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Étale fundamental groups of rigid-analytic spaces can be challenging to under-
stand. For example, πét

1 (DCp
) of the affinoid unit disc over Cp is not topologically

finitely generated, as

H1
ét(DCp

,Fp) = Hom(πét
1 (DCp

),Fp)

is infinite. For a proper smooth rigid-analytic space X over Cp, the cohomology
groups H∗

ét(X,Fp) are finite (as shown by Scholze [15]), and the étale fundamental
group is likewise expected to be topologically finitely generated.1 However, it
seems that we currently lack tools to show this, unless X is the analytification of
an algebraic variety.

As in the case of schemes [13], one can deal with such issues by considering the
tame quotient of the fundamental group. For us, a rigid-analytic space over a non-
archimedean field K is an adic space locally of finite type over Spa(K,K+). Thus,
the residue fields of points of X are equipped with valuations, and the natural
definition that presents itself (considered in [7]) is the following: an étale morphism
of adic spaces f : Y → X is tame if for every y ∈ Y , the finite separable extension
of valued fields k(y)/k(f(y)) is tamely ramified (meaning that [k(y)sh : k(f(y))sh]
is prime to the residue characteristic exponent). For X connected, tame finite
étale maps Y → X form a Galois category whose fundamental group πt(X) is
a quotient of πét

1 (X).
However, with this definition, the tame fundamental group πt

1(DCp
) is still

infinite! Indeed, the coverings defined by

yp − y = λx (λ ∈ Cp with |λ| = 1)

are tame (even unramified) and yield an infinite number of maps πt
1(DCp

) → Fp.
Intuitively, the tameness condition introduced above measures only the ramifica-
tion along the special fiber of a formal model of X, while in the presented example
the wild ramification happens at infinity of the special fiber. We correct this
by introducing the following notion: an étale morphism of rigid-analytic spaces
f : Y → X is tame relative to K if for every maximal point y ∈ Y and ev-
ery valuation subring V ⊆ k(y)+ containing K+, the extension of valued fields
k(y)/k(f(y)) is tamely ramified with respect to V . Again, for X connected, we
obtain a Galois category whose fundamental group πt(X/K) is a quotient of πt

1(X).
For the unit disc DCp , such test pairs (y, V ) consist of points of DCp (con-

tinuous valuations on K⟨x⟩ which are ≤ 1 on K+⟨x⟩) and one additional point
corresponding to a rank two continuous valuation which is unbounded on K+⟨x⟩.
In fact, if X is quasi-compact and separated, then the test pairs (y◦, k(y)+) form
the set of points of an adic space (not a rigid space in general) X containing X, the
universal compactification of X/K defined by Huber [6, §5.1]. Alternatively,

1We learned of this question from Bogdan Zavyalov.
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X can be described as the inverse limit of all compactifications of special fibers of
all formal models of X [11]. Thus πt

1(X/K) = πt
1(X), whenever X exists.

Our main result is the following.

Theorem 1. Let X be a connected qcqs rigid space over a non-archimedean field
K. Suppose that the tame Galois group πt

1(K) = Aut(Kt/K) is topologically
finitely generated. Then πt

1(X/K) is topologically finitely generated.

Similarly, if K is algebraically closed, we can show the Künneth formula

πt
1(X × Y/K) ≃ πt

1(X/K)× πt
1(Y/K),

and that if L is an algebraically closed non-archimedean field containing K, then
πt
1(XL/L) ≃ πt

1(X/K). In light of [3, 14] it is an interesting question whether
πt
1(X/K) is topologically finitely presented. Using our methods, we can show that

this is the case ifX is smooth and admits a semistable model such that the strata of
its special fiber admit normal crossings compactifications. In this situation, there
is a “van Kampen formula” expressing πt

1(X/K) in terms of the more classically
studied tame fundamental groups of the strata.

The proof of Theorem 1 relies on

(1) desingularization techniques [9, 16] which allow us to reduce the finite
generation question to the case where K = K and X is smooth, with
a semistable formal model X (treated as a log formal scheme over K+),

(2) a “semistable Abhyankar’s lemma,” relating πt
1(X) (not πt

1(X/K)!) to the
Kummer étale fundamental group πét

1 (X0) of the log special fiber,
(3) an additional argument showing that πt

1(X/K) is isomorphic to the tame

Kummer étale fundamental group πét,t
1 (X0/k) (a notion we needed to in-

troduce along the way, and which I will not explain here),
(4) and finally, proving that for a suitable class of log schemes over an al-

gebraically closed field k, the tame Kummer étale fundamental group is
topologically finitely generated (see Theorem 2 below).

