
Topics in Hodge theory

What is Hodge theory?

Hodge theory studies structures of analytic/transcendental nature that exist on the cohomology of com-
plex algebraic varieties (Hodge structures). They are easiest to explain in the case of a smooth and pro-
jective complex variety X , in which case the singular cohomology groups H ∗ (X ,C) admit a natural and
functorial Hodge decomposition

Hn (X ,C) '
⊕
p+q=n

Hq (X ,Ω
p
X ).

HereHq (X ,Ω
p
X ) is the q-th sheaf cohomology group of the sheaf Ωp

X of holomorphic p-di�erential forms.
This decomposition has the extra property that the action of id⊗conjugation onHn (X ,C) = Hn (X ,Z)⊗C
exchanges p and q. In particular, one has the Hodge symmetry: Hq (X ,Ω

p
X ) and Hp (X ,Ω

q
X ) are complex

vector spaces of the same dimension. A posteriori, Hn (X ,C) is of even dimension for n odd, which is a
non-trivial constraint on the homotopy type of X .

We can rephrase the existence of the Hodge decomposition by saying thatH := Hn (X ,Z) carries a natural
Hodge structure of weight n, which is simply a decomposition H ⊗ C =

⊕
p+q=n H

p,q with the property
that id ⊗ conjugation maps Hp,q into Hq,p . This shift of perspective allows one to separate the very
interesting linear algebra of such objects from the geometry of X , consider spaces parametrizing Hodge
structures (period domains), families (variations of Hodge structures) and so on.

If X and Y are “similar” algebraic varieties (for example, two elliptic curves), then their underlying mani-
folds are often di�eomorphic, and hence H ∗ (X ,Z) ' H ∗ (Y ,Z). However, in many cases the consideration
of the Hodge structures allows one to distinguish X and Y . Statements of the kind “X is uniquely de-
termined by H ∗ (X ,Z) together with its Hodge structure,” often dubbed Torelli theorems, hold for abelian
varieties, K3 surfaces, hyperkähler varieties etc.

Why learn Hodge theory?

If one is interested in complex algebraic varieties, the possibility of using Hodge theory to turn a geo-
metric problem into linear algebra can obviously be very useful. More surprisingly, if one is interested
in algebraic varieties and other geometric objects de�ned over arbitrary �elds, like number �elds, p-adic
�elds, or even �elds of positive characteristic, one often �nds structures quite similar in nature to those
coming from Hodge theory, like actions of Galois groups, Frobenius operators on crystalline cohomol-
ogy, the Hodge–Tate decomposition in p-adic Hodge theory, Hodge decompositions arising from liftings
modulo p2 and so on. A good working knowledge of “classical” Hodge theory can be of tremendous help
in those faraway contexts.

Scope of the seminar / possible topics

1. the Hodge decomposition and its corollaries; pure Hodge structures; the Hodge conjecture
2. variations of Hodge structures; period domains
3. mixed Hodge structures
4. limits of Hodge structures, the weight-monodromy theorem
5. mixed Hodge modules

Prerequisites

A good working knowledge of algebraic geometry over C is necessary. We will need some basics of
algebraic topology, homological algebra (including spectral sequences) and sheaf theory and cohomology,
all of these topics are reviewed in Appendices A and B in [1].
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Basics of étale and `-adic cohomology

What is étale cohomology?

If X is a complex algebraic variety, then one can endow (the set of closed points of) X with the classical
metric topology, making it a well-behaved topological space. In particular, one can apply the tools of
algebraic topology (cohomology, fundamental group, higher homotopy groups) directly to that space to
obtain interesting invariants. In turn, these invariants tend to carry interesting additional structure (e.g.
mixed Hodge structures on cohomology) which encodes deep geometric information.

IfX is a variety over some �eld k , one would like to similarly make use of algebraic topology. The étale ho-
motopy theory, developed mostly by Grothendieck and Artin, ful�lls this need by providing algebraically
de�ned topological invariants (the étale fundamental group, étale cohomology etc.). The coe�cient groups
for cohomology are typically taken to be `-adic numbers, and the extra structures, vaguely analogous to
Hodge structures, are provided by the natural action of the Galois group of k . In particular, algebraic
varieties are a good source of interesting Galois representations, which explains the relevance of `-adic
cohomology to number theory.

