
3. Lecture 3 (Jan 29): Products, separatedness, completeness

Recommended reading: Kempf §3

3.1. Basic facts about algebraic sets

In order to distinguish between regular functions on different spaces, we shall sometimes write OX(U)

instead of O(U) for the set of regular functions on an open U ⊆ X of a space with functions X .

Definition 3.1.1. Let X be a space with functions and let Y ⊆ X be a subspace (subset, endowed with the
induced topology). The induced swf structure on Y is defined as follows: a function defined on an open
of Y is regular if locally on U it extends to a regular function on an open of X .

To be completely precise: for an open V ⊆ Y and f : V → k, we have f ∈ OY (V ) if and only if there
exist opens Uα ⊆ X such that V ⊆

⋃
Uα and regular functions f ∈ OX(Uα) such that f (y) = fα(y) for

every y ∈V ∩Uα . One checks easily that Y endowed with OY defined this way is an swf, and that the
inclusion Y → X is a morphism of swf’s.

Remark 3.1.2. A reader acquainted with sheaf theory will notice that OY is the image of the morphism
of sheaves i−1(OX)→ ∏y∈Y ky. Here i−1(OX) is the sheaf pull-back of OX , and ∏y∈Y ky is the sheaf of
(not necessarily continuous) k-valued functions on Y .

In the context of affine algebraic sets, the way we have endowed X =V (I)⊆An with an swf structure
shows that it is the induced swf structure from An.

Definition 3.1.3. A morphism of swf’s Y → X is an immersion if it is a homeomorphism onto its image
and the swf structure on Y coincides with the induced swf structure on the image. A closed (resp. open,
resp. locally closed) immersion is an immersion whose image is closed (resp. open, resp. locally closed)
in X .

Example 3.1.4. Consider the map f : A1 → A2 sending t to (t2, t3). It is a homeomorphism onto its
image, which is the cuspidal curve C =V (Y 2 −X3). However, it is not an immersion, since the map on
coordinate rings is

f ∗ : k[X ,Y ]/(Y 2 −X3) = O(C)−→ O(A1) = k[T ], f ∗(X) = T 2, f ∗(Y ) = T 3

which is not an isomorphism.

Proposition 3.1.5. Let X be an algebraic set and let Y ⊆ X be a locally closed subset. Then Y is an
algebraic set (when endowed with the induced swf structure).

Proof. Let X =U1 ∪·· ·∪Un be a finite affine open cover of X . Then Vi =Ui ∩Y form an open cover of
Y , and each Vi is locally closed in the affine algebraic set Ui. It follows that we may assume that X itself
is affine (as an swf which is covered by a finite number of opens which are algebraic sets is an algebraic
set).

Suppose first that Y is closed in X . Since X is affine, it is closed in An. So Y is closed in An and
endowed with the induced swf structure, and hence an affine algebraic set.

Now, suppose that Y is open in X . In this case, since the standard open affines D( f ) ⊆ X (for
f ∈ O(X)) form a base of the topology on Y , we can write Y as the union of such opens. Moreover, since
X is Noetherian, Y is quasi-compact, and hence a finite number suffices.

Let us record the following crucial fact which follows from the above proof:

Lemma 3.1.6. Let X be an algebraic set. Then affine open subsets of X form a base of the topology on X.
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3.2. Products

Recall from the last lecture that if X and Y are affine algebraic sets, then X ×Y is an affine algebraic set
with coordinate ring

O(X ×Y )≃ O(X)⊗k O(Y ).

A word of warning (see 1.3(d)): X ×Y is the product of X and Y as sets, but not as topological spaces.

Theorem 3.2.1. Let X and Y be algebraic sets. Then, the product X ×Y of swf’s exists and is an algebraic
set. Moreover, if X and Y are projective (isomorphic to a closed algebraic subset of Pn for some n), then
so is X ×Y .

Proof. The proof of the first part is straightforward (and boring). Cover X = U1 ∪ ·· · ∪Un and Y =

V1 ∪·· ·∪Vm with affine open subsets. Then, as sets

X ×Y =
n⋃

i=1

m⋃
j=1

Ui ×Vj.

Each Ui ×Vj has the structure of an affine algebraic set, with coordinate ring O(Ui)⊗O(Vj). We give
X ×Y the topology induced by the topologies on Ui ×Vj (so W ⊆ X ×Y is open iff W ∩ (Ui ×Vj) is open
in Ui ×Vj for all (i, j)), and deem a function f : W → k defined on an open W ⊆ X ×Y regular if its
restriction to W ∩ (Ui ×Vj) is regular for each pair (i, j). We then need to verify that

(a) Each Ui ×Vj is an open subset of X ×Y .

