2. Lecture 2 (Jan 15)

Recommended reading: Kempf §1, Hartshorne 1.3

2.1. Some general topology

Definition 2.1.1. Let X be a topological space.

(a) We say that X is irreducible if for every pair of closed subsets Y;,Y>, C X with X =Y, UY,, we
have X =Y, or X =Y,. (Equivalently, every non-empty open subset of X is dense.)

(b) The dimension dim(X) is the supremum of the set of integers n > 0 for which there exists a chain
S &Gy
of distinct closed irreducible subsets of X.

(c) We say that X is Noetherian if every decreasing sequence Fy O F; O ... of closed subsets stabilizes
(is eventually constant).

Proposition 2.1.2. Let X =V (fi,..., f;) C k" be an affine algebraic set and let A =k[T,...,T,|/(fi,.. ., fr)-
Then:

(a) X is irreducible if and only if the coordinate ring
O(X) =k[Ty,....,T,] /I(X) = k[T, .. (fis-e s fr) =A/VO

is a domain, or equivalently iff the ideal \/(f1,...,fr) = ) Ck[T,...,T,) is prime.

(b) X is a Noetherian topological space.
(c) We have dim(X) = dim(O(X)) = dim(A) (the latter two denote the Krull dimension).

Remark 2.1.3. Thus irreducible closed subsets of X correspond to prime ideals of Spec(A). The smallest
irreducible closed subsets are the points of X, which correspond to the largest prime ideals, i.e. the
maximal ideals.

Lemma 2.1.4. Let X be a Noetherian topological space. Then there exist closed irreducible subsets
Zi,...,2Z, CX suchthat Z; L Z; for i # j and

X=Z1U---UZ,.
They are unique up to permutation.

Definition 2.1.5. The closed irreducible subsets Zi,...,Z, C X in the lemma are called the irreducible
components of X.

Note that we have dim(X) = sup{dimZ,,...,dimZ,}. In order to say more about dimension, we need
to review some results from the dimension theory part of commutative algebra (see e.g. Chapter 10 of
Atiyah—Macdonald, though we need a bit more).

Let X C A" be an irreducible algebraic set, let p = J(X) C k[T, ..., T,] be the corresponding prime
ideal, and let A = k[T1,...,T,|/p = O(X).



(1) Let K = Frac(A) be the field of fractions. Then
dim(X) = dim(A) = trdeg(K /k)
is the transcendence degree of the extension K /k. In particular, we have dim A" = n.

(2) All maximal chains Zy C --- C Z, of irreducible subsets of X have length r = dim(X).

From this we can deduce that for a locally closed ¥ C A", we have dim(Y) = dim(Y).

(3) Let f € A be a nonzero nonunit, and let ¥ = V(f) C X. Let Y},...,Y, CY be the irreducible
components of Y. Then

(a) We have dim(Y;) =dim(X) — 1 foreveryi=1,...,r.

(b) Conversely, A is a UFD (unique factorization domain, for example if X = A"), then every
closed irreducible subset ¥ C X such that dim(Y) = dim(X) — 1 is of the form ¥ =V (f) for
some prime element f € A.

2.2. Regular functions

A polynomial f € k[T,...,T,] defines a function f: k" — k. Similarly, a rational function f = p/q €
k(Th,...,T,) with p,q € k[T1, ..., T,], g # 0 defines a function f = p/q: D(q) — k where D(q) =k"\V(q).
Recall that the subsets D(q) for a varying g form a basis of the Zariski topology on k" = A”. We define
regular functions as those which are locally given by a rational function.

Definition 2.2.1. Let X C k" be an algebraic set, U C X an open subset, and let f: U — k be a function.
We say that f is a regular function on U if every x € U there exists an open neighborhood x € V C U
and p,q € k[T, ..., T,] such that for every y € V, we have ¢(y) # 0 and

_r)

We observe first that if f is a regular function on U and Z C U is a locally closed subset, then f|z is
a regular function. Moreover, every polynomial f € k[Tj,...,T,] defines a regular function on A" and
hence on every locally closed U C A". For an affine algebraic set X C A" we obtain a map

A=0(X)=k[T,...,T,]/I(X) —> {regular functions on X }.

It follows from the Nullstellensatz that this map is injective. Moreover, regular functions on any locally
closed subset U C A" form a k-subalgebra of the ring of all functions U — k.

Theorem 2.2.2. Let X C A" be an affine algebraic set and let A =k[T,...,T,]/I(X) be its coordinate
ring. Then:

(a) The map
A — {regular functions on X }

is an isomorphism of k-algebras.

(b) For g € A, let U = D(g) C X. Then the above map induces an isomorphism

Alg™ Y] ~ {regular functions on U’}.

