
Commutative algebra prerequisites for algebraic geometry January 6, 2025

This document lists the bare definitions and facts we will need for our algebraic geometry course. In case
you took MATH550 Commutative Algebra in the Fall, this should all be familiar, but can help you with
recalling what we have learned. In case you haven’t studied some of this material, it should serve as a
guideline for what you need to learn.

1. Commutative rings

An commutative ring (or simply a ring) is an abelian group A = (A,+,0) together with a bilinear
associative, commutative, and unital multiplication · : A×A → A, that is: we have an element 1 ∈ A and

(x+ y) · (x′+ y′) = xx′+ xy′+ yx′+ yy′, (x · y) · z = x · (y · z), x · y = y · x, 1 · x = x

for all x,x′,y,y′,z ∈ A. A homomorphism (or morphism, or simply map) of rings is a homomorphism
of abelian groups φ : A → B such that φ(x · y) = φ(x) · φ(y) and φ(1) = 1 (the latter condition is not
automatic!). Rings form a category which we denote by CAlg (for “commutative algebras”). The ring Z
is the initial object of CAlg: for every A, there exists a unique map Z→ A. The zero ring 0 is the final
object, and if 0 → A is a map, then A = 0.

If {Aα}α∈I is a family of rings, then the cartesian product A = ∏α∈I Aα with coordinate-wise multiplica-
tion and addition is a ring, and the projection maps A → Aα are homomorphisms (A is the categorical
product of {Aα} in CAlg).

For a ring A, an A-algebra (or: algebra over A) is a ring B together with a homomorphism A → B (which
we often neglect to name), and a morphism of A-algebras B →C is a map of rings B →C such that the
triangle

B
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commutes. We denote the category of A-algebras by CAlgA. Then A (meant as the identity A → A) is the
initial object of CAlgA. We have CAlg = CAlgZ.

A subring of A is a subgroup B ⊆ A containing 1 and closed under multiplication, or which is the same
an injective ring map B → A.

An ideal in a ring A is a subgroup I ⊆ A such that A · I = I (that is, if x ∈ A and y ∈ I, then xy ∈ I).
There is a unique ring structure on the quotient group A/I making the quotient map A → A/I a ring
homomorphism. For a map of rings φ : A → B, the kernel ker(φ)⊆ A is an ideal, the image im(φ)⊆ B
is a subring, and we have A/ker(φ) ≃ im(φ). For an ideal I ⊆ A, a map φ : A → B factors (uniquely)
through A/I if and only if I ⊆ ker(φ). If φ : A → B is a map and J ⊆ B is an ideal, then φ−1(A) is an
ideal. Ideals in A/I are in bijection with ideals of A containing I. For a subset I0 ⊆ A, the set I = (I0) of
all linear combinations a1x1 + · · ·+anxn with ai ∈ A and xi ∈ I is the smallest ideal of A containing A,
called the ideal generated by I0. For I0 = {x1, . . . ,xn}, we write (I0) = (x1, . . . ,xn). An ideal of the form
I = ( f ) for a single f ∈ A is called principal. For a map φ : A → B and an ideal I ⊆ A, we write I ·B for
the ideal of B generated by φ(I). For a family of ideals {Iα}, the intersection

⋂
Iα is an ideal, and we
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denote by ∑ Iα the ideal generated by
⋃

Iα . For two ideals I,J ⊆ A, the product I · J is the ideal generated
by {xy : x ∈ I, y ∈ J}.

An ideal p⊆ A is prime if its complement A\p is a monoid (unital semigroup), or equivalently if p ̸= A
and xy ∈ p implies x ∈ p or y ∈ p. If φ : A → B is a map and q⊆ B is a prime ideal, then φ−1(q)⊆ A is a
prime ideal.

An element x ∈ A is a unit (or invertible) if xy = 1 for some y ∈ A. Such a y is unique and is denoted
by x−1. Units of a ring A form a group under multiplication, denoted by A×. A ring A is a field if
A× = A\{0} (in particular the zero ring is not a field). A map A → B induces a map A× → B×.

A nonzero ring A is a domain if it has no zerodivisors, i.e. if xy = 0 implies x = 0 or y = 0. Thus A is a
domain if and only if (0)⊆ A is a prime ideal. An ideal I ⊆ A is prime if and only if A/I is a domain.

An ideal m⊆ A is maximal if m ̸= A and which is maximal with respect to this property. Equivalently,
the quotient A/m is a field, and every maximal ideal is a prime ideal.

