Theory

Problem 1 (10 pts.). Let A be a ring. Prove that Spec(A) is quasi-compact, and that if A is Noetherian, then every open subset of Spec(A) is quasi-compact.

Problem 2 (10 pts.). Give the definition of a local ring. Prove that a ring is local if and only if it is nonzero and the set of its non-invertible elements is closed under addition.

Practice

Choose three out of four.

Problem 3 (10 pts.). Consider $K = \mathbb{Q}(\sqrt{7})$, and let $A \subseteq K$ be the integral closure of \mathbb{Z} in K.

- (a) Prove that an element $w = a + b\sqrt{7}$ of K (where $a, b \in \mathbb{Q}$) belongs to A if and only if $a, b \in \mathbb{Z}$.
- (b) For which primes p does the ring A/pA have nonzero nilpotent elements?
- (c) Compute $\Omega^1_{A/\mathbb{Z}}$ and decompose it as a direct sum of cyclic groups.

Solution. (a) Let $\bar{w} = a - b\sqrt{7}$, so that $w + \bar{w} = 2a$ and $w\bar{w} = a^2 - 7b^2 2$. Then w satisfies the quadratic equation

$$(T-w)(T-\bar{w}) = T^2 - 2aT + (a^2 - 7b^2).$$

Thus, if $a,b \in \mathbb{Z}$, then this equation has integer coefficients, and w is therefore integral over \mathbb{Z} . Conversely, suppose that w is integral over \mathbb{Z} , then either w is rational (i.e. $w = \bar{w} = a$), in which case it is an integer, or w is irrational, in which case the above equation is the minimal polynomial of w, and hence its coefficients are integers. It remains to show that if 2a and $a^2 - 7b^2$ are integers, then so are a and b. We have a = a'/2 with $a' \in \mathbb{Z}$, and $a^2 - 7b^2 \in \mathbb{Z}$ implies that b = b'/2 with $b' \in \mathbb{Z}$. Moreover, the integer $(a')^2 - 7(b')^2$ is divisible by 4. Since 7 is not a square modulo 4, this shows that a' and b' are both even, so that $a, b \in \mathbb{Z}$.

(b) By (a) the map $\mathbb{Z}[X]/(X^2-7) \to A$ sending X to $\sqrt{7}$ is an isomorphism. Therefore A/pA is isomorphic to $\mathbb{F}_p[X]/(X^2-7)$. If $p \neq 2, 7$, the polynomial X^2-7 is either irreducible (so that A/pA is a field) or has two distinct roots (so that $A/pA \simeq \mathbb{F}_p \times \mathbb{F}_p$), and in either case A/pA is reduced. For p=2 and p=7 we have

$$A/2A = \mathbb{F}_2[X]/(X^2 - 7) = \mathbb{F}_2[X]/((X - 1)^2), \qquad A/7A = \mathbb{F}_7[X]/(X^2 - 7) = \mathbb{F}_7[X]/(X^2)$$

which are both non-reduced.

(c) Using the same presentation as in (b) we write

$$\Omega_{A/\mathbb{Z}}^1 = A \cdot dX/A \cdot (2XdX) \simeq A/(2\sqrt{7}).$$

Now $w = a + b\sqrt{7}$ belongs to the ideal $(2\sqrt{7})$ if and only if 14 divides a and 2 divides b. Thus

$$\Omega^1_{A/\mathbb{Z}} \simeq \mathbb{Z}/14 \oplus \mathbb{Z}/2 \simeq \mathbb{Z}/7 \oplus \mathbb{Z}/2 \oplus \mathbb{Z}/2.$$

Problem 4 (10 pts.). Let *A* be a Noetherian domain and let *M* be a finitely generated *A*-module. Show that there exists a nonzero $f \in A$ such that $M[f^{-1}]$ is a free $A[f^{-1}]$ -module.

Proof. Let K be the fraction field of A and let $x_1, \dots, x_n \in M \otimes_A K$ be a basis of the K-vector space $M \otimes_A K$. Since $M \otimes_A K = M[S^{-1}]$ where $S = A \setminus \{0\}$, we can write $x_i = m_i/f_i$ with $m_i \in M$ and $f_i \in A \setminus \{0\}$. Let $g = f_1 \cdots f_n \neq 0$, and replace A with $A[g^{-1}]$ and M with $M[g^{-1}]$, so that $x_i = f_i^{-1}m_i$ are in M. Consider the A-module map $A^n \to M$ sending the i-th basis vector e_i to x_i , and let L and Q be its kernel and cokernel. They are both finitely generated (Q being a quotient of M and L since A is Noetherian). Tensoring the exact sequence

$$0 \longrightarrow L \longrightarrow A^n \longrightarrow M \longrightarrow 0 \longrightarrow 0$$

with K, we obtain an exact sequence (since K is flat over A, being a localization of A)

$$0 \longrightarrow L \otimes_A K \longrightarrow K^n \longrightarrow M \otimes_A K \longrightarrow Q \otimes_A K \longrightarrow 0$$

in which the middle map is an isomorphism (as x_1, \ldots, x_n are a basis of $M \otimes_A K$). It follows that

$$L \otimes_A K = 0 = Q \otimes_A K$$
.

