
5. Lecture 5 (Feb 5): Local rings, nonsingular varieties

Recommended reading: Hartshorne I.4, I.5, I.6

5.1. Local rings, function fields, and rational maps

Let X be an affine algebraic set with coordinate ring A = O(X). Recall that irreducible closed subsets
Z ⊆ X correspond to prime ideals p⊆ A. If Z is an irreducible subset, then every non-empty open subset
is dense, and the intersection of two non-empty opens is non-empty.

Definition 5.1.1. Let X be a (not necessarily affine) algebraic set and let Z ⊆ X be an irreducible closed
subset. We define the stalk at Z (also called the local ring at Z) as the filtered colimit

OX ,Z = lim−→
U∩Z ̸= /0

O(U)

over all open subsets U ⊆ X which intersect Z (this is a filtered colimit since Z is irreducible, by the
previous remark).

In plain terms, by the basic properties of filtered colimits, an element of OX ,Z is an equivalence class
of pairs (U, f ) where U ⊆ X is an open intersecting Z and where f ∈ O(U), where we identify (U, f )
with (U ′, f ′) if there exists an open U ′′ ⊆U ∩U ′ intersecting Z such that f |U ′′ = f ′|U ′′ .

Remark 5.1.2. In the definition, we can allow Z to be only locally closed. Simply pass to an open of X
in which Z is closed.

Examples 5.1.3. (a) Let x ∈ X . Then {x} ⊆ X is closed and irreducible, and we denote the ring OX ,{x}
more simply by OX ,x. Its elements are germs of regular functions defined in a neighborhood of x.

(b) At the other extreme, suppose that X is itself irreducible (i.e. a “variety”). In this case we can
take Z = X . We denote the ring OX ,X more simply by k(X) and call it the function field of X . Its
elements are represented by regular functions defined on a non-empty open subset of X .

Lemma 5.1.4. Let X be an algebraic set and let Z ⊆ X be an irreducible closed subset.

(a) Let U ⊆ X be an affine open intersecting Z, so that Z∩U is an irreducible closed subset of U. Let
A = O(U) and let p= I(Z∩U)⊆ A be the prime ideal corresponding to Z∩U. Then

OX ,Z = OU,U∩Z = Ap.

(Recall that Ap = A[(A\p)−1].) In particular, OX ,Z is a local ring with maximal ideal consisting of
germs of functions (U, f ) which vanish on Z∩U.

(b) If X is irreducible, then k(X) is a field, equal to the fraction field of O(U) (which is a domain) for
every non-empty affine open U ⊆ X.

(c) The residue field of the local ring OX ,Z is the function field k(Z) of Z.

Lemma 5.1.5. Let f : Y → X be a morphism between algebraic sets and let Z ⊆ Y be an irreducible
closed subset. Let W ⊆ X be the closure of f (Z). Then W is also irreducible, and f induces a local
homomorphism of local rings

f ∗ : OX ,W −→ OY,Z.
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Proof. That f (Z) and its closure are both irreducible is easy general topology. Moreover, it follows from
Chevalley’s theorem (§4.4) that f (Z) contains a dense open subset of W . Therefore, if U ⊆ X is an open
intersecting W , it has to intersect f (Z), and thus f−1(U)⊆ Y is an open intersecting Z. The pull-back
maps f ∗ : OX(U)→ OY ( f−1(U)) for varying U induce map on filtered colimits

f ∗ : OX ,W = lim−→
U

OX(U)−→ lim−→
U

OY ( f−1(U))

(both colimits over opens U ⊆ X meeting W ) which we compose with the natural map (from the universal
property of direct limit!)

lim−→
U

OY ( f−1(U))−→ lim−→
V

OY (V ) = OY,Z

(second colimit over opens V ⊆ Y meeting Z) to obtain the desired map f ∗ : OX ,W → OY,Z . This homo-
morphism is local thanks to Lemma 5.1.4(a): if g ∈ OX(U) vanishes on U ∩W then f ∗(g) = g ◦ f ∈
OY ( f−1(U)) vanishes on f−1(U ∩W )⊇ f−1(U)∩Z.

We shall now consider rational maps between varieties. For this, let us note the following straightfor-
ward corollary of Lemma 5.1.5. For this, let us call a map f : Y → X dominant if f (Y ) is dense in X
(and hence, by Chevalley, contains a dense open subset of X).

Corollary 5.1.6. A dominant map between varieties f : Y → X induces an extension of function fields
f ∗ : k(X) ↪→ k(Y ).

Proof. Apply Lemma 5.1.5 to Z = Y , so OY,Z = k(Y ). Since f is dominant, f (Z) = f (Y ) is dense, and
we have W = X , so OX ,W = k(X).

A rational map is a germ of a function between varieties.

Definition 5.1.7. Let X and Y be varieties (i.e. irreducible algebraic sets). A rational map from Y to X is
an equivalence class of pairs (U, f ) where U ⊆ Y is a non-empty open subset and where f : U → X is a
map of varieties, where we identify (U, f ) and (U ′, f ′) if f = f ′ on some non-empty open U ′′ ⊆U ∩U ′.
We call a rational map (U, f ) dominant if f (U) is dense in X (this condition depends only on the
equivalence class of (U, f )).

