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Abstract. Let S be a smooth complex algebraic variety with a base point

0. If X/S is a family of smooth projective varieties, one obtains the associ-
ated monodromy representation π1(S, 0)→ GL(H∗(X0,Q)) of the topological

fundamental group of S on the rational cohomology of X0. Let us say that

a representation π1(S, 0) → GLN (Q) “comes from geometry” if it is a direct
summand of such a monodromy representation. Representations coming from

geometry are quite special: they factor through GLN (Z) up to conjugation,

their monodromy groups are semisimple, and the corresponding local system
on S underlies a polarizable variation of Hodge structures. Inspired by a theo-

rem of Faltings, Deligne proved in the mid-80s that there are only finitely many

such representations of rank N for fixed S and N . We explain the beautifully
simple proof of this result, based on Griffiths’ study of the geometry of period

domains. We also discuss the very recent results of Litt which in particular
imply a suitable analog for the étale fundamental group.

1. Monodromy representations

Ehresmann’s theorem in differential geometry states that if

f : X −→ S

is a proper submersion of smooth manifolds, then f is a fiber bundle. Consequently,
the cohomology groups of the fibers Hn(Xs,Q) (s ∈ S) assemble into a local system
Rnf∗Q on S. If S is connected and 0 ∈ S, such a local system corresponds to a
representation

σ : π1(S, 0) −→ GL(Hn(X0,Q)),

called the monodromy representation associated to f : X → S (in degree n).
Let now S be a smooth complex algebraic variety, and let f : X → S be a smooth

projective morphism. Then the fibers of f are not necessarily biholomorphic to one
another, and the variation of the complex structure on the fibers is controlled by
Kodaira–Spencer theory. However, the induced map of complex manifolds

fan : Xan −→ San

is a proper submersion, and one gets the associated monodromy representation

σ : π1(San, 0) −→ GL(Hn(Xan
0 ,Q)).

Definition 1.1. We say that a representation σ : π1(San, 0) → GLN (Q) comes
from geometry if it is isomorphic to a subquotient (equivalently, a direct summand)
of a monodromy representation attached to some smooth and projective f : X → S.

The aim of this talk is to discuss the proof of the following beautiful result of
Deligne.
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Theorem 1 (Deligne 1987, [2]). For fixed (S, 0) and N ≥ 0, there exist only finitely
many isomorphism classes of representations σ : π1(San, 0)→ GLN (Q) which come
from geometry.

What are the properties of representations coming from geometry which make
them special (and make the above theorem true)?

(i) Since π1(San, 0) → GL(Hn(Xan,Q)) factors through GL(Hn(Xan,Z)/tors.),
a representation σ : π1(San, 0) → GLN (Q) coming from geometry has to be
isomorphic to one which factors through GLN (Z) (that is, σ preserves a lat-
tice).

(ii) The Zariski closure of the image of π1(San, 0)→ GL(Hn(Xan,Q)) is a semisim-
ple algebraic group over Q [3]. Consequently, the full subcategory of repre-
sentations spanned by those coming from geometry is semisimple (and in
particular one can replace ‘subquotient’ with ‘direct summand’ in the defini-
tion).

(iii) The local system Rnf∗Q underlies a polarized variation of Hodge structure
(we will explain what this is in §3), and so does every local system associated
to a representation coming from geometry.

Theorem 1 will be deduced from a more general result in complex geometry:

Theorem 2. Let (S, 0) be a pointed connected complex manifold such that π1(S, 0)
is finitely generated, and let N ≥ 0.

(a) There exist only finitely many isomorphism classes of Q-local systems of rank
N on S underlying a polarizable integral variation of Hodge structures, up to
semisimplification.

(b) Suppose that S is compactifiable, i.e. that there exists a compact complex man-
ifold S and a closed analytic subset Z ⊆ S such that S ' S \ Z. Then there
exist only finitely many isomorphism classes of Q-local systems of rank N on
S which are a subquotient of a local system underlying a polarizable integral
variation of Hodge structures.

Here in (a), ‘up to semisimplification’ means that we identify two local systems
if both can be equipped with filtrations such that the associated graded objects
are isomorphic. In more concrete terms, this means that the associated characters
(traces) are equal. And indeed this is how the theorem is proved: one proves a
bound on these traces which depends only on N ; since they are integral, they can
take only finitely many values. Under the assumptions in (b), in fact the category
of such subquotients is semisimple, so equality of traces implies isomorphism.