Logarithmic geometry beyond fs. A major obstacle to this approach is that
since K = K, it is not discretely valued, and hence the log special fiber X0 will not
be an fs log scheme, precluding the application of most of logarithmic geometry.
Recall that a log scheme is fs if it locally admits a chart by an fs (finitely generated
and saturated) monoid. Here, the log structure on K+ admits a chart by the
monoid Γ+

K , the positive part of the value group. This monoid is not finitely
generated; however, it is valuative and divisible, which turns out to be quite helpful
in this context.

In order to overcome the obstacle, we needed to develop the foundations of
logarithmic geometry beyond fs log schemes, which is a project by itself. (Similar,
though less comprehensive, approaches appear in some recent papers [1, 2, 12].)
The basic notion is that of an sfp morphism. A map of saturated monoids P → Q
is sfp (finitely presented up to saturation) if Q is the saturation of a finitely
presented monoid over P , or equivalently, if

Q = (P ⊕P0
Q0)

sat



Anabelian Geometry and Representations of Fundamental Groups 3

for a map of fs monoids P0 → Q0 (these are precisely the compact objects of the
category of saturated monoids over P ). A map of saturated log schemes Y → X
is locally sfp if it is étale locally of the form

Spec(Q → B) → Spec(P → A)

where (P → A) → (Q → B) is a map of saturated prelog rings such that P → Q
is sfp and A ⊗Z[P ] Z[Q] → B is finitely presented as a map of rings; it is sfp if
it is locally sfp and qcqs. Crucially, we show that if (P → A) = lim−→ (Pα → Aα)
is a filtered colimit of saturated prelog rings, then the category of sfp log schemes
over Spec(P → A) is the colimit of the system of categories of sfp log schemes over
Spec(Pα → Aα). Since for any given (P → A) we can find such a system with Pα

fs and Aα finitely generated over Z, this allows us to extend many known results
from fs log schemes to sfp maps (analogously to the elimination of noetherian
hypotheses in [5, §8]). Using this, we define smooth, étale, and Kummer étale
maps, and develop the theory of the Kummer étale site and the Kummer étale
fundamental group (see [8]) for arbitrary saturated log schemes.

Interestingly, sfp or Kummer étale maps might not be locally of finite type as
maps of schemes. Indeed, there exist tame extensions of valued fields L/K such
that Γ+

L is not finitely generated as a monoid over Γ+
K , and the valuation ring

L+ is not finitely generated over K+. (For example, let K be a non-archimedean

field with |2| = 1, with value group Z+ Z
√
2 ⊆ R, and let L = K(

√
x,

√
y) where

ν(x) = 1 and ν(y) =
√
2.) However, the map Γ+

K → Γ+
L is sfp, and with the natural

log structures, the map Spec(L+) → Spec(K+) is Kummer étale. Surprisingly,
thanks to fundamental results of Kato [10] and Tsuji [17], these difficulties go
away for sfp log schemes over a base with a chart given by a divisible valuative
monoid, such as Spec(K+) for an algebraically closed non-archimedean field K.

Back to tame fundamental groups. With all these preparations, we can finish
the proof of Theorem 1 by proving:

Theorem 2. Let X be a connected log scheme which is sfp over Spec(P → k)
where P is a divisible valuative monoid with finitely many faces and k is an alge-

braically closed field. Then the tame Kummer étale fundamental group πét,t
1 (X/k)

is topologically finitely generated.

The proof uses “formal gluing” along the log stratification of X to reduce to
the case of locally constant log structure, which in turn can be reduced to the case
of trivial log structure. In this case, we use alterations to reduce to a result of
Esnault and Kindler [4].

As is well-known, the proofs of all known results of (topological) finite gener-
ation of fundamental groups in algebraic geometry eventually rely on the finite
generation of the topological fundamental group of smooth curves over C. Ulti-
mately, so does our proof, after a very long pipeline of reductions.
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