Proposition 1.1. Every nonzero ring admits a maximal ideal.

A ring A is local if it has a unique maximal ideal mA, or equivalently if its non-units form an ideal (which
is then maximal). Its residue field is the quotient kA = A/mA. A homomorphism φ : A → B between
local rings is local if φ(mA)⊆mB. It then induces a homomorphism kA → kB between residue fields.

An element x ∈ A is nilpotent if xn = 0 for some n ≥ 1. The set of all nilpotent elements of A is and ideal
called its nilradical and denoted by

√
0. More generally, for an ideal I ⊆ A the set of all elements x ∈ A

such that xn ∈ I for some n ≥ 1 is an ideal called the radical of I and denoted by
√

I. We say that the
ideal I is radical if I =

√
I. We say that A is reduced if it has no nonzero nilpotent elements, i.e. if (0) is

a radical ideal.

Proposition 1.2. For an ideal I ⊆ A, we have
√

I =
⋂

p⊇I p (the intersection of all prime ideals containing
I). In particular, an element x ∈ A is nilpotent if and only if x belongs to every prime ideal of A.

For a ring A and a (possibly infinite) set S, we denote by A[S] the polynomial ring over A in the set of
variables Ts for all s ∈ S. We use A[T1, . . . ,Tn] as a shorthand for A[{1, . . . ,n}]. This ring has the universal
property: for any A-algebra B, giving a map of A-algebras A[S]→ B is the same as giving a map of sets
γ : S → B. An A-algebra B is finitely generated (or “of finite type”) if there exists an A-algebra surjection
A[S]→ B for a finite set S.

For an A-algebra B (i.e. a map A → B), a presentation of B over A is a triple (S,γ,R) where S is a set,
γ : S → B is a map of sets such that the corresponding map γ̃ : A[S]→ B is surjective, and R ⊆ A[S] is a
set which generates ker(γ̃) as an ideal. Thus B ≃ A[S]/(R). We say that B is finitely presented over A if
it admits a presentation (S,γ,R) where both S and R are finite. If S = {1, . . . ,n} and R = { f1, . . . , fr}, we
write

B = A[T1, . . . ,Tn]/( f1, . . . , fr)

for the quotient A[S]/(R). Thus a finitely presented A-algebra is one isomorphic to a quotient of the
above type. The above quotient has the following universal property: giving an A-algebra map B →C is
the same as giving elements t1, . . . , tn ∈C such that fi(t1, . . . , tn) = 0 for i = 1, . . . ,r. Here fi(t1, . . . , tn) is
obtained by substituting formally the elements ti ∈C for the variables Ti.

A subset S ⊆ A is a multiplicative system if it contains 1 and is closed under multiplication. The
localization A[S−1] is the ring consisting of fraction symbols a/s where a∈A and s∈ S, where a/s= a′/s′
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if t(as′−a′s) = 0 for some t ∈ S, with the usual rules for multiplication and addition. Thus (1/s)(s/1) = 1
and hence s/1 is a unit in A[S−1]. The map A → A[S−1] sending a to a/1 is a ring homomorphism and
has the following universal property: a map φ : A → B factors (uniquely) through A[S−1] if and only if
φ(S)⊆ B×. Key examples:

• For f ∈ A, the set of powers S = {1, f , f 2, . . .} is a multiplicative system and A[S−1] is denoted
more succinctly by A[ f−1] (we have A[ f−1]≃ A[T ]/( f T −1), in particular it is finitely presented
over A).

• If p⊆ A is a prime ideal, then A\p is a multiplicative system, and we denote A[(A\p)−1] by Ap

and call it the localization at p. It is a local ring with unique maximal ideal p ·Ap.

• In the special case p= (0) in a domain A, the ring A(0) is a field, called the fraction field of A and
denoted by Frac(A).

In general, the kernel of A → A[S−1] consists of all x ∈ A such that xy = 0 for some y ∈ S, and prime
ideals in A[S−1] correspond to prime ideals of A which are disjoint from S. For a prime ideal p⊆ A, we
denote by κ(p) the residue field of the local ring Ap, or equivalently the fraction field of the quotient A/p
(we call it the residue field of p).