In Section 2, we discuss Hodge structures and period domains. In Section 3,
we discuss variations of Hodge structures, period maps, and formulate Deligne’s
semi-simplicity theorem. In Section 4, we prove Theorems 1 and 2. We use local
systems coming from families of elliptic curves as our running example.

In the last Section 5, we discuss a recent result of Litt [6] which provides analogs
of the above results for the étale fundamental group.

2. Hodge structures

We will now review some standard material from Hodge theory. We refer to
Voisin’s book [8] for details.



DELIGNE’S MONODROMY FINITENESS 3

2.1. Hodge decomposition and Hodge structures. Let X be a smooth and
projective complex algebraic variety. Then the cohomology groups Hn(X,C)1 have
a canonical Hodge decomposition

(2.1.1) Hn(X,C) ∼=
⊕
p+q=n

Hp,q, Hp,q = Hq(X,ΩpX).

Since Hn(X,C) = Hn(X,R)⊗C, the group Gal(C/R) ' Z/2Z acts on Hn(X,C).
Under this action, one has Hp,q = Hq,p. For reasons soon to become apparent, it
is more convenient to consider the Hodge filtration

F iHn(X,C) =
⊕
p≥i

Hp,q = im
(
Hn(X,Ω•≥iX )→ Hn(X,Ω•X)

)
;

one has Hp,q = F p ∩ F q and Hn(X,C) = F p ⊕ F q+1. This defines (2.1.1).
We say that the above equips Hn(X,Z)/tors. with an integral Hodge structure

in the sense of the definition below.

Definition 2.2. Let n be an integer.

(1) An integral Hodge structure of weight n is a finitely generated free Z-module
V together with a decomposition

V ⊗C =
⊕
p+q=n

V p,q

satisfying V p,q = V q,p. Equivalently, V ⊗ C is equipped with a finite
descending filtration F p satisfying F p ⊕ F q+1 = V ⊗C.

(2) The numbers hp,q = dimV p,q are the Hodge numbers of V .

2.3. Polarizations and Hard Lefschetz. Let now ω ∈ H1(X,Ω1
X) be the image

of an ample class L under

d log : Pic(X) = H1(X,O×X) −→ H1(X,Ω1
X) ∩H2(X,Z).

The Hard Lefschetz theorem states that for n ≤ d = dimX the cup product map

ωd−n : Hn(X,C)
∼−→ H2d−n(X,C),

is an isomorphism. By basic linear algebra, this induces the Lefschetz decomposition

Hn(X,Q) =
⊕
k≥0

ωk ·Hn−2k
prim (X,Q),

where Hr(X,C)prim is the primitive cohomology

Hr(X,C)prim = ker
(
ωd−r+1 : Hr(X,C)→ H2d−r(X,C)

)
(for r > d we set this to be zero). This decomposition is compatible with Hodge
structures because ω is of type (1, 1).

Consider the bilinear intersection pairing

Q(α, β) = 〈ωd−n · α, β〉 =
1

(2πi)n

∫
X

ωd−n ∧ α ∧ β,

on Hn(X,C) which is symmetric for n odd and alternating for n even, and takes
integral values for α, β ∈ Hn(X,Z). The associated hermitian pairing

H(α, β) = (2πi)nQ(α, β) =

∫
X

ωd−n ∧ α ∧ β,

1We will suppress the notation Xan from now on.
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has the property that the decomposition (2.1.1) is orthogonal with respect to H.
Moreover, one has the Hodge–Riemann bilinear relation

(−1)εH(α, α) > 0 for 0 6= α ∈ Hp,q ∩Hn(X,C)prim,

where ε = q + n(n − 1)/2. The hermitian pairing equal to (−1)k(k−1)/2+q+rH on
ωr ·Hn−2r(X,C)prim is thus positive-definite.

Definition 2.4. Let n be an integer.

(1) A polarized integral Hodge structure of weight n is an integral Hodge struc-
ture V of weight n endowed with a bilinear pairing Q(α, β) : V × V → Z
such that the associated hermitian form H(α, β) = inQ(α, β) on V ⊗ C
satisfies

i. H(V p,q, V p
′,q′) = 0 if p 6= p′,

ii. (−1)εH(α, α) > 0 for 0 6= α ∈ V p,q, where ε = q + n(n− 1)/2.
(2) An integral Hodge structure V of weight n is polarizable if it admits a

bilinear pairing as above.

