MATH550 Commutative Algebra — Problem Set 6

Due Dec 4, 2025.

Problem 1. Let $Z = \operatorname{Spec}(\mathbb{Z}) \setminus \{\eta\}$ where η is the generic point. Prove that there does not exist a finitely generated \mathbb{Z} -algebra A such that the image of $\operatorname{Spec}(A) \to \operatorname{Spec}(\mathbb{Z})$ is equal to Z.

Problem 2. Let $k = \mathbb{F}_q$ be the field with q elements and let

$$A = k[X, Y]/(X^qY - XY^q).$$

For $a, b \in k$ not both zero, consider the k-algebra map

$$\phi_{a,b}: k[T] \longrightarrow A, \qquad \phi_{a,b}(T) = aX + bY.$$

Prove that the map $\phi_{a,b}$ is not finite.

Problem 3. Let k be a field and A a finitely generated domain over k. Let L be the integral closure of k in A. Show that L is finite over k. Hint: First show that L is a field, then pick a maximal ideal of A and apply Nullstellensatz.

Problem 4. Let X be a spectral space and let $W \subseteq X$ be a constructible subset. Prove that W is quasi-compact.

Problem 5. Let A be a ring and let $Z \subseteq \operatorname{Spec}(A)$ be a closed subset. Prove that Z is constructible if and only if there exists a finitely generated ideal $I \subseteq A$ such that Z = V(I).

- \star **Problem 6.** Let $Z = \operatorname{Spec}(\mathbb{Z}) \setminus \{\eta\}$ where η is the generic point. Prove that there does not exist a \mathbb{Z} -algebra A such that the image of $\operatorname{Spec}(A) \to \operatorname{Spec}(\mathbb{Z})$ is equal to Z.
- \star **Problem 7.** Let $\sigma: \mathbb{C}^n \to \mathbb{C}^n$ be a polynomial map satisfying $\sigma \circ \sigma = \mathrm{id}$. Prove that σ has a fixed point. *Hint:* Reduce to the analogous question over a finite field of odd characteristic.