
4. Lecture 4: Elimination theory (Feb 3)

Recommended reading: Kempf §3

4.1. Statement of the result

Recall the following definitions from last time.

Definition 4.1.1. Let X be an algebraic set.

(a) We say that X is separated if the diagonal ∆ ⊆ X ×X is a closed subset of X ×X .

(b) We say that X is complete if X is separated and for every algebraic set Y , the projection map

πY : X ×Y −→ Y

is closed.

Our goal today is to prove the following theorem.

Theorem 4.1.2. The projective space Pn is complete.

We have shown in the previous lecture that Pn is separated. Our goal is thus to show that for any
algebraic set Y and any closed subset Z ⊆ Pn ×Y , the image of Z in Y is closed.

Remark 4.1.3. Over k =C, we can consider the “analytic topology” on an algebraic set X . Let us denote
the resulting topological space by Xan. Then one can show that

X separated ⇔ Xan Hausdorff, X complete ⇔ Xan compact Hausdorff.

In a course of topology or differential geometry, you might have seen that CPn = (Pn)an is compact.
Theorem 4.1.2 is thus an algebraic analog of this fact.

4.2. Warm-up: the resultant

Before tackling the proof of our theorem, let us deal with a special case (though at first it might not seem
like a special case at all).

Let f ,g ∈ k[T ] be two polynomials, deg( f ) = n, deg(g) = m, m,n > 0. Write

f =
n

∑
i=0

aiT i, g =
m

∑
i=0

biT i.

The resultant of f ,g is the determinant R( f ,g) of the (n+m)× (n+m) matrix

a0 0 · · · 0 b0 0 · · · 0

a1 a0 · · ·
... b1 b0 · · ·

...
... a1

. . . 0
... b1

. . . 0

an
...

. . . a0 bm
...

. . . b0

0 an
. . . a1 0 bm

. . . b1
...

...
. . .

...
...

...
. . .

...
0 0 · · · an 0 0 · · · bm


(4.2.1)
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Lemma 4.2.1. Write f = an ∏(T −αi) and g = bm ∏(T −β j). We have

R( f ,g) = am
n bn

m ∏
i, j
(αi −β j).

We won’t need this, but only the following corollary, for which we supply an independent proof.

Corollary 4.2.2. We have R( f ,g) = 0 if and only if f and g have a common root.

Proof. Since k[T ] is an PID, the polynomials f and g have no root in common if and only if they are
coprime, i.e. if there exist polynomials p,q ∈ k[T ] such that

1 = p f +qg.

If we write p = p0g+ p1 and q = q0 f +q1 where deg(p1)< m and deg(q1)< n, we have

1 = (p0 +q0) f g+ p1 f +q1g

Then p0 +q0 = 0, otherwise the right-hand side has degree ≥ n+m > 0. Consequently, 1 = p1 f +q1g.
In other words, we may assume that deg(p)< m and deg(q)< n.

If we play the same game with the equation h = p f +qg for deg(h)< n+m, we obtain the following
observation: For i ≥ 0, let Vi be the space of polynomials of degree < i. Consider the linear map

φ : Vm ⊕Vn −→Vn+m, φ(p,q) = p f +qg.

Then f and g are coprime if and only if φ is surjective.
The result now follows since in the bases (T i,0) (i = 0, . . . ,m− 1), (0,T i) (i = 0, . . . ,n− 1) in the

source Vm ⊕Vn and T i (i = 0, . . . ,n+m−1) in the target, the matrix of φ is (4.2.1). Thus φ is surjective
if and only if

R( f ,g) = det(φ) ̸= 0.

Remark 4.2.3. To deduce Lemma 4.2.1 from Corollary 4.2.2, fix the leading coefficients an and bm, and
treat the roots αi, β j as indeterminates (i.e., work over the polynomial ring k[α1, . . . ,αn,β1, . . . ,βm]). The
coefficients ai (i < n) and bi (i < m) are then expressed using standard symmetric polynomials in the αi

and βi. Thus both sides of the equality in Lemma 4.2.1 are elements of this polynomial ring. By the
corollary, we have R( f ,g) = 0 if we substitute αi = β j, which (by Nullstellensatz) implies that (αi −β j)

divides R( f ,g). These linear polynomials are pairwise coprime, and hence the right-hand side divides the
left-hand side. But the degrees and leading terms are the same (check by hand), so this is an equality.
(N.B. The same strategy applies to the evaluation of the Vandermonde determinant.)

Since we are here, let us define the discriminant.

Definition 4.2.4. The discriminant of a polynomial f = ∑
n
i=0 aiT i ∈ k[T ] of degree n ≥ 0 is

∆( f ) = (−1)n(n−1)/2a−1
n R( f , f ′)

where f ′ = d f/dT is the formal derivative of f .

Thus ∆( f ) = 0 if and only if f has a multiple root. For a quadratic f = aT 2 +bT + c, we have the
familiar ∆( f ) = b2 −4ac, and for f = T 3 +aT +b we have

∆( f ) =−4a3 −27b2

familiar from the theory of elliptic curves.
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4.3. Proof of Theorem 4.1.2: Elimination theory

Theorem 4.3.1. The projective space Pn is complete.

Proof. We have already shown that Pn is separated (the diagonal being the preimage of the linear subspace
Wi j =Wi j under the Segre embedding Pn ×Pn → PN , N +1 = (n+1)2. It remains to show that for every
algebraic set, the projection map Pn ×Y → Y is closed.