Example 2.5. Let X be an elliptic curve. Then H1(X,Q) = H1(X,Q)prim has
Hodge numbers h1,0 = 1 = h0,1. Fix an isomorphism H1(X,Z) ' Z2 in which the
intersection form Q is the standard symplectic matrix[

0 −1
1 0

]
.

The Hodge structure on H1(X,Q) amounts to the choice of a line F 1 ⊆ C2 such

that F 1 ∩ F 1 = 0, i.e. such that the associated point in P1(C) does not lie in
P1(R). Thus F 1 can be given by an equation v = τu where τ ∈ C\R. This Hodge
structure is polarized by the pairing Q if and only if τ lies in the upper half-plane.

2.6. Period domains. The point of studying Hodge structures this is that while
Hn(X,Z) carries only topological information (e.g. the intersection form), the asso-
ciated Hodge structure is interesting enough to distinguish between different vari-
eties in a family. General ‘Torelli theorems’ assert that for certain classes of varieties
(curves, abelian varieties, K3 surfaces, Calabi–Yau, hyperkähler, . . . ) the Hodge
structure on the cohomology (possibly with additional data) determines the variety
uniquely. Thinking in terms of moduli, we can think of the space D parametrizing
polarized Hodge structures of weight n on a fixed (V,Q):

Definition 2.7. Let V be a real vector space of finite dimension and let n be an
integer. Let H be a hermitian pairing on V , and let {hp,q}p+q=n be a collection of
integers satisfying

hp,q = hq,p,
∑

p+q=n

hp,q = rankV.

The period domain associated to (V,H, {hp,q}), denoted D = D(V,H, {hp,q}), is
the subset of the flag variety

Flag(V ⊗C, {hp,q}) = {(F p ⊆ V ⊗C)p∈Z |F p ⊆ F p−1,dim(F p/F p+1) = hp,n−p}
defined by the following conditions

(i) V ⊗C = F p ⊕ F q+1, so that V ⊗C =
⊕

p+q=n V
p,q, V p,q = F p ∩ F q,

(ii) H(V p,q, V p
′,q′) = 0 for p 6= p′,

(iii) (−1)n(n−1)/2+qH(α, α) > 0 for 0 6= α ∈ V p,q.
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Note that condition (ii) can be rephrased as F p = (Fn−p+1)⊥ with respect to the
bilinear form Q(α, β) = H(α, β), and hence defines a projective subvariety of the
flag variety F . Conditions (i) and (iii) are open. ThusD is a complex analytic space.
In fact, condition (ii) defines a smooth subvariety, so D is a complex manifold.

In fact, the period domain D is a homogeneous space ([1, §4.4]) for the unitary
group U associated to (V,H). To see this, we fix an element x = (F •) ∈ D and
show that there exists an adapted basis (vi) of V : an orthonormal basis preserved
under conjugation and such that each V p,q is spanned by a subset of this basis. If
now y = (G•) ∈ D is another element, with adapted basis (v′i), then the element of
U sending vi to v′i sends x to y; thus the action of U is transitive.

Since the pairingH is not definite, U may not be compact; in fact, it is isomorphic
to Sp( 1

2 dimV,R) for n odd and SO(a, b) where a (resp. b) is the sum of hp,q with p
even (resp. odd) for n even. However, the stabilizer K of a point x can be identified
with the product of the unitary groups U(V p,q, H) with p < n/2 and possibly the
special orthogonal group SO(V n/2,n/2, H) if n is even. Since H is definite on each
V p,q, K is compact.

Example 2.8. We continue our example with elliptic curves. The flag variety F is
simply P1(C), condition (i) means removing P1(R), condition (ii) is empty, and
condition (iii) means that the imaginary part is positive. Thus D ⊆ P1(C)\P1(R)
is the upper-half plane. The group U ' Sp(2,R) ' SU(1, 1) and the stabilizer of
i ∈ D is K ' U(1).