Remark 5.1.8. (a) A dominant rational map (U, f ) from Y to X induces a pull-back map f ∗ : k(X)→
k(Y ) between the function fields.

(b) Conversely, let k(X)→ k(Y ) be a map of k-algebras. Then there exists a unique dominant rational
map Y → X inducing this field extension.

(c) Dominant rational maps can be composed. The resulting category of varieties and rational maps is
equivalent to the opposite of the category of finitely generated field extensions of k.

(d) If V ⊆ Y is an open such that a given rational map from Y to X is represented by a pair (V, f ), we
say that f is defined on V . If Y is separated, there exists a largest open V ⊆ Y on which a given
rational map is defined.

Definition 5.1.9. A rational map f from Y to X is birational if it is dominant and if it admits an inverse (in
the category of dominant rational maps), or equivalently if there exist non-empty opens V ⊆Y and U ⊆ X
such that f induces an isomorphism V ≃U , or equivalently if it induces an isomorphism k(X)≃ k(Y ).
We say that two varieties X and Y are birational if there exists a birational rational map from Y to X . We
say that a variety X is rational if it is birational to Pn for some n≥ 0.

Example 5.1.10. We shall prove later that the cubic plane curve V (Y 2−X3−X) is not rational.
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5.2. Nonsingular varieties

Recall that a Noetherian local ring A is regular if

dimk(m/m2) = dim(A).

Here m⊆ A is the unique maximal ideal and k = A/m is its residue field. In general, we have ≥ instead
of equality, and the left-hand side coincides with the minimal number of generators of m. Every regular
ring is a UFD (this is not so easy to show).

Definition 5.2.1. Let X be an algebraic set and let x ∈ X . We say that X is nonsingular at x if OX ,x is a
regular local ring.

We shall also call x a smooth or regular point. If every point is nonsingular, we say that X itself is
nonsingular/smooth/regular.

Examples 5.2.2. (a) If dim(X)≤ 1, the ring OX ,x is regular if and only if it is a discrete valuation ring
(or equal to k in case of isolated points), if and only if it is integrally closed.

(b) The affine space An is nonsingular. Indeed, for every x = (x1, . . . ,xn) ∈ An we have dim(OX ,x) = n
and the maximal ideal m is generated by n elements Ti− xi.

(c) Let X =V ( f )⊆An be a hypersurface (where f ̸= 0) and let x∈ X . Then X is nonsingular at x if and
only if (∂ f/∂Ti)(x) ̸= 0 for some i. Proof: Since dim(OX ,x) = n−1, we want dim(m/m2) = n−1.
If n= (T1− x1, . . . ,Tn− xn)⊆ k[T1, . . . ,Tn] is the ideal corresponding to x, then

m/m2 = n/((n2 +( f ))

which has dimension either n or n−1, and the latter precisely when f /∈ n2. We can write

f (T1, . . . ,Tn) =
n

∑
i=1

∂ f
∂Ti

(x) · (Ti− x)+R

where R ∈ n2. Thus f ∈ n2 precisely when (∂ f/∂Ti)(x) = 0 for all i.

Theorem 5.2.3. Let X ⊆ An be an affine variety and let I = I(X) = ( f1, . . . , fr) be its ideal. Then a point
x ∈ X is nonsingular if and only if

rank
[

∂ f j

∂Ti
(x)

]
= n−dim(X).

Proof. We did the case r = 1. For the general case see Theorem I 5.1 in Hartshorne.

In general, for two nonsingular points x ∈ X and y ∈ Y , the local rings OX ,x and OX ,y are often non-
isomorphic even if they have the same dimension. Indeed, we have k(X) = Frac(OX ,x), so OX ,x ≃ OY,y

only if X and Y are birational. So our intuition from differential geometry that a smooth variety should
locally look like An, taken too literally, is false. This is because OX ,x is defined in terms of Zariski open
neighborhoods of x, which are very large. One can resolve this issue either by considering the étale
topology (which we might cover later) or by completing the local ring.

Theorem 5.2.4 (Special case of Cohen’s structure theorem). Let X be an algebraic set and let x ∈ X.
Denote by

ÔX ,x = lim←−
n

OX ,x/m
n
x

the completion of the local ring OX ,x with respect to its maximal ideal. Then x is a nonsingular point of
X if and only if

ÔX ,x ≃ kJT1, . . . ,TnK.
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More precisely, if f1, . . . , fn ∈mx, we have a unique continuous homomorphism

θ : kJT1, . . . ,TnK−→ ÔX ,x, θ(Ti) = fi.

The map θ is surjective if and only if mx = ( f1, . . . , fn), and an isomorphism if and only if in addition

n = dim(kJT1, . . . ,TnK) = dim(OX ,x),

which happens precisely if OX ,x is regular.
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