
1. Lecture 1 (Jan 13): Affine algebraic sets

Course info

• shelter 8 (building across the street; follow the crowd)

• course website: https://achinger.impan.pl/ag2026.html

• email: pachinger@impan.pl

• Moodle, Slack, Zoom, Google Drive

• weekly homework posted on the course website, submit solutions by email with filename
Lastname-N.pdf where N is the number of the problem set

• extra credit: problems marked with an asterisk (due end of term), short (3–5 pages) term
papers on a topic of your choice (more info soon)

• reading week (no class): Apr 6–10, exam (written or oral) in the last week (Apr 14 or 16)

• office hours: Thursdays 10am (email me if you plan to come)

• I might post some lecture notes (in fact, I am just doing that)

• literature (see Google Drive):

1. G. Kempf Algebraic Varieties (excellent for a one semester course)

2. R. Hartshorne Algebraic Geometry (a bit heavy for us, but we will read parts of it)

3. R. Vakil The Rising Sea: Foundations of Algebraic Geometry

4. M. Reid Undergraduate Algebraic Geometry

5. D. Mumford The Red Book of Varieties and Schemes

1.1. Affine algebraic sets and their k-points

Recommended reading for this lecture: Hartshorne, I.1 (and bits of I.2).

Algebraic geometry studies algebraically defined geometric objects, of which the most basic
are (affine) algebraic sets. Fix a field k and consider a system of polynomial equations in n
variables

X :


f1(T1, . . . ,Tn) = 0

. . .

fr(T1, . . . ,Tn) = 0

(1.1.1)

where f1, . . . , fr ∈ k[T1, . . . ,Tn]. Importantly, our basic object X is this system, not its set of
solutions in kn, which we denote by X(k):

X(k) = {(x1, . . . ,xn) ∈ kn : fi(x1, . . . ,xn) = 0 for i = 1, . . . ,r} ⊆ kn.
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More generally, if K is a field containing k (or just a k-algebra), we can define X(K)⊆ Kn as the
set of solutions of (1.1.1) in Kn. We also define the coordinate ring of X as the k-algebra

A = O(X) = k[T1, . . . ,Tn]/( f1, . . . , fr).

Examples 1.1.1. The most basic examples of systems of polynomial equations:

(a) If r = 0 (i.e. n variables and no equations), we call the system the affine n-space and
denote it by An. We have An(K) = Kn and O(An) = k[T1, . . . ,Tn]. For a system X with n
variables, we write X ⊆ An to signify that X(K)⊆ Kn.

(b) A hypersurface is the system consisting of a single equation f (T1, . . . ,Tn) = 0, where
f ∈ k[T1, . . . ,Tn] is a non-constant polynomial (often assumed to be irreducible). If
deg( f ) = 1,2,3,4,5,6,7,8 we call f a hyperplane, a quadric, a cubic, a quartic, a quintic,
a sextic, a septic, an octic.

(c) A plane curve is a hypersurface in A2, i.e. a system C with a single equation

f (X ,Y ) = 0

where f ∈ k[X ,Y ] is a non-constant polynomial. For example, the lemniscate of Bernoulli
is defined by the equation

(X2 +Y 2)2 = X2 −Y 2.

(d) If deg( f ) = 2 and f is irreducible, we call C a conic. That is, a conic is a quadric
hypersurface in A2.

(e) Consider k = R and the conic C defined by

X2 +Y 2 =−1.

We have C(R) = /0. However, O(C) ̸= 0 and C(C) ̸= /0.

(f) The “fat point” X ⊆ A1 defined by the single equation

T 2 = 0.

We have O(X) = k[T ]/(T 2), which is non-reduced (has a nonzero nilpotent element,
namely T ). For any field K, we have X(K) = {0}, which is the same as for the equation
X ′ : T = 0. We need more advanced technology (schemes) to distinguish between the
geometric objects X and X ′. For now though we shall mostly stick to systems of equations
which give reduced k-algebras.

We note that the algebra A = O(X) “remembers” the set X(K), namely we have a bijection

X(K) = Homk(A,K)
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between the set of K-valued solutions and the set of k-algebra homomorphisms from A to K.
Indeed, giving a map φ : k[T1, . . . ,Tn] → K is the same as giving its values xi = φ(Ti) i.e. an
element (x1, . . . ,xn) ∈ Kn. Such a map factors (uniquely) through A = k[T1, . . . ,Tn]/( f1, . . . , fr)

if and only if φ( f j) = 0. But

φ( f j(T1, . . . ,Tn)) = f j(φ(T1), . . . ,φ(Tn)) = f j(x1, . . . ,xn)

which happens precisely when (x1, . . . ,xn) ∈ X(K).
Thus, a system X (1.1.1) determines A which determines the solution set X(k). We regard

X as too rigid, the set X(k) as too primitive for describing a geometric object (for example, it
could be empty), and the algebra A as just right.