3. Variations of Hodge structures

3.1. Definitions. Let f : X → S be a smooth and projective morphism to a
smooth complex variety S. Then the polarized integral Hodge structures on the
cohomology groups Hn(Xs,Q) yield a polarized variation of Hodge structures on
the associated local system H = Rnf∗Q. The definition uses the Hodge filtration
in place of the Hodge decomposition since the former behaves holomorphically in
families and the latter does not.

Definition 3.2. Let S be a complex manifold and let n be an integer.

(1) An integral variation of Hodge structures of weight n on S is a local sys-
tem H of free finite rank Z-modules on S endowed with a separated and
exhaustive descending filtration F p of the associated holomorphic bundle
H ⊗ OS by holomorphic subbundles which are locally direct summands
satisfying

Hs = F ps ⊕ F
q+1
s for each s ∈ S and p+ q = n

and satisfying the Griffiths transversality condition

∇(F p) ⊆ F p−1 ⊗ Ω1
S

where ∇ : H ⊗ OS → (H ⊗ OS)⊗ Ω1
S is the canonical connection.

(2) A polarized integral variation of Hodge structures of weight n on S is an
integral variation of Hodge structures H of weight n on S endowed with a
bilinear pairing

Q : H ×H → Z

such that for every s ∈ S, Q makes the Hodge structure Hs into a polarized
Hodge structure of weight n.
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(3) An integral variation of Hodge structures of weight n is polarizable if locally
on S it admits a polarization as above.

The local system H = (Rnf∗Z)/tors. attached to a smooth and projective
f : X → S underlies a polarizable integral variation of Hodge structures. The
filtration F p is defined by

F p = im
(
Rnf∗Ω

•≥p
X/S → Rnf∗Ω

•
X/S

)
⊆ Rnf∗Ω•X/S = Rnf∗C,

and the form Q is the intersection form induced by a relatively ample class L.
The Griffiths transversality condition follows from an explicit construction of the

Gauss–Manin connection. We will now prove it in the case when dimS = 1 (which
is enough because one can detect Griffiths transversality by restricting to curves).
In this situation, one has a short exact sequence of complexes2

(3.2.1) 0 −→ Ω•−1X/S ⊗ f
∗Ω1

S −→ Ω•X −→ Ω•X/S −→ 0.

Applying Rnf∗(−), one obtains the boundary map

δ : Rnf∗Ω
•
X/S −→ Rn+1f∗(Ω

•−1
X/S ⊗ f

∗Ω1
S) = Rnf∗Ω

•
X/S ⊗ Ω1

S ,

which was shown by Katz and Oda [5] to coincide with the Gauss–Manin connection.

Replacing now Ω•X/S with Ω•≥pX/S , one has the short exact sequence mapping to

(3.2.1)

0 −→ Ω•−1≥p−1X/S ⊗ f∗Ω1
S −→ Ω•≥pX −→ Ω•≥pX/S −→ 0,

and the two boundary maps fit inside a commutative square

Rnf∗Ω
•≥p
X/S

��

δ // Rnf∗Ω
•≥p−1
X/S ⊗ Ω1

S

��
Rnf∗Ω

•
X/S δ=∇

// Rnf∗Ω•X/S ⊗ Ω1
S .

Since the images of the vertical maps are by definition F p and F p−1 ⊗ Ω1
S , we

deduce that ∇(F p) ⊆ F p−1 ⊗ Ω1
S .

3.3. Period maps. Let H be a polarized integral variation of Hodge structures
on a connected pointed (S, 0), and let π : (S̃, 0)→ (S, 0) be the universal covering.

The pull-back π∗H is a variation on S̃ whose underlying local system is canonically
isomorphic to the constant system with value H0, compatibly with the pairing. One
can therefore view π∗H as a family of Hodge filtrations on H0 parametrized by
points of S̃. There is a unique holomorphic map

f : S̃ → D = D(H0, Q, {hp,q}) = U/K, K = stabilizer of f(0)

such that if s̃ ∈ S̃ and f(s̃) = (F •) ∈ D, then F pHs = F p. We call f the period
mapping associated to H .

The local system underlying H corresponds to a homomorphism σ : π1(S, 0)→
U ⊆ GL(H0), and the map f is equivariant with respect to the natural action of
the groups on the source and target of f . The period map thus descends to a map

2For dimS > 1, one has a filtered complex instead, and below one would have to deal with
spectral sequences rather than cohomology exact sequences.
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S = S̃/π1(S, 0)→ D/Γ where Γ ⊆ U is the image of σ, fitting inside a commutative
square

S̃
f //

π

��

D

��
S // D/Γ.

