
2. Lecture 2 (Jan 15)

Recommended reading: Kempf §1, Hartshorne I.3

2.1. Some general topology

Definition 2.1.1. Let X be a topological space.

(a) We say that X is irreducible if for every pair of closed subsets Y1,Y2 ⊆ X with X = Y1 ∪Y2, we
have X = Y1 or X = Y2. (Equivalently, every non-empty open subset of X is dense.)

(b) The dimension dim(X) is the supremum of the set of integers n ≥ 0 for which there exists a chain

Z0 ⊊ Z1 ⊊ · · ·⊊ Zn

of distinct closed irreducible subsets of X .

(c) We say that X is Noetherian if every decreasing sequence F0 ⊇ F1 ⊇ . . . of closed subsets stabilizes
(is eventually constant).

Proposition 2.1.2. Let X =V ( f1, . . . , fr)⊆ kn be an affine algebraic set and let A= k[T1, . . . ,Tn]/( f1, . . . , fr).
Then:

(a) X is irreducible if and only if the coordinate ring

O(X) = k[T1, . . . ,Tn]/I(X) = k[T1, . . . ,Tn]/
√
( f1, . . . , fr) = A/

√
0

is a domain, or equivalently iff the ideal
√
( f1, . . . , fr) = I(X)⊆ k[T1, . . . ,Tn] is prime.

(b) X is a Noetherian topological space.

(c) We have dim(X) = dim(O(X)) = dim(A) (the latter two denote the Krull dimension).

Remark 2.1.3. Thus irreducible closed subsets of X correspond to prime ideals of Spec(A). The smallest
irreducible closed subsets are the points of X , which correspond to the largest prime ideals, i.e. the
maximal ideals.

Lemma 2.1.4. Let X be a Noetherian topological space. Then there exist closed irreducible subsets
Z1, . . . ,Zr ⊆ X such that Zi ̸⊆ Z j for i ̸= j and

X = Z1 ∪·· ·∪Zr.

They are unique up to permutation.

Definition 2.1.5. The closed irreducible subsets Z1, . . . ,Zr ⊆ X in the lemma are called the irreducible
components of X .

Note that we have dim(X) = sup{dimZ1, . . . ,dimZr}. In order to say more about dimension, we need
to review some results from the dimension theory part of commutative algebra (see e.g. Chapter 10 of
Atiyah–Macdonald, though we need a bit more).

Let X ⊆ An be an irreducible algebraic set, let p= I(X)⊆ k[T1, . . . ,Tn] be the corresponding prime
ideal, and let A = k[T1, . . . ,Tn]/p= O(X).
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(1) Let K = Frac(A) be the field of fractions. Then

dim(X) = dim(A) = trdeg(K/k)

is the transcendence degree of the extension K/k. In particular, we have dimAn = n.

(2) All maximal chains Z0 ⊆ ·· ·⊊ Zr of irreducible subsets of X have length r = dim(X).

From this we can deduce that for a locally closed Y ⊆ An, we have dim(Y ) = dim(Y ).

(3) Let f ∈ A be a nonzero nonunit, and let Y = V ( f ) ⊆ X . Let Y1, . . . ,Yr ⊆ Y be the irreducible
components of Y . Then

(a) We have dim(Yi) = dim(X)−1 for every i = 1, . . . ,r.

(b) Conversely, A is a UFD (unique factorization domain, for example if X = An), then every
closed irreducible subset Y ⊆ X such that dim(Y ) = dim(X)−1 is of the form Y =V ( f ) for
some prime element f ∈ A.

2.2. Regular functions

A polynomial f ∈ k[T1, . . . ,Tn] defines a function f : kn → k. Similarly, a rational function f = p/q ∈
k(T1, . . . ,Tn) with p,q∈ k[T1, . . . ,Tn], q ̸= 0 defines a function f = p/q : D(q)→ k where D(q)= kn\V (q).
Recall that the subsets D(q) for a varying q form a basis of the Zariski topology on kn = An. We define
regular functions as those which are locally given by a rational function.

