MATH550 Commutative Algebra — Problem Set 1

Due Oct 21, 2025.

Comments:

- All rings are commutative and unital.
- Send your solutions in PDF form to pachinger@kse.org.ua
- Solutions to the exercises in Atiyah–Macdonald are too easy to find online. I encourage you not to look for them the point of the homework is to get familiar with the new notions, which is difficult without trying to solve some homework problems.

Problem 1. Let \mathfrak{p} and \mathfrak{q} be two prime ideals in a ring A such that neither $\mathfrak{p} \subseteq \mathfrak{q}$ nor $\mathfrak{q} \subseteq \mathfrak{p}$. Show that the ideal $\mathfrak{p} \cap \mathfrak{q}$ is not prime.

Problem 2 (Atiyah–Macdonald 1.11). A ring *A* is Boolean if $x^2 = x$ for all $x \in A$. In a Boolean ring *A*, show that

- i) 2x = 0 for all $x \in A$;
- ii) every prime ideal \mathfrak{p} is maximal, and A/\mathfrak{p} is a field with two elements;
- iii) every finitely generated ideal in A is principal.

Problem 3. Show that a ring A is a domain if and only if it admits an injective homomorphism $A \hookrightarrow K$ into a field K. Show that A is reduced (has no nonzero nilpotent elements) if and only if it admits an injective homomorphism $A \hookrightarrow \prod_{\alpha \in I} K_{\alpha}$ into a product of (possibly infinitely many) fields.

For the next two exercises you might want to recall Tietze's extension theorem.

Problem 4 (see Atiyah–Macdonald 1.26). Let X be a compact Hausdorff space and let $A = C(X, \mathbb{R})$ be the ring of continuous functions on X. For $x \in X$, let $\mathfrak{m}_x \subseteq A$ be the set of all $f \in A$ such that f(x) = 0. Show that \mathfrak{m}_x is a maximal ideal in A, and that every maximal ideal $\mathfrak{m} \subseteq A$ is of the form \mathfrak{m}_x for a unique $x \in X$.

Problem 5. Let again X be a compact Hausdorff space and let $A = C(X, \mathbb{R})$ be the ring of continuous functions on X. Show that every prime ideal in A is contained in a unique maximal ideal.