2. The spectrum

For a ring A, we denote by Spec(A) the set of all prime ideals of A, called the spectrum of A. However, we
treat its elements (points) as independent beings, and for x ∈ Spec(A) we write px for the “corresponding
prime ideal.” For x ∈ Spec(A), we denote by κ(x) the residue field κ(px), and for f ∈ A we write f (x) for
the image of f in κ(x). Thus f ∈ A defines a “field-valued function” on Spec(A), where the codomain
κ(x) depends on the point x. Then f ∈ A is a unit if and only if f (x) ̸= 0 for all x ∈ Spec(A), and nilpotent
if and only if f (x) = 0 for all x ∈ Spec(A).

For f ∈ A, we write
D( f ) = {x ∈ Spec(A) : f (x) ̸= 0} ⊆ Spec(A)

(in terms of prime ideals, this is the set of primes containing f ). We have D( f g) = D( f )∩D(g). We
give Spec(A) the topology generated by these sets; thus Z ⊆ Spec(A) is closed if and only if Z =V (I) for
some ideal I ⊆ A, where

V (I) = {x ∈ Spec(A) : f (x) = 0 for all f ∈ I} ⊆ Spec(A).

The construction I 7→V (I) defines a bijection between radical ideals of A and closed subsets of Spec(A).

The space Spec(A) is T0 (for x ̸= y we can find an open subset containing exactly one of x,y) but typically
not Hausdorff. It is quasi-compact (every open cover has a finite subcover), and so are its base open
subsets D( f )≃ Spec(A[ f−1]).

An element x ∈ A is idempotent if x2 = x; then y = 1− x is also idempotent, and A ≃ A/(x)×A/(y).
The space Spec(A) is the disjoint union of V (x) = Spec(A/(x)) = D(y) and V (y) = Spec(A/(y)) = D(x).
Conversely, if Z ⊆ Spec(A) is a clopen subset, then Z =V (x) for an idempotent x.

On a topological space X , a point x is a specialization of a point y (we write y⇝ x) if x belongs to
the closure of {y}. On Spec(A), we have y⇝ x if and only if py ⊆ px. In particular, closed points are
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those whose corresponding prime ideal is maximal. The set of all closed points of Spec(A) is denoted by
MSpec(A) and called the maximal spectrum of A. If A is a domain, we denote by η ∈ Spec(A) the point
corresponding to the prime ideal (0), and call it the generic point of Spec(A). It specializes to every
other point.

A ring map φ ∗ : A → B induces a continuous map φ : Spec(B)→ Spec(A) (here we use the geometer’s
notation, treating Spec as the primary object). In the special case of the quotient A → A/I = B, this map is
a homeomorphism of Spec(A/I) onto V (I). For the map A → A[ f−1] = B, the map is a homeomorphism
of Spec(A[ f−1]) onto D( f ). (Thus we think of A/I as “functions on V (I)” and of A[ f−1] as “functions
on D( f )” — we will make this precise later using sheaves.) For a domain A, a map A → B is injective if
and only if the generic point η ∈ Spec(A) is in the image of Spec(A)→ Spec(B).

For a map φ ∗ : A → B and x ∈ Spec(A), the fiber φ−1(x) ⊆ Spec(B) is naturally homeomorphic to
Spec(B⊗A κ(x)) (see the next section for the definition of ⊗).

A topological space X is irreducible if it is nonempty and cannot be expressed as the union X = Y0 ∪Y1

of two proper closed subsets Yi ⊆ X . The spectrum Spec(A) is irreducible if and only if
√

0 is a prime
ideal (for example, if A is a domain), in which case the corresponding point η ∈ Spec(A) is the unique
generic point (meaning that {η} is dense). More generally, for any A, every irreducible closed subset
Z ⊆ Spec(A) is of the form {x} for a unique point x ∈ Spec(A) (in fact, Z =V (px) = Spec(A/px)).

A topological space X is Noetherian if every increasing sequence of open subsets is stabilizes, or
equivalently if every open subset U ⊆ X is quasi-compact. For example Spec(A) is Noetherian if A is a
Noetherian ring (see below for the definition of a Noetherian ring). A Noetherian topological space can
be written uniquely as a finite union of irreducible closed subsets (called its irreducible components)
X = Z1 ∪ . . .∪Zr such that Zi is not contained in Z j for i ̸= j.

3. Modules

A module M over a ring A is an abelian group (M,0,+) together with a map ·A×M → M which is unital,
bilinear, and associative in the sense that

1 ·m = m, (x+ x′) · (m+m′) = x ·m+ x′ ·m+ x ·m′+ x′ ·m′, (x · x′) ·m = x · (x′ ·m)

for x,x′ ∈ A and m,m′ ∈ M (note that the first · in the third formula denotes multiplication in A). Modules
over a field k are precisely the k-vector spaces. A morphism from an A-module M to an A-module N is
a homomorphism of abelian groups φ : M → N such that φ(x ·m) = x ·φ(m). Modules over A form a
category denoted by ModA.