The proof shows an algebraic variant of “partitions of unity” in differential geometry.



Proof. (a) We need to show that this map is surjective, so let f be a regular function on X and let X =JV;
be an open cover such that f|V; = p;/q; for p;,q; € k|T,...,T,] with V; C D(g;). We may assume that
V; = D(g;) for some g,...,g, € A generating the unit ideal in A. We can simplify this a bit further:
replacing g; with g;¢; and p;/q; with (p;g;)/(qig:) we may assume that g; = g;. Consider the functions

fi=¢f: X =k

We notice that f; = p;q; for every i (the right-hand side is the function X — k defined by the element
piqi € k[T,...,T,)). Indeed, on V; we have f; = g?(p;/q:) = piqi» and outside of V; both sides are zero.

Since A = (q1,...,q,), we also have A = (¢3,...,¢%). Letay,...,a, € A be such that 1 = ¥ a;q?.
Multiply the last equality by f to get

r r r
=Y agf=Y afi=Y apiq€A.
i=1 i=1 i=1
(b) We apply (a) to V(I,T,118 — 1) C A" O

2.3. Spaces with functions

Definition 2.3.1. Fix a field k. A space with functions (swf for short) is a topological space X together
with an assignement, for every open U C X, of a k-subalgebra O(U) of the ring of all functions U — k
(called the ring of regular functions on U) such that

(a) Being regular is a local property. That is, if U = |J Uy is an open cover and f: U — k is a function,
then f € O(U) if and only if f|y, € O(Uy) for each c.

(b) If U C X is an open subset and f € O(U), then the set

D(f)={xeU: f(x)#0} CU
is an open subset of U and (f|p(s)) "' € O(D(f)).

A morphism of spaces with functions is a continuous map ¢: ¥ — X such that the pullbacks of
regular funtions are regular: for every open U C X and every regular function f € O(U), the function

fope0(9'(U)).
Note that a map of swf’s ¢: ¥ — X induces a k-algebra homomorphism
¢": 0(X) —0(Y),  ¢°(f)=f09.

Remark 2.3.2 (If you know some sheaf theory). Condition (a) means that O forms a subsheaf of the
sheaf [],cx & of all k-valued functions on X. Condition (b) ensures that the stalks O, = li_n}xe U O(U) for
x € X are local rings, with maximal ideal m, = {f € O, : f(x) =0}.

Examples 2.3.3. (a) Let k=R or C and let X be a topological space. Then O(U) = C(U;k) (continu-
ous functions U — k) gives X the structure of a space with functions.

(b) Similarly with C*, analytic, and complex manifolds.

(c) If X is a space with functions and U C X is an open subset, then U is a space with functions in the
obvious way.



(d) Let again k be our chosen algebraically closed field and let X C A" be a locally closed subset. For
an open U C X, let O(U) be the ring of regular functions on U as in Definition 2.3.1. This makes
X into a space with functions. Note that by Theorem 2.2.2, the two meanings of O(X) we have
introduced agree.

Theorem 2.3.4. Let X C A" be an affine algebraic set. Then for every space with functions Y, the
pull-back map
¢ — ¢": Hom(Y,X) — Homg(O(X),0(Y))

is bijective.

Note that by Yoneda’s lemma, this determines the swf X if we know the ring O(X). (There may be
other swfs with the same O(X), but only one of them is an affine algebraic set.)

Proof. Injectivity is easy: if ¢, y: Y — X are two maps and y € Y is such that ¢ (y) =x # x' = y(y),
we find an f € O(X) with f(x) # f(x') (for example, one of the coordinates Ti,...,7,), and then
0" (1)) = f(x) £ F(¥) = w* (£)(»), and " # y~.

Surjectivity: Let ¢*: O(X) — O(Y) be a k-algebra homomorphism, for which we seek to build the
corresponding map of swf’s ¢: ¥ — X. For each y € Y, we have the evaluation map ev,: O(Y) — k
mapping f — f(y). Consider the composition

ox) L o) 2k
This defines an element x € Homy (O(X), k), which equals X by the Nullstellensatz. We define the map ¢
by ¢(y) = x. This defines a map (of sets) ¢: ¥ — X inducing ¢*. Moreover, the pull-back of the basic
open set D(f) C X is D(¢*f) C Y, which is open by axiom (b) of the definition of an swf, which shows
that ¢ is continuous. We omit the (easy) verification that ¢ is a morphism of swf’s. O

Remark 2.3.5. Here is a direct way of reconstructing the swf X from the reduced k-algebra A = O(X).
We set X = MSpec(A) = Homy (A, k). We give it the induced topology from Spec(A), in other words
generated by the base open sets D(g) for g € A. Finally, we call a function f: U — k defined on an open
U C X regular for every x € U there exist g,h € A such that D(g) C U and f(y) = h(y)/g(y) for every

y € D(g).