The Griffiths transversality condition ensures that the map f is horizontal, which
means that the differential

df : TsS −→ Tf(s)D ⊆
⊕
p

Hom(F p, V/F p)

has image in
⊕

Hom(F p/F p+1, F p−1/F p).

3.4. Semisimplicity and direct summands. We will need the following funda-
mental result of Deligne:

Theorem 3.5 (Deligne [3, 4.2.6], see also [2, 1.11, 1.12]). Let (S, 0) be a compacti-
fiable (cf. Theorem 2(b)) pointed connected complex manifold, and let H be a local
system underlying an integral polarizable variation of Hodge structures. Then H
is semisimple.

To prove Theorem 2(b), we will need to show that a direct summand of a local
system underlying a polarized variation of Hodge structures does itself admit a
polarized variation of Hodge structures.

Proposition 3.6 (cf. [2, 1.13]). Suppose that S is compactifiable, and let H be a
local system underlying a polarizable variation of Hodge structures on S. Let V be
a direct summand of H . Then V admits a polarized variation of Hodge structures.

Proof (sketch). By a result of Schmid (using compactifiability) related to the The-
orem of the Fixed Part, the components of a horizontal section of H =

⊕
H p,q

are horizontal. Applying this not to H but to E nd(H ), we obtain a grading on
global sections

End(H ) =
⊕
p+q=n

End(H )p,q,

compatible with the algebra structure.
On the other hand, again by compactifiability, H is semisimple, which means

that H decomposes

H =
⊕
i∈I

Vi ⊗Wi

where Vi are irreducible local systems and Wi are complex vector spaces. Conse-
quently, by Schur’s lemma we have

End(H ) =
∏
i∈I

End(Wi).

Our V is isomorphic to a direct sum of some copies of the Vi, and hence we can
suppose that V = Vi0 for some i0.

A purely algebraic lemma shows that every grading of
∏

End(Wi) compatible
with the algebra structure comes from gradings of the Wi. If we fix such gradings,
and pick a homogeneous line L ⊆Wi0 , then there exists a homogenous idempotent
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of degree zero in End(Wi) whose image in L. This idempotent defines a homoge-
neous projection of H onto Vi ⊗ L ∼= Vi. Thus Vi underlies a polarized variation
of Hodge structures which is a sub-variation of H up to renumbering. �

4. Proof of Theorems 1 and 2

4.1. Griffiths’ version of the Schwarz lemma. The classical Schwarz lemma
in complex analysis states that every holomorphic function

f : ∆→ ∆, ∆ = {|z| < 1} ⊆ C, f(0) = 0

satisfies |f ′(0)| ≤ 1, with equality if and only if f is a rotation; the proof is an easy
application of the maximum principle to f(z)/z.

A more appealing equivalent formulation of this lemma says that if we endow ∆
with its Poincaré metric d(x, y) (constant curvature −1), then every holomorphic
f : ∆→ ∆ (not necessarily preserving the origin) satisfies

d(f(x), f(y)) ≤ d(x, y), x, y ∈ ∆

with equality if and only if x = y or f an isometry (a fractional linear transforma-
tion). This formulation is the beginning of the long story of the interplay between
complex and hyperbolic geometry, Kobayashi manifolds etc.

The following fundamental result of Griffiths is a version of the Schwarz lemma
where the target of the map is a period domain. It says that period domains tend
to be ‘hyperbolic.’

Theorem 4.2 ([4, 10.1]). Let D = D({hp,q}) = U/K be a period domain as in
§2.6.There exists a U -invariant Riemannian metric dD(x, y) on D such that for
every horizontal holomorphic map

f : ∆ −→ D

one has
dD(f(x), f(y)) ≤ d(x, y), x, y ∈ ∆.

Here d(x, y) is again the Poincaré metric on ∆.

Here a map f : S → D is horizontal if

df : TsS −→ Tf(s)D ⊆
⊕
p

Hom(F p, V/F p)

has image in
⊕

Hom(F p/F p+1, F p−1/F p). The Griffiths transversality condition
implies that the period map associated to a polarized variation of Hodge structures
is horizontal.

