it is isomorphic to
the composition of such an equivalence C≃ Γ-sets and the forgetful functor Γ-sets→ sets.

(c) A pointed Galois category is a pair (C,F) consisting of a Galois category C equipped
with a fiber functor F .

Proposition 4.4.2. Let C be an essentially small category. The following conditions are equiva-
lent:

(a) C is a Galois category;

(b) C admits a functor F : C→ sets to the category of finite sets such that the pair (C,F)

satisfies the following axioms (see [SP Tag 0BMY]):

(GC1) C has finite limits and finite colimits;

(GC2) F preserves finite limits and finite colimits;

(GC3) F is conservative (F( f ) is an isomorphism implies that f is an isomorphism);

(GC4) every object of C is isomorphic to a finite coproduct of connected objects. (Here,
we say that an object X of C is connected if for every monomorphism Y → X,
either Y ∼−−→ X or Y ≃ /0 is the initial object.)

Moreover, a functor F : C→ sets is a fiber functor if and only if it satisfies (GC2) and (GC3).

Proof of (a)⇒(b). Without loss of generality, C = Γ-sets, and we take F to be the forgetful
functor. Assertions on finite limits in (GC1) and (GC2) are clear, and so is (GC3). For (GC4)
we easily check that a finite Γ-set X is a connected object if and only if the action is transitive.
Moreover, every finite Γ-set is the disjoint union of its orbits.

It remains to check the assertions about finite colimits, i.e. initial object (check), binary
coproducts (check), and coequalizers.

In order to prove (b) implies (a), we need to construct a profinite group Γ. The natural
candidate is the automorphism group of the functor F , appropriately topologized.
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Definition 4.4.3 (Topology on Aut(F)). Let C be an essentially small category, so that there
exists a set S ⊆ Ob(C) such that every object of C is isomorphic to an object from S, and let
F : C→ sets be a functor. We have an injective map (in particular showing that Aut(F) is a set)

Aut(F)−→∏
X∈S

Aut(F(S)).

We give each finite permutation group Aut(F(S)) the discrete topology, the product the product
topology, and Aut(F) the subspace topology.

(todo: finish this proof)

Remark 4.4.4. As we shall see when we discuss the pro-étale fundamental group later, the
above definition has an important extension to functors valued in the category Set of all sets,
with one important difference that the natural topology on the possibly infinite permutation
group Aut(F(S)) is the compact-open topology.

Definition 4.4.5. Let (C,F)) be a pointed Galois category. We denote the group Aut(F),
endowed with the structure of a profinite group as in REF, by π1(C,F) and call it the Galois
group of (C,F).

(add remark about fiber functors being noncanonically isomorphic)

Corollary 4.4.6. Let (C,F)) be a pointed Galois category. Then F induces an equivalence

F : C ∼−−→ π1(C,F)-sets.

[Grothendieck, 1971, Exp. V]

4.5. The étale fundamental group

[Grothendieck, 1971, Exp. V]

Definition 4.5.1. Let X be a scheme. We denote by FÉtX the category of finite étale maps
Y → X .

Definition 4.5.2. A geometric point of a scheme X is a morphism x→ X where x is the
spectrum of a separably closed field.

(convention: empty scheme is not connected)

Theorem 4.5.3. Let X be a connected scheme. Then FÉtX is a Galois category, and for every
geometric point x→ X, the functor Fx is a fiber functor.

We shall prove this theorem in the next lecture.

Definition 4.5.4. Let X be a connected scheme and let x→ X be a geometric point. We define
the étale fundamental group of (X ,x) to be the profinite group13

π1(X ,x) = π1(FÉtX ,Fx),

the Galois group of the pointed Galois category (FÉtX ,Fx).

(add examples, it’s too dry)
13Sometimes denoted by π ét

1 (X ,x) or π
alg
1 (X ,x).
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