The distinction between X , A, and X(k) becomes less serious when k is algebraically closed,
and indeed most of the methods of algebraic geometry are developed over k = k, even if the
motivation is the study of X(k) for k = R, Q, or a finite field. Life is easier over an algebraically
closed field k thanks to Hilbert’s Nullstellensatz, which says that the only reason for the system
(1.1.1) to have no solutions in kn is that we can algebraically rearrange the equations to obtain
the equation 1 = 0:

Theorem 1.1.2 (Hilbert’s Nullstellensatz). Consider a system of polynomial equations (1.1.1)
over a field k. The following are equivalent:

(a) X(K) = /0 for every field K containing k;

(b) X(k) = /0, where k is an algebraic closure of k;

(c) there exist polynomials h1, . . . ,hr ∈ k[T1, . . . ,Tn] such that

1 = h1 f1 + · · ·+hr fr.

(d) O(X) = 0.

Proof. The implications (a)⇒(b), (c)⇔(d)⇒(a) are obvious. We shall deduce the remaining
(b)⇒(d) from the following theorem, another version of Nullstellensatz.

Theorem 1.1.3 (Basic form of Nullstellensatz). Let k be a field and let K be a finitely generated
k-algebra which is a field. Then K is a finite extension of k.

Last term, which we proved it using the Artin–Tate lemma. Just for fun, let us give a simple
proof in case k is uncountable (e.g. k = C). Note first that it suffices to show that every x ∈ K
is algebraic over k (as a finitely generated algebraic extension is finite). Suppose x ∈ K is not
algebraic over k, then we have an injection k(T )⊆ K. Now, we get a contradiction because

• k(T ) has uncountable dimension over k, as the elements 1/(T −α) are linearly indepen-
dent over k for α ∈ k and k is uncountable;

• K has countable dimension over k, since being finitely generated over k it is a quotient
of k[T1, . . . ,Tn] for some n ≥ 0, and this space has a countable basis consisting of all
monomials in the Ti.
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To show (b)⇒(d), suppose A = O(X) ̸= 0. Thus A has a maximal ideal m, and K = A/m is
a field which is generated over k by images of the Ti. By the above theorem, it is finite over
k, and hence we can find an embedding K ⊆ k, so that X(K) ⊆ X(k). Now, by construction
X(K) = Homk(A,K) is non-empty (because we have the quotient map A → A/m = K), and
hence X(k) is non-empty.

From now on we shall assume that k is algebraically closed.

This assumption implies in particular that the set X(k) = Homk(A,k) coincides with the set
MSpec(A) of maximal ideals of A. I will also use An to mean An(k) = kn.

Definition 1.1.4. Let P = k[T1, . . . ,Tn] be the polynomial ring.

(1) For f ∈ P, we write

V ( f ) = {(x1, . . . ,xn) ∈ kn : f (x1, . . . ,xn) = 0}

and D( f ) = kn \V ( f ).

(2) For an ideal I ⊆ P, we write V (I) =
⋂

f∈I V ( f ). (Note that we do not define D(I).)

(3) An affine algebraic set is a subset Z ⊆ kn of the form V (I) for some I ⊆ P.

(4) For a subset Z ⊆ kn, we denote by I(Z)⊆ P the ideal

I(Z) = { f ∈ P : f (x1, . . . ,xn) = 0 for all x ∈ Z}.

Note that for f1, . . . , fr ∈ P and I = ( f1, . . . , fr) we have V (I) =V ( f1)∩ . . .∩V ( fr).

Proposition 1.1.5. Let P = k[T1, . . . ,Tn] be the polynomial ring.

(a) For any family of ideals Iα ⊆ P we have
⋂

V (Iα) =V (∑ Iα).

(b) For two ideals I,J ⊆ P we have V (IJ) =V (I ∩ J) =V (I)∪V (J).

(c) Affine algebraic sets are the closed sets for a topology on kn (called the Zariski topology).

(d) The open sets D( f ) form a base for the topology on kn closed under pairwise intersection:
D( f )∩D(g) = D( f g).

(e) For every subset Z ⊆ kn, the ideal I(Z) is radical and V (I(Z)) = Z (the closure of Z).

(f) For every ideal I ⊆ kn we have I(V (I) =
√

I (the radical of I).

(g) The maps V and I establish mutually inverse bijections between closed subsets of kn and
radical ideals of P.

