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The �attening theorem

The basic example of a non-�at morphism of schemes is that of a blowup. The deep theorem of
Gruson and Raynaud, dubbed �attening by blowup, implies that in a certain sense, blowing
up is the only source of non-�atness. Below is the precise statement:

Theorem (Gruson–Raynaud). Let S be a quasi-compact and quasi-separated scheme (e.g. noe-
therian or a�ne), let X −→ S be a morphism of �nite presentation, and let F be a quasi-coherent
OX -module of �nite type. LetU ⊆ S be a quasi-compact open subset such that F |f −1(U ) is �at over
U . Then there exists a blowup S ′ −→ S at a �nitely presented closed subscheme Z ⊆ S disjoint from
U such that the strict transform of F is �nitely presented over the structure sheaf OX ′ of the strict
transform X ′ of X in S ′ and �at over S ′.

As a special case, taking F = OX , we obtain �atness of the strict transform X ′ −→ S ′:
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This fundamental result has many consequences. We say that X −→ S is a U -modi�cation if it
is proper, f −1(U ) ' U , and f −1(U ) is schematically dense in X . The above theorem implies that
for everyU -modi�cationX −→ S there exists a blowup S ′ −→ S away fromU which dominates
X −→ S (and S ′ −→ X is a blowup too). In particular, while not every proper birational map
X −→ S is a blowup, there always exists a blowup X ′ −→ X such that X ′ −→ X −→ S is a
blowup. Since blowups are projective morphisms, we obtain Chow’s lemma as a corollary. A
more advanced application is a modern proof of Nagata’s compacti�cation theorem.

In a di�erent direction, the results of Raynaud and Gruson surrounding the �attening theorem
can be used to prove the following striking result: let A be an integral domain and let B be a
�nite type and �at A-algebra. Then B is �nitely presented over A.

Many foundational results in non-Archimedean geometry rely on the �attening theorem.
It can be used to prove that a morphism of rigid spaces is �at if and only if it admits a �at
formal model, which implies that �at maps of rigid spaces are open. Conversely, ideas from
non-Archimedean geometry led to anewproof of the �attening theorem (due independently
to Temkin, Fujiwara–Kato, and Guignard). The key idea is that it is easy to check �atness of a
module over a valuation ring (it is equivalent to torsion-freeness), and the inverse limit RZ(U /S)
of all U -modi�cations of S , called the relative Riemann–Zariski space by Temkin, can be
identi�ed with a certain space of valuations on U . In fact, the above theorem about a �at map
A −→ B in the case when A is a valuation ring has been �rst proved by Nagata.

Goals of the seminar

The �rst goal of the seminar is to understand the original proof of the �attening theorem (using
the notion of “devissage”) and its basic corollaries. The original paper [1] is complicated, so we
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will take our time. Fortunately, there is a survey by Raynaud [2], and the whole content has
been included in the Stacks Project [8] in the mysterious chapter titled More on Flatness.

After some applications (Nagata’s compacti�cation theorem), we will study modi�cations and
their link with spaces of valuations, based on Temkin’s beautiful paper [4]. This will enable us
to understand the second proof of the �attening theorem based e.g. on [5].

The �nal goal is to study the applications of the �attening theorem and related ideas in non-
Archimedean geometry, particularly [6], [7], [9].

The theory is not set in stone, and the seminar may result in some new research ideas, particu-
larly the potential simpli�cation of the proofs of some foundational results in non-Archimedean
geometry.

Talks

The outlines below are only guidelines. The content is likely to change as we get a better un-
derstanding of our goals.

1. Overview. Give a quick presentation of the �attening theorem, its corollaries and applications.
Sketch the original method of proof.

2. Proof of Flattening Theorem (I): warm-up. Prove the theorem in the projective case [2, §4.2]
using the Quot scheme. De�ne Fitting ideals and explain how they enter the proof.

3. Proof of Flattening Theorem (II): devissage. Explain the notion of a relative devissage of a
module and the content of the �rst three sections of [1]. See also [10].

4. Proof of Flattening Theorem (II): the proof. Sections 4–5 of [1] except 5.7.

5. Applications of the �attening theorem. See [1, §5.7] and [8, Tag 081Q].

6. Spaces of valuations and relative Riemann–Zariski spaces. [4]

7. More on relative Riemann–Zariski spaces. [3], [4]

8. Nagata’s compacti�cation theorem. [3], [4], [8, Tag 0F3T]

9. Second proof of the Flattening Theorem. [5]

10. Flattening in non-Archimedean geometry (I). [6,10]

11. Flattening in non-Archimedean geometry (II). [6,7,10]

12. The reduced �ber theorem. [9]

Prerequisites

The �rst half of the seminar will require basic knowledge of scheme theory and commutative
algebra. In the second half, some knowledge of non-Archimedean geometry will be helpful but
not required. In fact, the whole seminar can serve as a good, if slightly unorthodox, introduction
to non-Archimedean geometry for algebraic geometers.

Coordinates

Thursdays 10:15–11:45, room 1780 at MIMUW

Dates: March 2, 9, 16, 23, 30, April 13 (optional – right after Easter), April 20 (Piotr will be absent),
April 27, May 11, 18, 25, June 1, 15.
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