

## 2. Lecture 2 (Jan 15)

Recommended reading: Kempf §1, Hartshorne I.3

### 2.1. Some general topology

**Definition 2.1.1.** Let  $X$  be a topological space.

- (a) We say that  $X$  is **irreducible** if for every pair of closed subsets  $Y_1, Y_2 \subseteq X$  with  $X = Y_1 \cup Y_2$ , we have  $X = Y_1$  or  $X = Y_2$ . (Equivalently, every non-empty open subset of  $X$  is dense.)
- (b) The **dimension**  $\dim(X)$  is the supremum of the set of integers  $n \geq 0$  for which there exists a chain

$$Z_0 \subsetneq Z_1 \subsetneq \cdots \subsetneq Z_n$$

of distinct closed irreducible subsets of  $X$ .

- (c) We say that  $X$  is **Noetherian** if every decreasing sequence  $F_0 \supseteq F_1 \supseteq \dots$  of closed subsets stabilizes (is eventually constant).

**Proposition 2.1.2.** Let  $X = V(f_1, \dots, f_r) \subseteq k^n$  be an affine algebraic set and let  $A = k[T_1, \dots, T_n]/(f_1, \dots, f_r)$ . Then:

- (a)  $X$  is irreducible if and only if the coordinate ring

$$\mathcal{O}(X) = k[T_1, \dots, T_n]/\mathcal{I}(X) = k[T_1, \dots, T_n]/\sqrt{(f_1, \dots, f_r)} = A/\sqrt{0}$$

is a domain, or equivalently iff the ideal  $\sqrt{(f_1, \dots, f_r)} = \mathcal{I}(X) \subseteq k[T_1, \dots, T_n]$  is prime.

- (b)  $X$  is a Noetherian topological space.

- (c) We have  $\dim(X) = \dim(\mathcal{O}(X)) = \dim(A)$  (the latter two denote the **Krull dimension**).

**Remark 2.1.3.** Thus irreducible closed subsets of  $X$  correspond to prime ideals of  $\text{Spec}(A)$ . The smallest irreducible closed subsets are the points of  $X$ , which correspond to the largest prime ideals, i.e. the maximal ideals.

**Lemma 2.1.4.** Let  $X$  be a Noetherian topological space. Then there exist closed irreducible subsets  $Z_1, \dots, Z_r \subseteq X$  such that  $Z_i \not\subseteq Z_j$  for  $i \neq j$  and

$$X = Z_1 \cup \cdots \cup Z_r.$$

They are unique up to permutation.

**Definition 2.1.5.** The closed irreducible subsets  $Z_1, \dots, Z_r \subseteq X$  in the lemma are called the **irreducible components** of  $X$ .

Note that we have  $\dim(X) = \sup\{\dim Z_1, \dots, \dim Z_r\}$ . In order to say more about dimension, we need to review some results from the **dimension theory** part of commutative algebra (see e.g. Chapter 10 of Atiyah–Macdonald, though we need a bit more).

Let  $X \subseteq \mathbb{A}^n$  be an irreducible algebraic set, let  $\mathfrak{p} = \mathcal{I}(X) \subseteq k[T_1, \dots, T_n]$  be the corresponding prime ideal, and let  $A = k[T_1, \dots, T_n]/\mathfrak{p} = \mathcal{O}(X)$ .

(1) Let  $K = \text{Frac}(A)$  be the field of fractions. Then

$$\dim(X) = \dim(A) = \text{trdeg}(K/k)$$

is the transcendence degree of the extension  $K/k$ . In particular, we have  $\dim \mathbb{A}^n = n$ .

(2) All maximal chains  $Z_0 \subseteq \dots \subsetneq Z_r$  of irreducible subsets of  $X$  have length  $r = \dim(X)$ .

From this we can deduce that for a locally closed  $Y \subseteq \mathbb{A}^n$ , we have  $\dim(Y) = \dim(\overline{Y})$ .

(3) Let  $f \in A$  be a nonzero nonunit, and let  $Y = V(f) \subseteq X$ . Let  $Y_1, \dots, Y_r \subseteq Y$  be the irreducible components of  $Y$ . Then

(a) We have  $\dim(Y_i) = \dim(X) - 1$  for every  $i = 1, \dots, r$ .

(b) Conversely,  $A$  is a UFD (unique factorization domain, for example if  $X = \mathbb{A}^n$ ), then every closed irreducible subset  $Y \subseteq X$  such that  $\dim(Y) = \dim(X) - 1$  is of the form  $Y = V(f)$  for some prime element  $f \in A$ .