Let Y be an algebraic set and let Z ⊆ Pn ×Y be a closed subset. Then πY (Z)⊆Y is closed if and only
if for every affine open U ⊆ Y , the subset πY (Z)∩U = πU(Z ∩ (Pn ×U)) is closed. It therefore suffices
to treat the case Y ⊆ Am closed. But then Z is closed in Pn ×Am, and πY (Z) is closed in Y if and only if
it is closed in An. We have now reduced to the case Y = An.

Let T0, . . . ,Tn be the homogeneous coordinates on Pn and let x0, . . . ,xm be the coordinates on An.
Write P = k[T0, . . . ,Tn] =

⊕
d≥0 Pd and B = k[x0, . . . ,xn]. Consider the graded polynomial ring

A = B⊗k P = k[x0, . . . ,xm][T0, . . . ,Tn], Ad = B⊗k Pd .

A homogeneous ideal I ⊆ A defines a k×-invariant closed subset of (An+1 \0)×Am and hence a closed
subset of Z ⊆ Pn ×Am. Every closed subset of Pn ×Am is of this form (easy proof omitted).

Let thus I ⊆ A be the radical homogeneous ideal corresponding to our closed subset Z ⊆ Pn×Am, and
write I = ( f1, . . . , fr) where fi ∈ Adi = B⊗k Pdi . Then the image πAn(Z) is the set of all (x1, . . . ,xm) ∈ kn

for which the system
fi(x1, . . . ,xm,T0, . . . ,Tn) = 0, i = 1, . . . ,r

has a nonzero solution (t0, . . . , tn) ∈ kn+1. Effectively, we wish to eliminate the variables T0, . . . ,Tn from
this system. For this we need:

Claim. Let f1, . . . , fr ∈ P = k[T0, . . . ,Tn] be homogeneous, fi ∈ Pdi . Then the system fi = 0 has no nonzero
solution in kn+1 if and only if for some d ≥ 0, every f ∈ Pd can be written as

f =
r

∑
i=1

hi fi, hi ∈ Pd−di .

(In other words, if Id = Pd for some d ≥ 0. If this holds for d, then it also holds for all d′ > d, so we can
rephrase the condition as: Id = Pd for d ≫ 0.)

The claim is almost obvious: having no nonzero solutions means that V ( f1, . . . , fr)⊆{0}=V (T0, . . . ,Tn).
Applying I(−) translates this to I = (T0, . . . ,Tn)⊆

√
( f1, . . . , fr), i.e. T N

i ∈ I for large enough N. But this
means that Id = Pd for d ≫ 0 (more precisely, d > N(n+1) will do).

Let us rephrase the condition from the claim: the system fi = 0 has a nonzero solution if and only if
for every d ≥ 0, the map

φd :
r⊕

i=1

Pd−di −→ Pd , φ(h1, . . . ,hr) =
r

∑
i=1

hi fi

is not surjective. Note that this is a map between finite-dimensional vector spaces over k, corresponding
to a big rectangular matrix, say of size ad ×bd (the exact values of ad = ∑dim(Pdi) and bd = dim(Pd)

are unimportant). Its non-surjectivity can thus be detected by the vanishing of all minors of size bd ×bd .
Now come back to our initial problem: our f1, . . . , fn depend on the parameters x1, . . . ,xm. We consider

the map between free modules of finite rank (ad and bd) over the polynomial ring B = k[x1, . . . ,xm]:

φd :
r⊕

i=1

B⊗k Pd−di −→ B⊗k Pd , φd(h1, . . . ,hr) =
r

∑
i=1

hi fi.
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By the claim, the image πAn(Z) is the set of points (x1, . . . ,xm) at which φd . By the previous discussion,
it is cut out by the ideal generated by the bd ×bd minors of the corresponding matrix (now, treated as
elements of k[x1, . . . ,xm]) and is therefore closed.

Corollary 4.3.2. Every projective algebraic set is complete.

Remark 4.3.3. Consider the case n = 1 and Z ⊆ P1 ×Y cut out by a pair of functions f = g = 0 where

f =
n

∑
i=0

aiT n−i
0 T i

1 , g =
m

∑
i=0

biT m−i
0 T i

1

for a0, . . . ,an,b1, . . . ,bm ∈ O(Y ) and an,bm ∈ O(Y )×. Then the proofs of Corollary 4.2.2 and of Theo-
rem 4.1.2 give the same description of the image of Z in Y as the vanishing set V (R) of the resultant
R = R( f (1,T ),g(1,T )) ∈ O(Y ) (we substituted T0 = 1 to de-homogenize the polynomials).

4.4. Chevalley’s theorem

What can we say about the image of a morphism Y → X between algebraic sets? If Y is complete and X
is separated, then the image is closed. In general, the image is a constructible subset.

Definition 4.4.1. Let X be an algebraic set. A subset W ⊆ X is constructible if it is the union of a finite
number of locally closed subsets of X .

Importantly, constructible subsets of X form a Boolean algebra (closed under intersection, union, and
complement).

Remark 4.4.2. A word of warning: While every locally closed subset of an algebraic set is an algebraic
set, not every constructible subset is an algebraic set. For example, the subset

{(0,0)}∪D(X)⊆ A2

(where the coordinates are X ,Y ) is constructible but not locally closed, and it does not have any obvious
structure of an algebraic set.

Theorem 4.4.3 (Chevalley). Let f : Y → X be a morphism between algebraic sets and let W ⊆ Y be a
constructible subset. Then f (W ) is a constructible subset of X.

Proof. We proved last semester that if A → B is a morphism of finite type between Noetherian rings, then
the image of

Spec(B)−→ Spec(A)

is constructible. This implies the result if X and Y are affine and W = Y . The general case is deduced
from this by passing to affine open covers (details omitted).
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