During the seminar, we will aim to give a good outline of the key ideas behind the construction of étale
cohomology and its most fundamental properties.

Scope of the seminar (tentative)

1. étale and smooth morphisms, the étale site
2. sheaves on the étale site; locally constant sheaves and the fundamental group
3. construction of étale and `-adic cohomology
4. comparison with singular cohomology over C
5. �nite �elds: the Grothendieck–Lefschetz trace formula, Weil conjectures
6. cohomology with compact supports, Poincaré duality
7. weights, pure and mixed sheaves

Prerequisites

Schemes and sheaf cohomology, basics of homological algebra.
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D-modules

What are D-modules?

Let X be a smooth complex algebraic variety (or a complex manifold), and denote by TX the sheaf of
derivations of OX into itself (the tangent sheaf). The sheaf of di�erential operators DX is simply the
subring of the sheaf of all C-linear endomorphisms of OX generated by TX and OX . A D-module on X is
simply a sheaf of DX -modules which is quasi-coherent as an OX -module.

One may think of a D-module as a “di�erential equation with singularities” on X . For example, if we are
given an ordinary linear di�erential equation

f (n) + an−1 f
(n−1) + · · · + a1 f

′ + a0 f = 0
with ai ∈ C(x ) being rational functions, then we can construct the corresponding di�erential operator

δ = ∂nx + an−1∂
n−1
x + . . . + a0 ∈ Γ(X ,DX )

on X = A1 \ {poles of the ai }. We can then set M = DX /DX · δ , the quotient of DX by the left ideal
generated by δ .

Another source of interesting D-modules comes from topology. If X is a complex manifold and V is a
local system (locally constant sheaf) of C-vector spaces onX , then the vector bundle V = V ⊗OX carries
a natural action of holomorphic di�erential operators DX , making it into an OX -coherent DX -module
(equivalently: endowing it with a holomorphic �at connection). The Riemann–Hilbert correspondence is
the basic fact that the association V 7→ V is an equivalence of categories. If X is a smooth complex
algebraic variety, then there is a much more subtle equivalence proved by Deligne:

(complex local systems on Xan) ' (OX -coherent DX -modules regular at in�nity).
If a D-module on the right is a di�erential equation, the corresponding local system is the sheaf of local
holomorphic solutions of that equation.

To have a good theory (e.g. to allow push-forwards along closed immersions X ↪→ Y ), one needs to allow
D-modules with singularities (i.e. drop the OX -coherence condition). In that case, local systems have to be
replaced with perverse sheaves. As proved by Kashiwara and Mebkhout, one then has a Riemann–Hilbert
correspondence

(perverse sheaves on Xan) ' (regular holonomic D-modules on X ).

One of the main goals of the seminar could be to understand the above statement.

Prerequisites

Some basic algebraic and di�erential geometry and algebraic topology.

Scope of the seminar (tentative)

1. DX , basic properties of D-modules, the Weyl algebra and the Fourier transform
2. vector bundles with connection and local systems (complex-analytic Riemann–Hilbert)
3. meromorphic vector bundles on a punctured disc, Fuchs’ theory of regular singularities
4. Deligne’s Riemann–Hilbert correspondence and canonical extensions
5. singular support and holonomic DX -modules
6. perverse sheaves and the Riemann–Hilbert correspondence for regular holonomic D-modules
7. applications to representation theory
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Rigid geometry

What is rigid geometry?

An idea which pervades much of characteristic 0 algebraic geometry (and also geometry in positive char-
acteristic) is the Lefschetz principle:

Lefschetz principle: Let F be a �eld of characteristic 0. Then, ‘geometric properties’ of varieties over F hold
true if and only if they hold true for varieties over C.