Definition 2.2.1. Let X ⊆ kn be an algebraic set, U ⊆ X an open subset, and let f : U → k be a function.
We say that f is a regular function on U if every x ∈U there exists an open neighborhood x ∈V ⊆U
and p,q ∈ k[T1, . . . ,Tn] such that for every y ∈V , we have q(y) ̸= 0 and

f (y) =
p(y)
q(y)

.

We observe first that if f is a regular function on U and Z ⊆U is a locally closed subset, then f |Z is
a regular function. Moreover, every polynomial f ∈ k[T1, . . . ,Tn] defines a regular function on An and
hence on every locally closed U ⊆ An. For an affine algebraic set X ⊆ An we obtain a map

A = O(X) = k[T1, . . . ,Tn]/I(X)−→ {regular functions on X}.

It follows from the Nullstellensatz that this map is injective. Moreover, regular functions on any locally
closed subset U ⊆ An form a k-subalgebra of the ring of all functions U → k.

Theorem 2.2.2. Let X ⊆ An be an affine algebraic set and let A = k[T1, . . . ,Tn]/I(X) be its coordinate
ring. Then:

(a) The map
A −→ {regular functions on X}

is an isomorphism of k-algebras.

(b) For g ∈ A, let U = D(g)⊆ X. Then the above map induces an isomorphism

A[g−1]≃ {regular functions on U}.

The proof shows an algebraic variant of “partitions of unity” in differential geometry.

2



Proof. (a) We need to show that this map is surjective, so let f be a regular function on X and let X =
⋃

Vi

be an open cover such that f |Vi = pi/qi for pi,qi ∈ k[T1, . . . ,Tn] with Vi ⊆ D(qi). We may assume that
Vi = D(gi) for some g1, . . . ,gr ∈ A generating the unit ideal in A. We can simplify this a bit further:
replacing gi with giqi and pi/qi with (pigi)/(qigi) we may assume that gi = qi. Consider the functions

fi = q2
i f : X → k.

We notice that fi = piqi for every i (the right-hand side is the function X → k defined by the element
piqi ∈ k[T1, . . . ,Tn]). Indeed, on Vi we have fi = q2

i (pi/qi) = piqi, and outside of Vi both sides are zero.
Since A = (q1, . . . ,qr), we also have A = (q2

1, . . . ,q
2
r ). Let a1, . . . ,ar ∈ A be such that 1 = ∑aiq2

i .
Multiply the last equality by f to get

f =
r

∑
i=1

aiq2
i f =

r

∑
i=1

ai fi =
r

∑
i=1

ai piqi ∈ A.

(b) We apply (a) to V (I,Tn+1g−1)⊆ An+1.

2.3. Spaces with functions

Definition 2.3.1. Fix a field k. A space with functions (swf for short) is a topological space X together
with an assignement, for every open U ⊆ X , of a k-subalgebra O(U) of the ring of all functions U → k
(called the ring of regular functions on U) such that

(a) Being regular is a local property. That is, if U =
⋃

Uα is an open cover and f : U → k is a function,
then f ∈ O(U) if and only if f |Uα

∈ O(Uα) for each α .

(b) If U ⊆ X is an open subset and f ∈ O(U), then the set

D( f ) = {x ∈U : f (x) ̸= 0} ⊆U

is an open subset of U and ( f |D( f ))
−1 ∈ O(D( f )).

A morphism of spaces with functions is a continuous map φ : Y → X such that the pullbacks of
regular funtions are regular: for every open U ⊆ X and every regular function f ∈ O(U), the function
f ◦φ ∈ O(φ−1(U)).

Note that a map of swf’s φ : Y → X induces a k-algebra homomorphism

φ
∗ : O(X)−→ O(Y ), φ

∗( f ) = f ◦φ .

