MATH550 Commutative Algebra — Problem Set 7

Due Dec 16, 2025.

Choose five out of the six (solving all six counts as extra credit).

Problem 1 (Composition of valuation rings). Let A be a valuation ring with fraction field K and residue field L, and denote by $\pi: A \to L$ the quotient map. Let B be a valuation ring with fraction field L and residue field E. Consider the subring $C \subseteq A$ defined by

$$C = \{ x \in A : \pi(x) \in B \}.$$

Prove that C is a valuation ring with fraction field K and residue field E.

Problem 2 (Integer in the fifth cyclotomic field). Let $\zeta = e^{2\pi i/5}$ be the primitive root of unity of order 5, and let $K = \mathbb{Q}(\zeta)$. Prove that the ring of integers \mathfrak{O}_K (the integral closure of \mathbb{Z} in K) is equal to $\mathbb{Z}[\zeta]$.

Problem 3. Let K be an algebraically closed field and let R be a finitely generated K-algebra. Suppose that for every maximal ideal $\mathfrak{m} \subseteq R$ we have $R_{\mathfrak{m}} = K$. Prove that $R \simeq K^n$ for some $n \ge 0$.

Problem 4. Let k be a field and let $R = k[[T_1, \dots, T_n]]$ be the ring of formal power series in $n \ge 1$ variables. Prove that R is a local ring with maximal ideal $\mathfrak{m} = (T_1, \dots, T_n)$.

Problem 5 (Nodal curve is analytically reducible). Prove that the element $Y^2 - X^2(X+1)$ of the power series ring $\mathbb{C}[X,Y]$ is the product of two non-units.

For the next problem, recall the following definitions: for a prime p

- the ring of *p*-adic integers $\mathbb{Z}_p = \varprojlim_n \mathbb{Z}/p^n$ is the *p*-adic completion of \mathbb{Z} (it is a discrete valuation ring with maximal ideal (p));
- the field of *p*-adic (rational) numbers \mathbb{Q}_p is the fraction field $\operatorname{Frac}(\mathbb{Z}_p) = \mathbb{Z}_p[1/p]$;
- the *p*-adic norm of an element $x \in \mathbb{Q}_p$ is the non-negative real number

$$|x|_p = p^{-v_p(x)}, \qquad v_p(x) = \max\{n \in \mathbb{Z} : p^{-n}x \in \mathbb{Z}_p\}$$

where we use the convention $|0|_p = p^{-\infty} = 0$.

Problem 6 (p-adic analytic functions). Let p be a prime and let

$$A^{\circ} = \mathbb{Z}_p \langle T \rangle = \varprojlim_n (\mathbb{Z}/p^n)[T]$$

be the *p*-adic completion of $\mathbb{Z}[T]$. Let

$$A = \mathbb{Q}_p \langle T \rangle = A^{\circ} [1/p].$$

Prove that

$$A \simeq \left\{ f = \sum_{n > 0} a_n T^n \in \mathbb{Q}_p[\![T]\!] : |a_n|_p \to 0 \text{ as } n \to \infty \right\}.$$

(FYI: This is the ring of power series which converge on the closed p-adic unit disc.)