Example 4.3. Coming back to the elliptic curve example: D = U/K is the upper
half-plane, which is itself biholomorphic to the unit disc ∆. Thus the assertion of
Griffiths’ result is the usual Schwarz lemma.

4.4. Bound on traces. The fundamental input, based on Griffiths’ theorem above,
is a bound on the trace of a fixed element γ ∈ π1(S, 0).

Proposition 4.5. Let (S, 0) be a connected pointed complex manifold, and let
γ ∈ π1(S, 0). Then for every N ≥ 0 there exists a constant C > 0 such that for
every polarized variation of Hodge structures H of rank N on S, the corresponding
representation σ : π1(S, 0)→ GL(H0) satisfies

|Tr(σ(γ))| < C.
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Proof. We fix a basis {vi} of H0 ⊗C which is adapted in the sense that each F p is
spanned by a subset of this basis and such that H(vi, vj) = δij .

Let π : (S̃, 0) → (S, 0) be the universal covering. Then the pullback π∗H is

a polarized variation of Hodge structures on S̃ whose underlying local system is
constant with value H0. Let D = D(H0, H, {hp,q}) = U/K be the associated
period domain and let dD be the U -invariant metric in Theorem 4.2. We have the
period map

f : S̃ −→ D,

which is equivariant with respect to the map σ : π1(S, 0)→ U ⊆ GL(H0).

Since S̃ is connected, there exist points

0 = x0, x1, . . . , xr = γ · 0,

holomorphic maps

u1, . . . , ur : ∆ −→ S̃,

and points a1, . . . , ar−1, b1, . . . , br ∈ ∆ such that

x0 = u1(a1), u1(b1) = x1 = u2(a2), . . . , ur(br) = xr.

Applying Theorem 4.2 to the compositions fi = f ◦ui : ∆→ D, we obtain an upper
bound

dD(f(0), f(γ · 0)) ≤
r∑
i=1

dD(f(xi−1), f(xi))) =

r∑
i=1

dD(fi(ai), fi(bi)) ≤
r∑
i=1

d(ai, bi).

(See Figure 1.) This means that f(γ · 0) = σ(γ) · 0 lies in a bounded subset of
D = U/K depending only on {hp,q}. Since K is compact and dD is U -invariant,
this means that σ(γ) ∈ U ⊆ GL(H0) lies in a bounded subset of U . Consequently,
the matrix coefficients of σ(γ) in the basis {vi} are bounded, and therefore so is its
trace.

The bound we have obtained depends on {hp,q}; in the last step of the proof, we
have to deal with the fact that the weight n of H can be unbounded.

First, we observe that if hp,q = 0 for some p and q, then F p+1 is horizontal.
Indeed, Griffiths transversality asserts that

∇(F p+1) ⊆ F p ⊗ Ω1
S ,

but F p/F p+1 = Hp,q = 0. Consequently, the polarized variation H decomposes
into a direct sum of polarized variations for which the set {p |hp,n−p 6= 0} is a
connected interval.

Second, if {p |hp,n−p 6= 0} is a connected interval, then after suitable renumber-
ing and changing H by a sign, we can assume that this interval starts at 0 and that
n ≤ N . Now there are finitely many possibilities for the hp,q. �

4.6. Finite determination of traces. We need a purely group-theoretic result:

Proposition 4.7. Let Γ be a finitely group and N ≥ 0 an integer. There exists a
finite subset F ⊆ Γ such that if σi : Γ→ GLN (C) (i = 1, 2) are two representations
such that Tr(σ1(γ)) = Tr(σ2(γ)) for all γ ∈ F , then one has Tr(σ1(γ)) = Tr(σ2(γ))
for all γ ∈ Γ.
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Figure 1. Proof of Proposition 4.5

Proof. Clearly we can assume that Γ is the free monoid on a set T . Consider the
free algebra A over C with indeterminates xtij for i, j = 1, . . . , N and t ∈ T ; we

have a natural representation σ : Γ → MN×N (A) sending t to [xtij ], and an action
of GLN (C) on A by conjugation. For γ = t1 · . . . · tr ∈ Γ, ti ∈ T , the trace

Tr(σ(γ)) ∈ A
lies in the subring of invariants AGLN .