Corollary 2.3.6. The category of affine algebraic sets (defined as a full subcategory of the category of
swf’s) is equivalent to the opposite category of the category of finitely generated reduced k-algebras.

Corollary 2.3.7 (Products of affine algebraic sets). The category of affine algebraic sets admits products.
More precisely, let X =V (I) C A" (with coordinates Ty, ...,T,) and Y =V (J) C A™ (with coordinates
Uy,...,U,) be two affine algebraic sets. Then

XxY=V({I+J)C A"
is the product of X and Y in the category of swf’s, and we have
O(X xY)=0(X)®,0(Y).

Proof. This is straightforward except for the fact that O(X) ®; O(Y) is reduced. For this, see Propo-
sition 5.17 in Milne’s notes' (which also shows that O(X x Y) is a domain if O(X) and O(Y) are
domains. O

"https://www. jmilne.org/math/CourseNotes/AG.pdf
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We are finally able to define algebraic sets (which we will later identify as reduced schemes of finite
type over k) and varieties.

Definition 2.3.8. Let k be an algebraically closed field.

(1) An algebraic set over k is a space with functions X admitting a finite open cover X = U, U---UU,
where each U; is isomorphic as an swf to an affine algebraic set.

(2) We say that an algebraic set is a variety if it is irreducible.
(3) We say that X is projective if it is isomorphic to a projective algebraic set (see below).

(4) We say that X is quasi-affine if it is isomorphic to an open subset of an affine algebraic set, and
quasi-projective if it is isomorphic to an open subset of a projective algebraic set.

We note the key fact that not only can every algebraic set be covered by open affine algebraic sets,
but the affine open subsets form a base for the topology on X (since if U C X is affine, then a basis of
opens of U is given by the sets D(g) for g € O(U)).

Example 2.3.9. The projective space " has the standard open cover Uy U - - - UU,, by affine spaces. We
call a function on a locally closed subset Z of P” regular if its restriction to each Z N U; is regular in the
sense of Definition 2.3.1. Thus every locally closed subset of P" is an swf and moreover an algebraic set.

Example 2.3.10. The punctured plane A%\ {0} is quasi-affine but not affine (see below). Similarly,
the punctured projective plane P?\ {P} for a point P is quasi-projective, but neither projective nor
quasi-affine.

Lemma 2.3.11.  (a) O(A"™1\0) = O(A™!) forn > 1;
(b) O(P") =k;
(c) Let X CP" be a projective variety (closed and irreducible subset). Then O(X) = k.

Proof. (a) The set U = A™1\ 0 is the union of D(T;), i = 0,...,n. We have O(D(T;)) = O(A"*1)[1,71].
Consider all of these as subrings of k[T;"', T;*!], then O(U) is their intersection, which equals k[Tp, . .., T,] =
) ( Antl ) .

(b) For this we use the fact (easy proof omitted) that for an open (or locally closed) W C P", a function
f: W — kis regular if and only if f o 7T is regular on 7! (W) where 7: U — P" is the quotient map. The
fact for W = IP" combined with (a) implies that O(PP") consists of all f € k[Ty, ..., T,| which are invariant
under scaling of the coordinates, i.e. homogeneous of degree zero. But k[Tp, ..., T,]o = k.

(c) We shall prove this later. ]

Example 2.3.12 (Ojanguren). In all examples of algebraic sets we have encountered so far, the ring
O(X) was a finitely generated k-algebra. This is true for affine algebraic sets and projective algebraic
sets, but for completely different reasons. In general for an algebraic set X, the ring O(X) might be
non-Noetherian. Here is a simple example, found by Ojanguren. Consider the projective three-space P>
with homogeneous coordinates (X : Y : Z : T) and the subsets

W=Ve(XY)CP},  L=Wp(X,Z)CW, U=X\L.

Thus W is the union of two hyperplanes H; = V(X), H, = Vp(Y) ~ P? in P3 intesecting along the line
Vp(X,Y) ~ P!, The set L ~ P! is another line, contained in one of the planes H; and intersecting the
other H, in a single point Q = (0:0:0: 1). Let us calculate O(U). A regular function f on U restricts to



a regular function f; on H; \ L ~ A? (with coordinates u =Y /Z and v =T /Z) and a regular function f,
on Hy \ Z ~P?\ Q. But O(P?\ Q) =k, so f> is constant. It follows that

OWU) ={f €klu,v] : f(0,v) €k}

which is not Noetherian (as the ideal v- k[u,v] is contained in O(U) and is an ideal there, generated by
vu'* for all n > 0 but not by any proper subset).
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