It remains to show that if N is a finitely generated module over a domain A with fraction field K such that $N \otimes_A K = 0$, then $N[h^{-1}] = 0$ for some $h \in A \setminus \{0\}$. To show this, let y_1, \ldots, y_r generate N. Thus the elements $y_i/1$ of $N \otimes_A K = N[(A \setminus \{0\})^{-1}]$ are zero, which means that $h_i y_i = 0$ for some nonzero $h_i \in A$. Then $h = h_1 \cdots h_n$ does the job.

To finish, we apply this observation to N=L and N=Q, obtaining h and h', and setting f=hh' we obtain $N[f^{-1}]=0=Q[f^{-1}]$. Tensoring our exact sequence with $A[f^{-1}]$ we obtain that $A[f^{-1}]^n \to M[f^{-1}]$ is an isomorphism, and $M[f^{-1}]$ is free.

Problem 5 (10 pts.). Let $A = \mathbb{C}[X,Y]$ and $B = \mathbb{C}[U,V]$. Consider the \mathbb{C} -algebra map $A \to B$ sending X to U and Y to UV.

- (a) Find a presentation for the *B*-module $\Omega^1_{B/A}$. Is it torsion-free?
- (b) Find a presentation for the \mathbb{C} -algebra $C = B \otimes_A B$. Is it a domain?

Solution. (a) We begin with a presentation of B over A:

$$B = \mathbb{C}[X, Y, U, V]/(X - U, Y - UV) = A[U, V]/(X - U, Y - UV).$$

Then $\Omega^1_{B/A}$ is generated by dU and dV modulo the relations d(X-U)=dU=0 and d(Y-UV)=-UdV-VdU=-UdV=0. So we have one generator dV and one relation UdV=0. Thus

$$\Omega^1_{B/A} \simeq B/(V) = \mathbb{C}[U].$$

This module is not torsion-free, as it is nonzero and annihilated by V.

(b) We use the above presentation for B over A, then "the same" formula gives a presentation of $C = B \otimes_A B$ over B, namely

$$C = B[U', V']/(X - U', Y - U'V')$$

(where we use the primes to distinguish the two factors *B*). Expanding $B = \mathbb{C}[U,V]$ and using X = U, Y = UV this yields:

$$C = \mathbb{C}[U, V, U', V']/(U - U', UV - U'V') = \mathbb{C}[U, V, V']/(U(V - V')).$$

We can simplify this even further by substituting V - V' = W:

$$C = \mathbb{C}[U, V, W]/(UW).$$

This is not a domain since U, W are both nonzero while UW = 0.

Problem 6 (10 pts.). Let $A = \bigoplus_{n \geq 0} A_n$ be a Noetherian graded ring and let $M = \bigoplus_{n \in \mathbb{Z}} M_n$ be a finitely generated graded A-module. Prove that M_n is a finitely generated A_0 -module for every $n \in \mathbb{Z}$.

Solution. Let $f_1, \ldots, f_r \in A_+$ be a set of generators of the ideal $A_+ = \bigoplus_{n>0} A_n$. Decomposing each f_i into its homogeneous components we may assume that the f_i are homogeneous, say $f_i \in A_{d_i}$ with $d_i > 0$. Recall (from the characterization of Noetherian graded rings) that this implies that the A_0 -algebra map

$$A_0[T_1,\ldots,T_r] \longrightarrow A, \qquad T_i \mapsto f_i$$

is a surjection of graded rings, where the source is graded by placing T_i in degree d_i .

Similarly, let $m_1, ..., m_s \in M$ generate M over A, and again we may assume that they are homogeneous, say $m_j \in M_{e_j}$. For $n \in \mathbb{Z}$, consider the elements

$$m_{a,j} = f_1^{a_1} \cdots f_r^{a_r} \cdot m_j \in M_n$$

for $a = (a_1, ..., a_r) \in \mathbb{N}^r$ and $j \in \{1, ..., s\}$ such that

$$n = \sum_{i=1}^{r} a_i d_i + e_j.$$

For a given n, there are only finitely such choices of a and j. We claim that the elements $m_{a,j}$ generate M_n as a module over A_0 . Indeed, let $m \in M_n$. Since the m_j generate M, we can write

$$m = \sum_{j=1}^{s} g_j m_j$$

for some $g_j \in A$. We may assume $g_j \in A_{n-e_j}$ is homogeneous. Thus each g_j is a polynomial in f_1, \ldots, f_r with coefficients in A_0 . Decompose g_j into a sum of monomials

$$g_j = \sum_a u_{a,j} f_1^{a_1} \dots f_r^{a_r}$$

where the sum is over all $a=(a_1,\ldots,a_r)\in\mathbb{N}^r$ with $n-e_j=\sum a_id_i$ and $u_{a,j}\in A_0$. This shows that

$$m = \sum_{j=1}^{s} g_{j} m_{j} = \sum_{j=1}^{s} \sum_{a} u_{a,j} f_{1}^{a_{1}} \dots f_{r}^{a_{r}} m_{j} = \sum_{j=1}^{s} \sum_{a} u_{a,j} m_{a,j}.$$