4



Proof. Everything is easy to show except for the containment I(V (I))⊆
√

I in (f), another form
of the Nullstellensatz. Let us deduce it from Theorem 1.1.2. Write I = ( f1, . . . , fr). We must
show that if g ∈ P vanishes on V ( f1, . . . , fr) then gn ∈ I for some n ≥ 1. Equivalently, g is
nilpotent in A = P/I. Consider the system of equations in n+1 variables T1, . . . ,Tn,Tn+1:

X ′ =


f1(T1, . . . ,Tn) = 0

. . .

fr(T1, . . . ,Tn) = 0

g(T1, . . . ,Tn) ·Tn+1 −1 = 0.

Then the assumption V (g)⊇V ( f1, . . . , fr) is equivalent to X ′(k) = /0. Thus by Theorem 1.1.2
we have A′ = 0 where A′ = O(X ′). However

A′ =

(
k[T1, . . . ,Tn]

( f1, . . . , fr)

)
[Tn+1]/(gTn+1 −1) = A[g−1],

the localization of A at g. Then A′ = 0 means that 0/1 = 1/1 in A[g−1], which by definition of
localization means that gn = 0 in A, and we are done.

Note that the last result implies that we can recover A up to nilpotents from the set X(k)⊆ kn:

Corollary 1.1.6. We have A/
√

0 ≃ P/I(X(k)).

Examples 1.1.7. (a) A proper subset of A1 = k is closed if and only if it is finite.

(b) Let Z ⊆ A2 be a proper closed subset. Then Z is the union of a plane curve f (X ,Y ) = 0
and a finite set. (We will prove this later.)

1.2. Projective algebraic sets

The multiplicative group k× acts freely on the open subset kn+1 \0 of kn+1 by

λ · (x0, . . . ,xn) = (λx0, . . . ,λxn).

We define the projective n-space to be the quotient (orbit space)

Pn(k) = (kn+1 \0)/k×.

We denote by π : kn+1 \ 0 → Pn(k) the quotient map, and by (x0 : . . . : xn) the image of
(x0, . . . ,xn) ∈ kn+1 \0.

Let P = k[T0, . . . ,Tn]. For (x0 : · · · : xn) ∈ Pn(k), the expression

f (x0, . . .xn)

does not make sense. However, if f is homogeneous, the condition

f (x0, . . .xn) = 0
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makes sense (i.e. is independent of the choice of a representative (x0, . . . ,xn)). Recall that a
polynomial f ∈ P is homogeneous of degree d if we have an equality of polynomials in P[λ ]

f (λT0, . . . ,λTn) = λ
d f (T0, . . . ,Tn),

or equivalently if all monomials in f are of the same degree d. We say that f is homogeneous
if it is homogeneous of degree d for some d ≥ 0. If Pd ⊆ P is the subspace of homogeneous
polynomials of degree d, then

P =
⊕
d≥0

Pd.

An ideal I ⊆ P is homogeneous if it is generated by a set of homogeneous elements, or
equivalently if

I =
⊕
d≥0

(I ∩Pd).

Lemma 1.2.1. Let Z ⊆ kn+1 be a closed subset. The following are equivalent:

(a) Z is conical, i.e. invariant under the action of k×;

(b) Z =V (I) for a homogeneous ideal I ⊆ P;

(c) the ideal I(Z)⊆ P is homogeneous.

Proof. The implications (c)⇒(b)⇒(a) are straightforward. To show (a)⇒(c), let f ∈ I(Z) and
write f = ∑ fd where fd ∈ Pd . We must show that all fd belong to I(Z) i.e. vanish on Z. Let
(x0, . . . ,xn) ∈ Z \0, and consider the function φ : k → k given by

φ(λ ) = f (λx0, . . . ,λxn) = ∑
d≥0

fd(λx0, . . . ,λxn) = ∑
d≥0

fd(x0, . . . ,xn)λ
d.

Since Z is conical, we have (λx0, . . . ,λxn) ∈ Z, and hence φ(λ ) is identically zero. Since it is a
polynomial in λ by the above expression, all of its coefficients are zero, so fd(x0, . . . ,xn) = 0
for all d.

Definition 1.2.2. For a homogeneous ideal I ⊆ P, let

VP(I) = {(x0 : · · · : xn) : f (x0, . . . ,xn) = 0 for all homogeneous f ∈ I}= π(V (I)\0)⊆ Pn(k).

A projective algebraic set is a subset of Pn(k) of the form VP(I) for some homogeneous ideal
I ⊆ P.