## 2.2. Regular functions

A polynomial  $f \in k[T_1, \dots, T_n]$  defines a function  $f: k^n \rightarrow k$ . Similarly, a rational function  $f = p/q \in k(T_1, \dots, T_n)$  with  $p, q \in k[T_1, \dots, T_n]$ ,  $q \neq 0$  defines a function  $f = p/q: D(q) \rightarrow k$  where  $D(q) = k^n \setminus V(q)$ . Recall that the subsets  $D(q)$  for a varying  $q$  form a basis of the Zariski topology on  $k^n = \mathbb{A}^n$ . We define regular functions as those which are *locally* given by a rational function.

**Definition 2.2.1.** Let  $X \subseteq k^n$  be an algebraic set,  $U \subseteq X$  an open subset, and let  $f: U \rightarrow k$  be a function. We say that  $f$  is a **regular function** on  $U$  if every  $x \in U$  there exists an open neighborhood  $x \in V \subseteq U$  and  $p, q \in k[T_1, \dots, T_n]$  such that for every  $y \in V$ , we have  $q(y) \neq 0$  and

$$f(y) = \frac{p(y)}{q(y)}.$$

We observe first that if  $f$  is a regular function on  $U$  and  $Z \subseteq U$  is a locally closed subset, then  $f|_Z$  is a regular function. Moreover, every polynomial  $f \in k[T_1, \dots, T_n]$  defines a regular function on  $\mathbb{A}^n$  and hence on every locally closed  $U \subseteq \mathbb{A}^n$ . For an affine algebraic set  $X \subseteq \mathbb{A}^n$  we obtain a map

$$A = \mathcal{O}(X) = k[T_1, \dots, T_n]/\mathcal{J}(X) \longrightarrow \{\text{regular functions on } X\}.$$

It follows from the Nullstellensatz that this map is injective. Moreover, regular functions on any locally closed subset  $U \subseteq \mathbb{A}^n$  form a  $k$ -subalgebra of the ring of all functions  $U \rightarrow k$ .

**Theorem 2.2.2.** Let  $X \subseteq \mathbb{A}^n$  be an affine algebraic set and let  $A = k[T_1, \dots, T_n]/\mathcal{J}(X)$  be its coordinate ring. Then:

(a) The map

$$A \longrightarrow \{\text{regular functions on } X\}$$

is an isomorphism of  $k$ -algebras.

(b) For  $g \in A$ , let  $U = D(g) \subseteq X$ . Then the above map induces an isomorphism

$$A[g^{-1}] \simeq \{\text{regular functions on } U\}.$$

The proof shows an algebraic variant of “partitions of unity” in differential geometry.

*Proof.* (a) We need to show that this map is surjective, so let  $f$  be a regular function on  $X$  and let  $X = \bigcup V_i$  be an open cover such that  $f|V_i = p_i/q_i$  for  $p_i, q_i \in k[T_1, \dots, T_n]$  with  $V_i \subseteq D(q_i)$ . We may assume that  $V_i = D(g_i)$  for some  $g_1, \dots, g_r \in A$  generating the unit ideal in  $A$ . We can simplify this a bit further: replacing  $g_i$  with  $g_i q_i$  and  $p_i/q_i$  with  $(p_i g_i)/(q_i g_i)$  we may assume that  $g_i = q_i$ . Consider the functions

$$f_i = q_i^2 f: X \rightarrow k.$$

We notice that  $f_i = p_i q_i$  for every  $i$  (the right-hand side is the function  $X \rightarrow k$  defined by the element  $p_i q_i \in k[T_1, \dots, T_n]$ ). Indeed, on  $V_i$  we have  $f_i = q_i^2(p_i/q_i) = p_i q_i$ , and outside of  $V_i$  both sides are zero.