Remark 2.3.2 (If you know some sheaf theory). Condition (a) means that O forms a subsheaf of the
sheaf ∏x∈X kx of all k-valued functions on X . Condition (b) ensures that the stalks Ox = lim−→x∈U

O(U) for
x ∈ X are local rings, with maximal ideal mx = { f ∈ Ox : f (x) = 0}.

Examples 2.3.3. (a) Let k = R or C and let X be a topological space. Then O(U) =C(U ;k) (continu-
ous functions U → k) gives X the structure of a space with functions.

(b) Similarly with C∞, analytic, and complex manifolds.

(c) If X is a space with functions and U ⊆ X is an open subset, then U is a space with functions in the
obvious way.
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(d) Let again k be our chosen algebraically closed field and let X ⊆ An be a locally closed subset. For
an open U ⊆ X , let O(U) be the ring of regular functions on U as in Definition 2.3.1. This makes
X into a space with functions. Note that by Theorem 2.2.2, the two meanings of O(X) we have
introduced agree.

Theorem 2.3.4. Let X ⊆ An be an affine algebraic set. Then for every space with functions Y , the
pull-back map

φ 7→ φ
∗ : Hom(Y,X)−→ Homk(O(X),O(Y ))

is bijective.

Note that by Yoneda’s lemma, this determines the swf X if we know the ring O(X). (There may be
other swfs with the same O(X), but only one of them is an affine algebraic set.)

Proof. Injectivity is easy: if φ ,ψ : Y → X are two maps and y ∈ Y is such that φ(y) = x ̸= x′ = ψ(y),
we find an f ∈ O(X) with f (x) ̸= f (x′) (for example, one of the coordinates T1, . . . ,Tn), and then
φ ∗( f )(y) = f (x) ̸= f (x′) = ψ∗( f )(y), and φ ∗ ̸= ψ∗.

Surjectivity: Let φ ∗ : O(X)→ O(Y ) be a k-algebra homomorphism, for which we seek to build the
corresponding map of swf’s φ : Y → X . For each y ∈ Y , we have the evaluation map evy : O(Y )→ k
mapping f 7→ f (y). Consider the composition

O(X)
φ∗
−→ O(Y )

evy−→ k.

This defines an element x ∈ Homk(O(X),k), which equals X by the Nullstellensatz. We define the map φ

by φ(y) = x. This defines a map (of sets) φ : Y → X inducing φ ∗. Moreover, the pull-back of the basic
open set D( f )⊆ X is D(φ ∗ f )⊆ Y , which is open by axiom (b) of the definition of an swf, which shows
that φ is continuous. We omit the (easy) verification that φ is a morphism of swf’s.

Remark 2.3.5. Here is a direct way of reconstructing the swf X from the reduced k-algebra A = O(X).
We set X = MSpec(A) = Homk(A,k). We give it the induced topology from Spec(A), in other words
generated by the base open sets D(g) for g ∈ A. Finally, we call a function f : U → k defined on an open
U ⊆ X regular for every x ∈U there exist g,h ∈ A such that D(g)⊆U and f (y) = h(y)/g(y) for every
y ∈ D(g).

Corollary 2.3.6. The category of affine algebraic sets (defined as a full subcategory of the category of
swf’s) is equivalent to the opposite category of the category of finitely generated reduced k-algebras.

Corollary 2.3.7 (Products of affine algebraic sets). The category of affine algebraic sets admits products.
More precisely, let X =V (I)⊆ An (with coordinates T1, . . . ,Tn) and Y =V (J)⊆ Am (with coordinates
U1, . . . ,Um) be two affine algebraic sets. Then

X ×Y =V (I + J)⊆ An+m

is the product of X and Y in the category of swf’s, and we have

O(X ×Y ) = O(X)⊗k O(Y ).

Proof. This is straightforward except for the fact that O(X)⊗k O(Y ) is reduced. For this, see Propo-
sition 5.17 in Milne’s notes1 (which also shows that O(X ×Y ) is a domain if O(X) and O(Y ) are
domains.