As in the affine case, projective algebraic sets are the closed sets of a topology on Pn(k)
called the Zariski topology, with basis of open sets given by

DP( f ) = {(x0 : · · · : xn) : f (x0, . . . ,xn) ̸= 0}= π(D( f ))

for homogeneous f ∈ P.
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Let us show how Pn(k) can be expressed as the union of n+1 copies of An. Let

Ui = DP(Ti) = {(x0 : · · · : xn) : xi ̸= 0} ⊆ Pn(k)

Vi = {(x0, . . . ,xn) ∈ kn+1 : xi = 1} ⊆ kn+1 \0.

Then Pn(k) =
⋃n

i=0Ui and for each i, the restriction of π to Vi gives a homeomorphism Vi ≃Ui,
with inverse given by

(x0 : · · · : xn) 7→
(

x0

xi
: · · · :

xn

xi

)
.

Example 1.2.3 (Projective line). Let us explicate the above description for n = 1. The projective
line P1 is the union of U0 = 1×k ≃A1 with coordinate x1 and U1 = k×1 ≃A1 with coordinate
x0. We have U0 ∩U1 ≃ k× with coordinate x1 = x−1

0 . We can write

P1(k) = A1 ⊔{∞}, ∞ = (0 : 1).

Example 1.2.4 (Projective plane). Consider n = 2 and let us name the coordinates T0,T1,T2

by X ,Y,Z. Let U = U2 = {Z ̸= 1} = A2 with coordinates x = X/Z and y = Y/Z. Then
P2 \U =V (Z) can be identified with P1 with homogeneous coordinates (x : y).

The following lemma allows us to compute the projective closure of an affine hypersurface.
For a polynomial f ∈ k[T1, . . . ,Tn] (no T0) of degree d ≥ 0, write f = ∑

d
e=0 fd where fe is

homogeneous of degree e, and let us define its homogenization as

f̄ =
d

∑
e=0

T d−e
0 fe ∈ Pd.

This is the unique homogeneous polynomial of degree d satisfying

f (T1, . . . ,Tn) = f̄ (1,T1, . . . ,Tn).

For example,
f = T 2

1 −T 3
2 −T2 ⇒ f̄ = T0T 2

1 −T 3
2 −T 2

0 T2.

Lemma 1.2.5. Let f ∈ k[T1, . . . ,Tn] be a nonzero polynomial with homogenization f̄ ∈ k[T0, . . . ,Tn].
Then the closure of V ( f )⊆U0 = kn in Pn(k) is given by VP( f̄ ).

We didn’t prove this lemma on Jan 13. We give a proof in the subsequent subsection.

1.3. Problem session

We discussed charts on the projective space. We also introduced the following notion (used in
problem 6).

Definition 1.3.1. Let f ∈ k[X ,Y ] be a square-free nonconstant polynomial, defining an affine
curve C =V ( f )⊆ k2. We say that a point P = (x,y) ∈C is singular if ∂ f/∂X and ∂ f/∂Y both
vanish at P. Otherwise, we say that P is a nonsingular or smooth point of C.
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We mentioned, but didn’t prove, the fact that every curve has only finitely many singular
points.

List of problems:

(a) Show (a)⇒(c) in Lemma 1.2.1

Solution. See the proof of Lemma 1.2.1.

(b) Find a non-homogeneous ideal I ⊆ k[T0, . . . ,Tn] whose zero set Z =V (I)⊆ kn+1 is conical.

Solution. Consider I = (X2 +Y,Y 2) ⊆ k[X ,Y ]. This ideal is not homogeneous since
X2 +Y ∈ I but Y /∈ I. However, its zero set is {(0,0)} (note

√
I = (X ,Y )), which is

conical.

(c) Find the points at infinity of the affine plane curves Y = X2 and XY = 1.

Solution. Assuming Lemma 1.2.5 (problem 5 below), the closures of V (Y −X2) and
V (XY − 1) are cut out by the homogenized equations Y Z = X2 and XY = Z2. Setting
Z = 0 we get 0 = X2 and XY = 0. Thus, the points at infinity are (0 : 1 : 0) (with
multiplicity two) in the first example and {(0 : 1 : 0),(1 : 0 : 0)} (corresponding to the
vertical and horizontal asymptote) in the second example.

(d) Prove that the Zariski topology on k2 = k×k is not the product topology (with both factors
given the Zariski topology).

Solution. The diagonal V (X −Y ) ⊆ k2 is closed in the Zariski topology, but not in the
product topology. In fact, a proper subset Z ⊆ k2 is closed in the product topology if and
only if it is a finite union of horizontal lines, vertical lines, and points (straightforward,
details omitted).