Since  $A = (q_1, \dots, q_r)$ , we also have  $A = (q_1^2, \dots, q_r^2)$ . Let  $a_1, \dots, a_r \in A$  be such that  $1 = \sum a_i q_i^2$ . Multiply the last equality by  $f$  to get

$$f = \sum_{i=1}^r a_i q_i^2 f = \sum_{i=1}^r a_i f_i = \sum_{i=1}^r a_i p_i q_i \in A.$$

(b) We apply (a) to  $V(I, T_{n+1}g - 1) \subseteq \mathbb{A}^{n+1}$ . □

### 2.3. Spaces with functions

**Definition 2.3.1.** Fix a field  $k$ . A **space with functions** (swf for short) is a topological space  $X$  together with an assignment, for every open  $U \subseteq X$ , of a  $k$ -subalgebra  $\mathcal{O}(U)$  of the ring of all functions  $U \rightarrow k$  (called the ring of **regular functions** on  $U$ ) such that

- (a) Being regular is a local property. That is, if  $U = \bigcup U_\alpha$  is an open cover and  $f: U \rightarrow k$  is a function, then  $f \in \mathcal{O}(U)$  if and only if  $f|_{U_\alpha} \in \mathcal{O}(U_\alpha)$  for each  $\alpha$ .
- (b) If  $U \subseteq X$  is an open subset and  $f \in \mathcal{O}(U)$ , then the set

$$D(f) = \{x \in U : f(x) \neq 0\} \subseteq U$$

is an open subset of  $U$  and  $(f|_{D(f)})^{-1} \in \mathcal{O}(D(f))$ .

A **morphism** of spaces with functions is a continuous map  $\phi: Y \rightarrow X$  such that the pullbacks of regular functions are regular: for every open  $U \subseteq X$  and every regular function  $f \in \mathcal{O}(U)$ , the function  $f \circ \phi \in \mathcal{O}(\phi^{-1}(U))$ .

Note that a map of swf's  $\phi: Y \rightarrow X$  induces a  $k$ -algebra homomorphism

$$\phi^*: \mathcal{O}(X) \longrightarrow \mathcal{O}(Y), \quad \phi^*(f) = f \circ \phi.$$

**Remark 2.3.2** (If you know some sheaf theory). Condition (a) means that  $\mathcal{O}$  forms a *subsheaf* of the sheaf  $\prod_{x \in X} k_x$  of all  $k$ -valued functions on  $X$ . Condition (b) ensures that the stalks  $\mathcal{O}_x = \varinjlim_{x \in U} \mathcal{O}(U)$  for  $x \in X$  are local rings, with maximal ideal  $\mathfrak{m}_x = \{f \in \mathcal{O}_x : f(x) = 0\}$ .

**Examples 2.3.3.** (a) Let  $k = \mathbb{R}$  or  $\mathbb{C}$  and let  $X$  be a topological space. Then  $\mathcal{O}(U) = C(U; k)$  (continuous functions  $U \rightarrow k$ ) gives  $X$  the structure of a space with functions.

- (b) Similarly with  $C^\infty$ , analytic, and complex manifolds.
- (c) If  $X$  is a space with functions and  $U \subseteq X$  is an open subset, then  $U$  is a space with functions in the obvious way.

(d) Let again  $k$  be our chosen algebraically closed field and let  $X \subseteq \mathbb{A}^n$  be a locally closed subset. For an open  $U \subseteq X$ , let  $\mathcal{O}(U)$  be the ring of regular functions on  $U$  as in Definition 2.3.1. This makes  $X$  into a space with functions. Note that by Theorem 2.2.2, the two meanings of  $\mathcal{O}(X)$  we have introduced agree.

**Theorem 2.3.4.** *Let  $X \subseteq \mathbb{A}^n$  be an affine algebraic set. Then for every space with functions  $Y$ , the pull-back map*

$$\phi \mapsto \phi^*: \text{Hom}(Y, X) \longrightarrow \text{Hom}_k(\mathcal{O}(X), \mathcal{O}(Y))$$

*is bijective.*

Note that by Yoneda's lemma, this determines the swf  $X$  if we know the ring  $\mathcal{O}(X)$ . (There may be other swfs with the same  $\mathcal{O}(X)$ , but only one of them is an affine algebraic set.)

*Proof.* **Injectivity** is easy: if  $\phi, \psi: Y \rightarrow X$  are two maps and  $y \in Y$  is such that  $\phi(y) = x \neq x' = \psi(y)$ , we find an  $f \in \mathcal{O}(X)$  with  $f(x) \neq f(x')$  (for example, one of the coordinates  $T_1, \dots, T_n$ ), and then  $\phi^*(f)(y) = f(x) \neq f(x') = \psi^*(f)(y)$ , and  $\phi^* \neq \psi^*$ .