1https://www.jmilne.org/math/CourseNotes/AG.pdf
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We are finally able to define algebraic sets (which we will later identify as reduced schemes of finite
type over k) and varieties.

Definition 2.3.8. Let k be an algebraically closed field.

(1) An algebraic set over k is a space with functions X admitting a finite open cover X =U1 ∪·· ·∪Un

where each Ui is isomorphic as an swf to an affine algebraic set.

(2) We say that an algebraic set is a variety if it is irreducible.

(3) We say that X is projective if it is isomorphic to a projective algebraic set (see below).

(4) We say that X is quasi-affine if it is isomorphic to an open subset of an affine algebraic set, and
quasi-projective if it is isomorphic to an open subset of a projective algebraic set.

We note the key fact that not only can every algebraic set be covered by open affine algebraic sets,
but the affine open subsets form a base for the topology on X (since if U ⊆ X is affine, then a basis of
opens of U is given by the sets D(g) for g ∈ O(U)).

Example 2.3.9. The projective space Pn has the standard open cover U0 ∪·· ·∪Un by affine spaces. We
call a function on a locally closed subset Z of Pn regular if its restriction to each Z ∩Ui is regular in the
sense of Definition 2.3.1. Thus every locally closed subset of Pn is an swf and moreover an algebraic set.

Example 2.3.10. The punctured plane A2 \ {0} is quasi-affine but not affine (see below). Similarly,
the punctured projective plane P2 \ {P} for a point P is quasi-projective, but neither projective nor
quasi-affine.

Lemma 2.3.11. (a) O(An+1 \0) = O(An+1) for n ≥ 1;

(b) O(Pn) = k;

(c) Let X ⊆ Pn be a projective variety (closed and irreducible subset). Then O(X) = k.

Proof. (a) The set U = An+1 \0 is the union of D(Ti), i = 0, . . . ,n. We have O(D(Ti)) = O(An+1)[T−1
i ].

Consider all of these as subrings of k[T±1
0 ,T±1

n ], then O(U) is their intersection, which equals k[T0, . . . ,Tn] =

O(An+1).
(b) For this we use the fact (easy proof omitted) that for an open (or locally closed) W ⊆ Pn, a function

f : W → k is regular if and only if f ◦π is regular on π−1(W ) where π : U → Pn is the quotient map. The
fact for W = Pn combined with (a) implies that O(Pn) consists of all f ∈ k[T0, . . . ,Tn] which are invariant
under scaling of the coordinates, i.e. homogeneous of degree zero. But k[T0, . . . ,Tn]0 = k.

(c) We shall prove this later.

Example 2.3.12 (Ojanguren). In all examples of algebraic sets we have encountered so far, the ring
O(X) was a finitely generated k-algebra. This is true for affine algebraic sets and projective algebraic
sets, but for completely different reasons. In general for an algebraic set X , the ring O(X) might be
non-Noetherian. Here is a simple example, found by Ojanguren. Consider the projective three-space P3

with homogeneous coordinates (X : Y : Z : T ) and the subsets

W =VP(XY )⊆ P3, L =VP(X ,Z)⊆W, U = X \L.

Thus W is the union of two hyperplanes H1 =VP(X),H2 =VP(Y )≃ P2 in P3 intesecting along the line
VP(X ,Y ) ≃ P1. The set L ≃ P1 is another line, contained in one of the planes H1 and intersecting the
other H2 in a single point Q = (0 : 0 : 0 : 1). Let us calculate O(U). A regular function f on U restricts to
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a regular function f1 on H1 \L ≃ A2 (with coordinates u = Y/Z and v = T/Z) and a regular function f2

on H2 \Z ≃ P2 \Q. But O(P2 \Q) = k, so f2 is constant. It follows that

O(U) = { f ∈ k[u,v] : f (0,v) ∈ k}

which is not Noetherian (as the ideal v · k[u,v] is contained in O(U) and is an ideal there, generated by
vun for all n ≥ 0 but not by any proper subset).
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