(b) If W ⊆ X ×Y is an open contained in Ui ×Vj for some (i, j), then a function f : W → k is regular
if and only if it is regular when treated as a function on an open subset of the affine algebraic set
Ui ×Vj.

(c) For any swf Z and maps f : Z → X , g : Z →Y , the resulting map ( f ×g) : Z → X ×Y is a morphism
of swf’s.

(The first two ensure that X ×Y is an an algebraic set, and the last one gives the universal property of the
product.) I suggest you prove these statements, and look up the proof in a textbook in case you get stuck.

The assertion about projective algebraic sets is more fun to prove. Note first that it suffices to show that
Pn ×Pm is projective for every n,m ≥ 0. Let X0, . . . ,Xn and Y0, . . . ,Ym be their homogeneous coordinates
Set N = (n+ 1)(m+ 1)− 1 = nm+ n+m and consider P = PN with homogeneous coordinates Wi j

(i = 0, . . . ,n, j = 0, . . .m). Consider the map (called the Segre embedding)

φ : Pn ×Pm −→ PN

defined by

((X0 : · · · : Xn),(Y0 : · · · : Ym)) 7→ (Wi j = XiYj) =


X0Y0 X0Y1 . . . X0Ym

X1Y0 . . . . . .

. . . . . .

XnY0 . . . XnYm


Note first of all that this is a well-defined map of sets. Indeed, if we scale either all Xi’s or all Yj’s by the
same scalar λ ∈ k×, the result scales by the same factor, and if Xi ̸= 0 and Yj ̸= 0, then Wi j ̸= 0.

Next, we identify the image of this map. A matrix [Wi j] ∈ PN is in the image if and only if it is of
rank one (it cannot be of rank zero since not all coordinates vanish). On the other hand, this holds if and
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only if every 2×2 minor of this matrix is zero, and hence the image Q of φ is the projective algebraic set
defined by the system of homogeneous equations

0 = det
[

Wi j Wi j′

Wi′ j Wi′ j′

]
=Wi jWi′ j′ −Wi′ jWi j′ , i, i′ ∈ {0, . . . ,n}, j, j′ ∈ {0, . . . ,m}

To check that the map φ induces an isomorphism onto Q, we check what happens over the open subset
AN ≃ D(W00) ⊆ PN . Its preimage is defined by X0 ̸= 0 ̸= Y0 and hence it is equal to the open subset
D(X0)×D(Y0) ≃ An ×Am of Pn ×Pm. In the dehomogenized coordinates wi j = Wi j/W00, xi = Xi/X0,
y j =Yj/Y0, the intersection Q∩D(W00) is cut out by the equations wi j = w0 jw j0 (set (i′, j′) = (0,0)), and
the restriction of φ is defined by the map of rings

k[wi j : (i, j) ̸= (0,0)]/(wi j −w0 jwi0)−→ k[x1, . . . ,xn,y1, . . . ,ym], wi j 7→ xiy j

(where we interpret x0 = 1 and y0 = 1) which is an isomorphism, the inverse sending xi to wi0 and y j to
w0 j.

3.3. Separated varieties

Recall (or learn) the following fact from topology. A topological space is Hausdorff if and only if the
diagonal

∆ = {(x,x) : x ∈ X} ⊆ X ×X

is a closed subset of X ×X .

Definition 3.3.1. An algebraic set X is separated if the diagonal ∆ ⊆ X ×X is a closed subset of X ×X .

Note that this does not imply that X is Hausdorff since the topology on X ×X is not the product
topology.

Examples 3.3.2. (a) If we have an injective map f : Y → X and X is separated, then so is Y . Indeed,
then ∆Y ⊆ Y ×Y is the preimage of the closed subset ∆X ⊆ X ×X under the continuous map
f × f : Y ×Y → X ×X .

(b) If X is (quasi)affine then X is separated. Indeed, then X admits an injective map to An, and An is
separated, as its the diagonal in An ×An (with coordinates X1, . . . ,Xn,Y1, . . . ,Yn) is cut out by the
equations Xi = Yi and hence is closed.

(c) The projective space Pn is separated. (Consequently, every quasi-projective algebraic set is
separated.) To see that Pn is separated, we use the Segre embedding Pn ×Pn → Pn2+2n. The
diagonal is the preimage of the linear subvariety cut out by the equations Wi j =Wji, and is therefore
closed.

(d) (Line with doubled origin) Consider the space with functions X obtained by gluing two copies
Ui = A1 (with coordinate Ti) for i = 0,1 along the isomorphism of open subsets D(T0) ≃ D(T1)

sending T1 to T0. There is a natural map X → A1 (with coordinate T on the target pulling back to
Ti on Ui) which is bijective away from zero, and such that 0 ∈ A1 has two preimages 0i ∈Ui. On
U0 ×U1, the diagonal is V (T0 −T1)\{(00,01)} and is not closed. Thus X is not separated.