Since GLN is reductive, this subring is finitely generated. Moreover, Procesi
[7] has shown that it is in fact generated by the elements Tr(σ(γ)), γ ∈ Γ. Thus
there exists a finite set F ⊆ Γ such that Tr(σ(γ)) (γ ∈ F ) generate AGLN , and
consequently for every γ ∈ Γ, the element Tr(σ(γ)) is a polynomial in Tr(σ(γ′)) for
γ′ ∈ F .

Specializing the xtij to the matrix coefficients of σi(t), we see that Tr(σi(γ)) is a
polynomial (independent of σ) of Tr(σi(γ

′)) for γ′ ∈ F . �

4.8. Proof of Theorem 2.

Proof. (a) Let H be a polarized integral variation of Hodge structures of rank
N on S, and let σ : π1(S, 0) → GL(H0) be the associated representation. Then
Tr(σ(γ)) ∈ Z for every γ ∈ π1(S, 0), and |Tr(σ(γ))| < C where C depends only
on S and N , by Proposition 4.5. Therefore Tr(σ(γ)) can take only finitely many
possible values.
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Let F ⊆ π1(S, 0) be a finite set as in Proposition 4.5. Then the restriction of
Tr(σ(γ)) to F can take only finitely many values. Consequently, by the property
of the set F , there are only finitely many possibilities for γ 7→ Tr(σ(γ)).

(b) Let V be a subquotient of a local system H underlying a polarized integral
variation of Hodge structures. By §3.4, V underlies a polarized variation of Hodge
structures, and hence by the proof of (a) there are only finitely many possible V
up to semisimplification. By Theorem 3.5, there are only finitely many possible V
up to isomorphism. �

4.9. Proof of Theorem 1.

Proof. By Nagata and Hironaka, San is compactifiable, so we can apply Theo-
rem 2(b). Suppose that V is a local system on San which comes from geometry;
by definition, there exists a smooth projective f : X → S such that V is a direct
summand of H = Rnf∗Q. The local system H underlies an integral polarized
variation of Hodge structure, and hence by Theorem 2(b) V belongs to a finite set
of isomorphism classes. �

5. `-adic version

Let k be a finitely generated field with algebraic closure k and let X be a geo-
metrically connected, normal and quasi-projective scheme over k. Let x ∈ X(k).
One has the exact sequence

1→ π1(Xk, x)→ π1(X,x)→ Gal(k/k)→ 1.

Here if k has positive characteristic and X is not complete, we denote by π1 the
tame fundamental group.

Let ` be a prime invertible in k and let L be a finite extension of Q` with the
natural topology. Let us call a continuous representation

σ : π1(Xk, x) −→ GLN (L)

arithmetic if there exists a finite extension k′ of k and a continuous representa-
tion ρ : π1(Xk′ , x) → GLM (L) such that σ is isomorphic to a subquotient of the
restriction of ρ to π1(Xk, x).

Theorem 5.1 (Litt3 [6]). For X as above and N ≥ 0, there exist only finitely many
isomorphism classes of semisimple arithmetic continuous representations

σ : π1(Xk, x) −→ GLN (L).

Let now k be any field with algebraic closure k, and let X/k be as before. We
say that a continuous representation

σ : π1(Xk, x) −→ GLN (L)

comes from geometry [6, 3.1.6] if it is a subquotient of the representation attached
to Rif∗L for some smooth and proper f : Y → X, or more generally such an
f defined over some algebraically closed extension of k. Deligne has shown that
such representations are semisimple. Moreover, if k is finitely generated, then σ
is arithmetic. Since every variety can be defined over a finitely generated field by
spreading out, one can deduce the following:

3In fact in the paper this is stated for curves, but the general case can be deduced by a
Lefschetz-type argument, see [6, Remark 1.1.9]. The formulation given here follows a private

communication with the author.
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Theorem 5.2 (Litt [6]). Let k be a field and let X be a geometrically integral,
normal, and quasi-projective scheme over k. Let x ∈ X(k). Let L be a finite
extension of Q` where ` is a prime invertible in k. Then there exist only finitely
many continuous representations

π1(Xk, x) −→ GLN (L)

which come from geometry.

Thus, in a sense, the extension of a representation of π1(Xk, x) to the arithmetic
fundamental group π1(X,x) (up to passing to a finite extension of k) is the arith-
metic analog of finding a polarized variation of Hodge structures on a given rational
local system on a smooth complex variety.
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