**Surjectivity:** Let  $\phi^*: \mathcal{O}(X) \rightarrow \mathcal{O}(Y)$  be a  $k$ -algebra homomorphism, for which we seek to build the corresponding map of swf's  $\phi: Y \rightarrow X$ . For each  $y \in Y$ , we have the evaluation map  $\text{ev}_y: \mathcal{O}(Y) \rightarrow k$  mapping  $f \mapsto f(y)$ . Consider the composition

$$\mathcal{O}(X) \xrightarrow{\phi^*} \mathcal{O}(Y) \xrightarrow{\text{ev}_y} k.$$

This defines an element  $x \in \text{Hom}_k(\mathcal{O}(X), k)$ , which equals  $X$  by the Nullstellensatz. We define the map  $\phi$  by  $\phi(y) = x$ . This defines a map (of sets)  $\phi: Y \rightarrow X$  inducing  $\phi^*$ . Moreover, the pull-back of the basic open set  $D(f) \subseteq X$  is  $D(\phi^* f) \subseteq Y$ , which is open by axiom (b) of the definition of an swf, which shows that  $\phi$  is continuous. We omit the (easy) verification that  $\phi$  is a morphism of swf's.  $\square$

**Remark 2.3.5.** Here is a direct way of reconstructing the swf  $X$  from the reduced  $k$ -algebra  $A = \mathcal{O}(X)$ . We set  $X = \text{MSpec}(A) = \text{Hom}_k(A, k)$ . We give it the induced topology from  $\text{Spec}(A)$ , in other words generated by the base open sets  $D(g)$  for  $g \in A$ . Finally, we call a function  $f: U \rightarrow k$  defined on an open  $U \subseteq X$  regular for every  $x \in U$  there exist  $g, h \in A$  such that  $D(g) \subseteq U$  and  $f(y) = h(y)/g(y)$  for every  $y \in D(g)$ .

**Corollary 2.3.6.** *The category of affine algebraic sets (defined as a full subcategory of the category of swf's) is equivalent to the opposite category of the category of finitely generated reduced  $k$ -algebras.*

**Corollary 2.3.7** (Products of affine algebraic sets). *The category of affine algebraic sets admits products. More precisely, let  $X = V(I) \subseteq \mathbb{A}^n$  (with coordinates  $T_1, \dots, T_n$ ) and  $Y = V(J) \subseteq \mathbb{A}^m$  (with coordinates  $U_1, \dots, U_m$ ) be two affine algebraic sets. Then*

$$X \times Y = V(I + J) \subseteq \mathbb{A}^{n+m}$$

*is the product of  $X$  and  $Y$  in the category of swf's, and we have*

$$\mathcal{O}(X \times Y) = \mathcal{O}(X) \otimes_k \mathcal{O}(Y).$$

*Proof.* This is straightforward except for the fact that  $\mathcal{O}(X) \otimes_k \mathcal{O}(Y)$  is reduced. For this, see Proposition 5.17 in Milne's notes<sup>1</sup> (which also shows that  $\mathcal{O}(X \times Y)$  is a domain if  $\mathcal{O}(X)$  and  $\mathcal{O}(Y)$  are domains).  $\square$

<sup>1</sup><https://www.jmilne.org/math/CourseNotes/AG.pdf>

We are finally able to define algebraic sets (which we will later identify as reduced schemes of finite type over  $k$ ) and varieties.

**Definition 2.3.8.** Let  $k$  be an algebraically closed field.

- (1) An **algebraic set** over  $k$  is a space with functions  $X$  admitting a finite open cover  $X = U_1 \cup \dots \cup U_n$  where each  $U_i$  is isomorphic as an swf to an affine algebraic set.
- (2) We say that an algebraic set is a **variety** if it is irreducible.
- (3) We say that  $X$  is **projective** if it is isomorphic to a projective algebraic set (see below).
- (4) We say that  $X$  is **quasi-affine** if it is isomorphic to an open subset of an affine algebraic set, and **quasi-projective** if it is isomorphic to an open subset of a projective algebraic set.

We note the key fact that not only can every algebraic set be covered by open affine algebraic sets, but the **affine open subsets form a base** for the topology on  $X$  (since if  $U \subseteq X$  is affine, then a basis of opens of  $U$  is given by the sets  $D(g)$  for  $g \in \mathcal{O}(U)$ ).

**Example 2.3.9.** The projective space  $\mathbb{P}^n$  has the standard open cover  $U_0 \cup \dots \cup U_n$  by affine spaces. We call a function on a locally closed subset  $Z$  of  $\mathbb{P}^n$  regular if its restriction to each  $Z \cap U_i$  is regular in the sense of Definition 2.3.1. Thus every locally closed subset of  $\mathbb{P}^n$  is an swf and moreover an algebraic set.