Lemma 3.3.3. Let X be a separated algebraic set and let U,V ⊆ X be affine open subsets. Then U ∩V is
affine.

Proof. We have U ∩V ≃ (U ×V )∩∆, so U ∩V is a closed subset of the affine algebraic set U ×V .
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Example 3.3.4 (Plane with doubled origin). Consider a variant of Example 3.3.2(d) where we replace
Ui =A1 with A2 with coordinates Ti,Ui and the open subsets D(Ti) with Ui \{(0,0)}. The resulting space
X has two affine opens U0 and U1 whose intersection U0 ∩U1 is isomorphic to A2 \{(0,0)}, which is not
affine.

Again, recall from topology that two maps f ,g : Y → X to a Hausdorff space X which are equal on a
dense subset of Y have to be equal. Here is an algebraic variant:

Lemma 3.3.5. Let f ,g : Y → X be a parallel pair of maps between algebraic sets. If X is separated, then
the subset (“equalizer”)

Eq( f ,g) = {y ∈ Y : f (y) = g(y)} ⊆ Y

is closed in Y .

Proof. Use the “diagonal trick:” Eq( f ,g) = ( f ×g)−1(∆X) is the preimage of the diagonal ∆X ⊆ X ×X
under the map f ×g : Y → X ×X .

3.4. Complete varieties

Recall (or learn) another fact from topology. A Hausdorff topological space X is compact if and only if
for every topological space Y , the projection map

πY : X ×Y −→ Y

is closed (maps closed subsets of X ×Y to closed subsets of Y ).

Definition 3.4.1. An algebraic set X is complete (a.k.a. proper) if X is separated and for every algebraic
set Y , the projection map

πY : X ×Y −→ Y

is closed.

Remark 3.4.2. (a) Again, X ×Y does not have the product topology.

(b) The affine space An is not complete for n ≥ 1. More generally, let X be an algebraic set admitting a
function f ∈ O(X) which takes infinitely many values. Then X is not complete. Proof: consider
Y = A1 with coordinate T and the closed subset Z =V ( f T −1)⊆ X ×Y . Its projection onto Y is
then an infinite subset which does not contain zero, and hence cannot be closed.

(c) We shall prove later that Pn is complete (and therefore, by Lemma 3.4.3, every projective algebraic
set is complete).

(d) The following relative versions of separatedness and completeness are used in algebraic geometry.
A morphism f : X → S is separated if the diagonal ∆ ⊆ X ×X is a closed subset of the fiber
product

X ×S X = {(x,y) ∈ X ×X : f (x) = f (y)} ⊆ X ×X .

A separated morphism f : X → S is proper if for every map of algebraic sets g : Y → S, the
projection map

πY : X ×S Y −→ Y

is closed. Here X ×S Y = {(x,y) ∈ X ×Y : f (x) = g(y)}.

(e) A closed subspace of a complete algebraic set is complete.
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Another standard fact from topology: if f : Y → X is a map from a compact space Y into a Hausdorff
space X , then the image f (Y )⊆X is a closed subspace of X (and is therefore both compact and Hausdorff).
Algebraic version:

Lemma 3.4.3. Let f : Y → X be a map from a complete algebraic set Y to a separated algebraic set X.
Then f (Y )⊆ X is closed in X and complete.

Proof. For the first statement, consider the graph

Γ f = {(y,x) : x = f (y)} ⊆ Y ×X .

It is closed in Y ×X , being the equalizer of the projection πX : Y ×X → X and the composition f ◦
πY : Y ×X → X (here we use Lemma 3.3.5). Then f (Y ) = πX(Γ f ) is closed in X since by assumption (Y
complete) the map X ×Y → X is closed.

It remains to show that Z = f (X) is complete. For this we use the surjective map Y → Z induced
by f . Let W be an algebraic set and let F ⊆ Z ×W be a closed subset. We must show that πW (F) is
closed in W . Let F ′ ⊆ Y ×W be the preimage of F . Since Y → Z is surjective, so is F ′ → F , and hence
πW (F) = πW (F ′) is closed in W since πW : Y ×W →W is closed.

Lemma 3.4.4. Let X be a complete variety. Then O(X) = k.

Proof. Let f ∈ O(X), we must show that f is constant. Treat f as a morphism f : X → A1. The image
f (X)⊆ A1 is then closed and complete by the previous lemma. It is also irreducible (being the image of
the irreducible space X), and hence it is a singleton (because A1 is not complete, see Remark 3.4.2(a)).

Corollary 3.4.5. Let X be an algebraic set which is both compact and quasi-affine. Then X is a finite set.
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