While this can be made precise, one should treat this more as a philosophical idea. In particular, if one
can reduce a question Q about varieties over any �eld F of characteristic 0 (e.g. Q) to C one can then
employ the extra structure that varieties over C possess to try and answer Q . Namely, varieties X over
C possess an analyti�cation X an = X (C) which is (at least in the case when X is smooth) a complex
manifold. Assuming that one can study X e�ectively by studying X an (which is the purvue of Serre’s
GAGA theorems) this opens one up to using many analytic/topological techniques not available over your
original �eld F . For example, one can apply Hodge theory. Even more simply one can cover your space
X an by disks which allows one to compute the cohomology of any local system using Cech cohomology.

Of course, this principle, while kind to questions of a purely geometric nature, is uncaring about arith-
metic. For example, if F = Q and X is a variety over F then one might be interested in studying the space
XQ with its action by Gal(Q/Q) (for example this action allows one to, in good situations, compute the
number of points that X might have over a �nite �eld Fq ). The passage from F = Q to C via the Lefschetz
principle does not at all care about this arithmetic—it treats varieties X and Y over Q identically if they
are isomorphic over Q.

It would be nice to be able to have a theory for varieties over certain �elds with the bene�ts that the Lef-
schetz principle a�ords us (topological and analytic techniques) in a way that does not entirely destroy
the interesting. Namely, if F is Qp (or a �nite extension thereof) then F itself has an interesting notion of
topology and analysis and therefore one might imagine that X (F ) may be studyable by analytic or topo-
logical techniques similar to what happens over C (e.g. maybe there are p-adic disks or a p-adic version
of Hodge theory). But, this time, there is a natural action of Gal(F/F ) on X (F ) and so the arithmetic of
the situation is not destroyed. The theory of rigid geometry seeks to make such a desire reality.

Why learn rigid geometry?

Rigid geometry has taken a central role in arithmetic geometry and number theory in the last few decades.
For example, the majority of Peter Scholze’s ouvre has used the theory of rigid geometry. Namely, it’s
used to

• p-adic Hodge theory, an arithmetic version of Hodge theory for varieties over Qp , using much
more intuitive analytic techniques (notably the existence of a p-adic de Rham resolution of the
constant sheaf).

• Understand explicit relationships between geometry over highly rami�ed extensions ofQp (which
are thus characteristic 0!) and geometry over characteristic p �elds—this is his notion of perfec-
toid spaces and tilting. This theory has been used to spectacular e�ect (e.g. to solve the so-called
weight-monodromy conjecture in certain cases).

• Propose a program, toether with L. Fragues, about how to understand the local Langlands cor-
respondence for p-adic �elds in a way similar to the work of the La�orgues on Langlands over
function �elds.

While these are very visible examples, all three of these bullets have general analogues.

• Rigid geometry has been a key component to studying the theory ofp-adic Galois representations
of Gal(Qp/Qp ) (e.g. the theory of étale (φ, Γ)-modules and p-adic di�erential equations used to
prove the so-called p-adic monodromy theorem by work of Berger and Kedlaya).



• There is a deep interplay between rigid geometry in characteristic 0 and (classical) algebraic
geometry in characteristic p that bene�ts sides (e.g. the solution to Abhyankar’s conjecture on
the fundamental groups of curves in positive characteristic uses rigid geometry).

• Rigid geometry has been pivotal in many of the advances in number theory in the last decade:
from Kisin’s work on Galois deformation rings to Bellaïche and Chenevier’s work on the Bloch-
Kato conjecture.

Most importantly:

It’s fun!

If you like thinking topologically/analytic but also enjoy thinking arithmetically (e.g. in terms of number
�elds or �nite �elds) then you will enjoy thinking about why the disk is not simply connected (it has
Artin-Schreier covers!) or how the analytic description of elliptic curves C×/qZ makes sense even in a
p-adic setting.

Scope of the seminar (tentative)

(1) Study the basic theory of rigid spaces over a non-archimedean �eld.
(2) Study formal schemes and their relationship to rigid spaces.
(3) Study the p-adic uniformization of elliptic curves.
(4) Study modular curves and the interplay between their rigid geometry in characteristic 0 and their

algebraic geometry in characteristic p.

Prerequisites

A good working knowledge of algebraic geometry over general �elds (and over DVRs) is necessary. A
good understanding of the p-adic numbers, their extensions, and other basic properties will be necessary
as well. No advanced number theory (e.g. Galois representations or class �eld theory) is a prerequisite.
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