**Example 2.3.10.** The punctured plane  $\mathbb{A}^2 \setminus \{0\}$  is quasi-affine but not affine (see below). Similarly, the punctured projective plane  $\mathbb{P}^2 \setminus \{P\}$  for a point  $P$  is quasi-projective, but neither projective nor quasi-affine.

**Lemma 2.3.11.** (a)  $\mathcal{O}(\mathbb{A}^{n+1} \setminus 0) = \mathcal{O}(\mathbb{A}^{n+1})$  for  $n \geq 1$ ;

(b)  $\mathcal{O}(\mathbb{P}^n) = k$ ;

(c) Let  $X \subseteq \mathbb{P}^n$  be a projective variety (closed and irreducible subset). Then  $\mathcal{O}(X) = k$ .

*Proof.* (a) The set  $U = \mathbb{A}^{n+1} \setminus 0$  is the union of  $D(T_i)$ ,  $i = 0, \dots, n$ . We have  $\mathcal{O}(D(T_i)) = \mathcal{O}(\mathbb{A}^{n+1})[T_i^{-1}]$ . Consider all of these as subrings of  $k[T_0^{\pm 1}, T_n^{\pm 1}]$ , then  $\mathcal{O}(U)$  is their intersection, which equals  $k[T_0, \dots, T_n] = \mathcal{O}(\mathbb{A}^{n+1})$ .

(b) For this we use the fact (easy proof omitted) that for an open (or locally closed)  $W \subseteq \mathbb{P}^n$ , a function  $f: W \rightarrow k$  is regular if and only if  $f \circ \pi$  is regular on  $\pi^{-1}(W)$  where  $\pi: U \rightarrow \mathbb{P}^n$  is the quotient map. The fact for  $W = \mathbb{P}^n$  combined with (a) implies that  $\mathcal{O}(\mathbb{P}^n)$  consists of all  $f \in k[T_0, \dots, T_n]$  which are invariant under scaling of the coordinates, i.e. homogeneous of degree zero. But  $k[T_0, \dots, T_n]_0 = k$ .

(c) We shall prove this later. □

**Example 2.3.12** (Ojanguren). In all examples of algebraic sets we have encountered so far, the ring  $\mathcal{O}(X)$  was a finitely generated  $k$ -algebra. This is true for affine algebraic sets and projective algebraic sets, but for completely different reasons. In general for an algebraic set  $X$ , the ring  $\mathcal{O}(X)$  might be non-Noetherian. Here is a simple example, found by Ojanguren. Consider the projective three-space  $\mathbb{P}^3$  with homogeneous coordinates  $(X : Y : Z : T)$  and the subsets

$$W = V_{\mathbb{P}}(XY) \subseteq \mathbb{P}^3, \quad L = V_{\mathbb{P}}(X, Z) \subseteq W, \quad U = X \setminus L.$$

Thus  $W$  is the union of two hyperplanes  $H_1 = V_{\mathbb{P}}(X)$ ,  $H_2 = V_{\mathbb{P}}(Y) \simeq \mathbb{P}^2$  in  $\mathbb{P}^3$  intersecting along the line  $V_{\mathbb{P}}(X, Y) \simeq \mathbb{P}^1$ . The set  $L \simeq \mathbb{P}^1$  is another line, contained in one of the planes  $H_1$  and intersecting the other  $H_2$  in a single point  $Q = (0 : 0 : 0 : 1)$ . Let us calculate  $\mathcal{O}(U)$ . A regular function  $f$  on  $U$  restricts to

a regular function  $f_1$  on  $H_1 \setminus L \simeq \mathbb{A}^2$  (with coordinates  $u = Y/Z$  and  $v = T/Z$ ) and a regular function  $f_2$  on  $H_2 \setminus Z \simeq \mathbb{P}^2 \setminus Q$ . But  $\mathcal{O}(\mathbb{P}^2 \setminus Q) = k$ , so  $f_2$  is constant. It follows that

$$\mathcal{O}(U) = \{f \in k[u, v] : f(0, v) \in k\}$$

which is not Noetherian (as the ideal  $v \cdot k[u, v]$  is contained in  $\mathcal{O}(U)$  and is an ideal there, generated by  $vu^n$  for all  $n \geq 0$  but not by any proper subset).