Klymentii asked if we can show that the two spaces are not homeomorphic (possibly
by a map which is not the identity). The answer seems to be no, but to handle this we
need to know something about irreducible closed subsets (next lecture). More precisely,
irreducible closed subsets of k× k are precisely the vertical lines, horizontal lines, points,
and the entire space. Thus the intersection of two distinct proper irreducible closed
subsets has at most one point. However, in k2 the subsets V (Y ) and V (Y −X(X −1)) are
irreducible and have exactly two points in common.

Bonus question: show that A2 and P2 are not homeomorphic. See also Problem 6* on
Problem Set 1.

(e) Prove Lemma 1.2.5

We didn’t solve this problem. I added a proof in the next subsection.

(f) (Hartshorne (I, Ex. 5.1) Find the singular points of the following curves (assuming
char(k) ̸= 2).

(a) X2 = X4 +Y 4;
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(b) XY = X6 +Y 6;

(c) X3 = Y 2 +X4 +Y 4;

(d) X2Y +XY 2 = X4 +Y 4.

See Hartshorne’s book for pictures of these singularities.

Solution. (c) Hands-on computation gives that (0,0) is the only singular point.

1.4. Bonus: Computing the closure

The following lemma allows us to compute the closure of a locally closed subset of An.

Lemma 1.4.1. Let I ⊆ P = k[T1, . . . ,Tn] be an ideal and let g ∈ P. Let

W =V (I)⊆ An and U = D(g)⊆ An,

and let W ′ ⊆ An be the closure of W ∩U. Consider the ideal

I′ = ker(P → (P/I)[g−1]) = { f ∈ P : gn f ∈ I for some n ≥ 1}.

Then W ′ =V (I′). Moreover, if I is radical, then so is I′.

Proof. First, we show the equality between the two given definitions of I′. This follows from the
general fact that for an element g of a ring B the kernel of the localization B → B[g−1] consists
of all f ∈ B such that gn f = 0 for some n ≥ 0.

Now, the closure of W ∩U is the intersection of all V ( f ) for f ∈ P which vanish on W ∩U .
Let f ∈P be such an element. As in the proof of the variant of Nullstellensatz in Proposition 1.1.5,
we consider the zero set

W ′′ =V (I,gTn+1 −1)⊆ An+1.

The corresponding coordinate ring is

O(W ′′) = k[T1, . . . ,Tn,Tn+1]/(I,gTn+1 −1) = (P/I)[g−1].

Then f (treated as an element of P[Tn+1] = k[T1, . . . ,Tn,Tn+1]) vanishes on W ′′, and hence (by
Proposition 1.1.5(f)) its image in O(W ′′) = (P/I)[g−1] is nilpotent. This means that f mgn ∈ I
for some n ≫ 0, in other words f ∈

√
I′. Thus W ∩U =V (

√
I′) =V (I′), and we are done.

The ideal I′ in Lemma 1.4.1 is sometimes called the g-saturation of I. Using Lemma 1.4.1
we can now give a proof of Lemma 1.2.5.

Proof of Lemma 1.2.5. Let W be the closure of V ( f ) and let V =VP( f̄ ). We want to show that
W =V , and since Pn(k) =

⋃n
i=0Ui, it suffices to check that W ∩Ui =V ∩Ui for each i. For i = 0

this is clear, as W ∩U0 = V ( f ) = V ∩U0. Permuting the variables T1, . . . ,Tn, without loss of
generality it suffices to consider the case i = n (which saves us a minor annoyance with indices).
The set Un has coordinates (t0, . . . , tn−1) where ti = Ti/Tn, and U0 ∩Un is the set D(t0). Then
V ( f )∩Un is

{(t0, . . . , tn−1) : t0 ̸= 0& f (t1/t0, . . . , tn−1/t0,1/t0) = 0}.
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Note that
td
0 f (t1/t0, . . . , tn−1/t0,1/t0) = f̄ (t0, t1, . . . , tn−1,1).

Call this element f ′ = f̄ (t0, t1, . . . , tn−1,1) ∈ k[t0, . . . , tn−1].
Now, by Lemma 1.4.1 the closure of V ( f )∩Un in Un = An is cut out by the t0-saturation of

the ideal ( f ′). Thus we must show this ideal is t0-saturated. Note that by construction,

f ′ = f̄ (t0, t1, . . . , tn−1,1) = fd(t1, . . . tn−1,1)+ t0 ∑
e<d

td−e−1
0 fe(t1, . . . , tn−1,1)

is not divisible by t0. Let g ∈ k[t0, . . . , tn−1] and suppose that f ′ divides tn
0 g. Since t0 does not

divide f ′ and the polynomial ring k[t0, . . . , tn−1] is a UFD, we deduce that f ′ divides g.
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