The ring A is an A-module in the obvious way, and a map of A-modules A → M is the same datum as
an element of M (via evaluation on 1 ∈ A). The zero abelian group 0 is an A-module in a unique way,
and is both the initial and final object of ModA. A submodule of A is the same as an ideal. There is a
natural way of endowing the direct sum or direct product of a family of A-modules with the structure of
an A-module. Finite direct sums coincide with finite direct products. The kernel, cokernel, and image of a
map of A-modules is an A-module. An A-module is free if it is of the form A⊕S for some set S. A map
θ : A⊕R → A⊕S between free modules is the same as an R×S matrix [θi j]i∈R, j∈S of elements of A such that
for every i ∈ R we have θi j = 0 for all but finitely many j. An A-module M is finitely generated (or “of
finite type”) if there exists a surjection An → M for some integer n ≥ 0. A presentation of an A-module
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M is a map between free A-modules θ : A⊕R → A⊕S together with an identification coker(θ)≃ M. We
say that M is finitely presented if it admits a presentation with both S and R finite.

A ring A is Noetherian if every ideal I ⊆ A is finitely generated. Over a Noetherian ring, every increasing
chain of ideals is eventually constant, and the submodule of a finitely generated module is finitely
generated. In particular, every finitely generated module is finitely presented. Every quotient A/I and
localization A[S−1] of a Noetherian ring A is Noetherian. Moreover, we have the

Theorem 3.1 (Hilbert’s basis theorem). Let A be a Noetherian ring and let B be a finitely generated
A-algebra. Then B is Noetherian and finitely presented over A.

In particular, a finitely generated algebra over a field k or over Z is Noetherian.

A ring is a principal ideal domain PID if it is a domain in which every ideal is principal (in particular
such a ring is Noetherian). Over a PID, one has the following structure theorem for finitely generated
modules.

Theorem 3.2 (Modules over a PID). Let A be a PID and let M be a finitely generated A-module. Then

M ≃ Ar ⊕A/( f n1
1 )⊕·· ·⊕A/( f nm

m )

where r ≥ 0 and f1, . . . , fm ∈ A are prime elements (meaning that each fi generates a nonzero prime
ideal).

For an A-module M and a point x ∈ Spec(A), we write M(x) for the base change M⊗A κ(x) to the residue
field. It is a vector space over κ(x), called the fiber of M at x, which is of finite dimension if M is finitely
generated.

Lemma 3.3 (Nakayama). Let M be a finitely generated A-module. Then M is zero if and only if M(x) = 0
for every closed point x ∈ Spec(A).

Thus if A is a local ring and M is a finitely generated A-module, then M = 0 if and only if M = mAM.
More generally, for a finitely generated M over a local A, elements m1, . . . ,mr ∈ M generate M if and
only if their images span M⊗A kA = M/mAM as a vector space over kA = A/mA.

A (finite or infinite) sequence of maps of A-modules

· · · // Mn−1 dn−1
// Mn dn

// Mn+1 // · · ·

is a complex if dn−1◦dn = 0 for all n. Its n-th cohomology module is the quotient Hn = ker(dn)/im(dn−1).
If Hn = 0, we say that the sequence is exact at the n-th term; if this holds for all n, we say that the
complex is exact (or “acyclic”). For example,

M α // N // Q // 0

being exact means that Q ≃ coker(α), and M → N → 0 is exact if α is surjective. Analogously,

0 // K // M α // N

being exact means K ≃ ker(α), and 0 → M → N is exact if α is injective. Finally, a short exact sequence
is an exact sequence of the form

0 // M′ // M // M′′ // 0
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which means that M′ is a submodule of M and M′′ = M/M′.

The tensor product of two A-modules M and N is an A-module M ⊗A N determined by the universal
property: morphisms of A-modules M ⊗A N → P into an A-module P correspond to A-bilinear maps
M×N → P. It is generated by the symbols m⊗n (where m ∈ M and n ∈ N) subject to the relations

(m+m′)⊗n = m⊗n+m′⊗n, m⊗ (n+n′) = m⊗n+m⊗n′, xm⊗n = m⊗ xn

for m,m′ ∈ M, n,n′ ∈ N, and x ∈ A. We have the relations (or: canonical isomorphisms satisfying certain
compatibilities we neglect to mention)

(M⊗N)⊗P ≃ M⊗ (N⊗P), M⊗A = M, M⊗N ≃ N⊗M, M⊗ (N⊕N′) = (M⊗N)⊕ (M⊗N′).

The set Hom(M,N) of all A-module maps M → N is an A-module in the obvious way. For A-modules M,
N, and P we have a natural isomorphism

Hom(M⊗A N,P)≃ Hom(M,Hom(N,P)).

Proposition 3.4 (Tensor product is right exact). Let M′ → M → M′′ → 0 be an exact sequence of
A-modules and let N be an A-module. Then the sequence

M′⊗A N // M⊗A N // M′′⊗A N // 0

is exact.

This result allows us to describe M⊗A N in practice as follows. Let θ : A⊕R → A⊕S be a presentation of
M, so that A⊕R → A⊕S → M → 0 is exact. Then

N⊕R θ⊗N // N⊕S // M⊗A N // 0

is exact, where α ⊗N is the map given by “the same matrix” as θ . Thus M⊗A N ≃ coker(θ ⊗N).

We say that an A-module N is flat if tensoring with it preserves short exact sequences (or equivalently,
M′⊗A N → M⊗A N is injective if M′ → M is injective). Free modules are flat. Over a local ring one has
the following partial converse, proved using Nakayama’s lemma:

Lemma 3.5. A finitely presented flat module over a local ring is free.

If φ ∗ : A → B is a map of rings, we can treat B as an A-module. More generally, a B-module can be
treated as an A-module via the formula x ·m = φ ∗(x) ·m. This gives a functor φ∗ : ModB → ModA (called
the forgetful functor). In the other direction, if M is an A-module, the tensor product B⊗A M has a
natural B-module structure, given by b · (b′⊗m) = bb′⊗m. The module φ ∗(M) = B⊗A M is called the
base change of M to B. This construction gives a (right-exact) functor φ ∗ : ModA → ModB. We have a
natural isomorphism, for an A-module M and a B-module N,

HomB(φ
∗M,N)≃ HomA(M,φ∗N)

(that is, φ ∗ is the left adjoint to φ∗).

We say that φ ∗ : A → B is flat if B is flat as an A-module, or equivalently if the base change functor φ ∗ is
exact. Crucially, any localization A → A[S−1] is flat, and for an A-module M, we have M⊗A A[S−1] =

M[S−1] (the module of fractions m/s, m ∈ M and s ∈ S).
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Let B and C be A-algebras. Their tensor product D = B⊗A C is then an A-algebra with multiplication
given by (b⊗c)(b′⊗c′) = bb′⊗cc′. The maps B → D, b 7→ b⊗1 and C → D, c 7→ 1⊗c are well-defined
A-algebra maps, and D is the categorical coproduct of B and C in the category of A-algebras CAlgA.
It can be computed in practice as follows. Let C = A[S]/(R) be a presentation of C over A. Then
D = φ ∗(C) ≃ B[S]/(R′) where R′ is the image of R under the map A[S] → B[S] induced by the given
map φ : A → B. Two special cases are of note: if B = A/I, then D = C/IC, and if B = A[S−1], then
D =C[φ(S)−1]. We call D the base change of A → B to C. We say that a property of morphisms P is
stable under base change if C → D has P whenever A → B has P.

Let φ : A → B be a map of rings and let M be a B-module. An A-linear derivation of B into M is an
A-module map δ : B → M satisfying the Leibniz rule

δ (xy) = yδ (x)+ xδ (y).

The module of Kähler differentials is a B-module Ω1
B/A together with an A-linear derivation d : B→Ω1

B/A
which is universal in the following sense: for every A-linear derivation δ : B → M there exists a unique
B-module map δ̄ : Ω1

B/A → M such that δ = δ̄ ◦d. The module Ω1
B/A is generated as a B-module by the

symbols d f ( f ∈ B) subject to the rules d( f g) = f dg+gd f , d( f +g) = d f +dg, and d(φ ∗(a)) = 0 (for
f ,g ∈ B and a ∈ A). Given a presentation B = A[S]/(R) of B over A, we have the following presentation
of Ω1

B/A as a B-module

Ω
1
B/A ≃

(⊕
s∈S

B ·dTs

)
/(d f : f ∈ R)

where for f ∈ R ⊆ A[S], we write d f = ∑s∈S(∂ f/∂Ts)dTs where ∂ f/∂Ts is the usual formal derivative.
In particular, if B is finitely presented over A, then Ω1

B/A is a finitely presented B-module.

4. Integrality and applications

Let A → B be a map of rings and let x ∈ B. We say that x is integral over A if it satisfies a monic
polynomial equation over A:

xn +a1xn−1 + · · ·+an = 0, a1, . . . ,an ∈ A.

Elements of B which are integral over A form a subring A′ of B containing the image of A, called the
integral closure of A in B. If A′ = A, we say that A is integrally closed in B. If A is a domain, we say
that A is integrally closed or normal if A is integrally closed in Frac(A).

Theorem 4.1 (Finiteness of integral closure). Let A be a domain which is a finitely generated k-algebra,
let K be its field of fractions, and let L be a field extension of K of finite degree (possibly L = K). Let
B ⊆ L be the integral closure of A in L. Then A → B is finite. In particular, B is of finite type over k.

A morphism A → B is integral if every x ∈ B is integral over A, and finite if B is a finitely generated
A-module. A map is finite if and only if it is integral and of finite type. Both finite and integral maps are
stable under composition and base change.

Proposition 4.2 (Going-up). Let A → B be an integral map of rings, then the map Spec(B)→ Spec(A)
is closed. In particular, if A is a domain and A → B is injective, then Spec(B)→ Spec(A) is surjective.

The following result is extremely useful:
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Proposition 4.3 (Noether normalization lemma). Let k be a field and let A be a finitely generated
k-algebra. Then there exists an n ≥ 0 and a finite injective k-algebra map

k[T1, . . . ,Tn] ↪→ A.

In fact, n = dim(A) (see below). This lemma is used in some of the proofs of the Nullstellensatz.

Theorem 4.4 (Essential Nullstellensatz). Let k be a field and let L be a field extension of k. If L is finitely
generated as a k-algebra, then it is a finite extension of k.

Corollary 4.5 (Hilbert’s Nullstellensatz). Let k be an algebraically closed field and let A be a finitely
generated k-algebra. For every maximal ideal m⊆ A, we have A/m= k (meaning that k → A → A/m is
an isomorphism). This establishes a bijection

MSpec(A)≃ Homk(A,k).

Let us record an elementary formulation of the Nullstellensatz.

Corollary 4.6 (Elementary Nullstellensatz). Let k be an algebraically closed field and let f1, . . . , fr,g ∈
k[T1, . . . ,Tn] be polynomials in n variables. Suppose that for all (x1, . . . ,xn) ∈ kn such that

fi(x1, . . . ,xn) = 0 i = 1, . . . ,r

we have g(x1, . . . ,xn) = 0. Then there exists an integer m ≥ 1 and polynomials h1, . . . ,hr ∈ k[T1, . . . ,Tn]

such that f1h1 + · · ·+ frhr = gm.

The following result of Chevalley describes images of maps between spectra. A subset W ⊆ X of a
Noetherian space X is constructible if it is a finite union of locally closed subsets.

Theorem 4.7 (Chevalley). Let A be a Noetherian ring and let B be an A-algebra of finite type. Then for
every constructible subset W ⊆ Spec(B), the image of W in Spec(A) is constructible.

5. Dimension theory

The Krull dimension dim(A) of a ring A is the supremum of the set of integers n ≥ 0 for which there
exists a chain of prime ideals p0 ⊆ ·· · ⊆ pn of A with pi−1 ̸= pi for all i. If A is a local Noetherian ring or
a finitely generated algebra over a field, then dim(A) is finite.

For a Noetherian local ring A, we have dim(A) ≤ dimkA(mA/m
2
A). If equality holds, we say that A is

regular. The following result is not so easy to prove:

Theorem 5.1. A regular local ring is a unique factorization domain.

The transcendence degree trdeg(K/k) of a field extension K/k is the cardinality of any maximal subset
S ⊆ K which is algebraically independent over k (meaning that for x1, . . . ,xn ∈ S and f ∈ k[T1, . . . ,Tn] we
have f (x1, . . . ,xn) ̸= 0). The extension K/k is algebraic if and only if trdeg(K/k) = 0. If K is finitely
generated over k, then K is a finite (algebraic) extension of the field of rational functions k(T1, . . . ,Tn)

(the fraction field of k[T1, . . . ,Tn]) where n = trdeg(K/k).

Theorem 5.2. Let A be a finitely generated domain over a field k and let K = Frac(A). Then dim(A) =
trdeg(K/k).
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