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1 Introduction

These notes about symplectic geometry and symplectic redutions has been
written for the Junior Algebraic Geometry Seminar. Throughout these notes
we will be assuming the following.

G is a connected reductive complex linear algebraic group

• A complex linear algebraic group over is a subgroup of GLn(C), defined
by a set of polynomial equations.

• Reductive means all (complex) representations split as sums of irre-
ducible ones.

• Assumptions on G imply that G is a complexification of a compact real
subgroup K < G, g = k + ik.

In the example we consider we will always take K < G to be:

S1 < C∗, (S1)m < (C∗)m, SU(m) < SL(m,C)

We consider the action of G on a projective variety X and assume that G
acts via SL-transformations on the projective space, i.e.

G y X

SL(n+ 1,C) y Pn

The main reference for the symplectic geometry part are [H] and [MD-S]
and for the algebraic geometry/GIT part [T]. Some more useful references
are listed at the end.
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2 Notation

• X is a smooth projective variety

• M is a smooth symplectic manifold

• G is a complex connected reductive linear algebraic group

• K is a compact connected Lie group whose complexification is G

• T ⊆ K is a maximal torus in K

• ω denotes the symplectic form

• µK is the moment map for the action of K

• X//K = µ−1K (0)/K denotes the symplectic reduction

3 Why symplectic reduction? / Quotients in

algebraic geometry

Suppose we want to define a quotient X/G. The naive thing to do is to take
the orbit space - it gives us a well-defined quotient in the category of topo-
logical spaces (the topology is defined via the quotient map X → X/G). But
since we started with X being a projective variety and chose a very good
group action, we would like our quotient to be defined in the category of
projective varieties. The orbit space is obviously not good, because the orbit
space is almost always non-Hausdorff, this happens whenever some orbit has
a smaller-dimensional orbit in its closure.

Question 1. Can we fix this by simply removing the smaller dimensional
orbits which sit in closures?

Example 1. Let C∗ y P2 by SL(2,C) transformations via:

C∗ 3 λ 7→
[
λ 0
0 λ−1

]
The orbits are: {0}, {x = 0} \ {0},{y = 0} \ {0}, {xy = α}α∈C∗ . We

obviously want the quotient to be C, but we have a triple point at 0. Even
if we remove the smaller-simensional orbit {0}, we still get a double point in
the orbit space.
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There are several standard solutions to the problem of defining a quotient
for the actions of reductive groups on projective varieties:

• Hilbert quotients and Chow quotients

• GIT quotient

• Symplectic reduction

Under reasonable assumptions the GIT quotient and the symplectic re-
duction are isomorphic.

4 Preliminaries on symplectic manifolds

Definition 1 (Symplectic manifold). A smooth manifold M is called sym-
plectic if it is equipped with a symplectic form ω, i.e. a closed, nondegenerate,
skew-symmetric differential 2-form. Morphisms in the category of symplectic
manifolds are symplectomorphisms :

ψ ∈ Symp(M1,M2) ⇐⇒ ψ∗ω2 = ω1.

Let K be a Lie group with Lie algebra k and denote by k∗ the dual of k
with respect to the natural pairing 〈., .〉 : k∗ × k→ R.

Definition 2 (Hamiltonian action). Assume K acts on M by symplecto-
morphisms. The action is called Hamiltonian if there exists a moment map
µ : M → k∗ satisfying:

1. µ is K-equivariant (with respect to the coadjoint action on k∗)

2.
dHξ = ιXξω,

where Hξ : M → R is defined as Hξ(m) = 〈µ(m), ξ〉 for ξ ∈ k. The
right-hand side is the contraction of ω with the vector field Xξ associ-
ated to ξ ∈ k.

Remark 1 (historical). In less recent literature (or the more physically in-
clined one) the vector field Xξ is sometimes called the infinitesimal action.

Example 2 (The most classical Example). Consider the action of SO(3) on
R3 by rotations and extend this action to an action on the cotangent bundle
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T ∗R3 = R6 (with coordinates {q1, q2, q3, p1, p2, p3}). Then the vector field
generated by the action is

XLi =
∑
j,k

εijk

(
pj

∂

∂pk
+ qj

∂

∂pk

)
,

and one can easily check that the map µ : R6 → so(3)∗ ' R3 given by

µ(q, p) = q× p

is the moment map for this action.

Example 3 (Torus action on Cn and Pn). Consider the action of (S1)m on
Cn given by

(t1, . . . , tn)(z1, . . . , zn) = (tk11 z1, . . . , t
kn
n zn), ki ∈ Z.

The moment map for this action is

µ(z) =
1

2
(k1|z1|2, . . . , kn|zn|2)

Analogously for the action on Pn

(t1, . . . , tn)[z1 : · · · : zn] = [tk11 z1 : · · · : tknn zn],

the moment map is

µ(z) =
1

2|z|2
(k1|z1|2, . . . , kn|zn|2)

Example 4 (Action of U(n) on Cn). Consider the standard action of U(n)
on Cn. The moment map for this action is

µ(z)(A) =
i

2
z∗Az

Example 5 (Action of U(n) on Pn−1). Consider the standard action of U(n)
on Cn and consider the induced action on Pn−1. The moment map for this
action is

µ(z)(A) =
i

2|z|2
z∗Az

The two examples above give us recipies to compute the moment maps for
any linear action of on a subset on Cn or Pn, by restriction and projection of
the moment maps above: If X ⊆ Pn, K acts on X by U(n) transformations
on Pn−1, then if µU : Pn−1 → u(n) is the moment map for U(n), then the
moment map for K acting on X is given by

X
µU|X−−−→ u(n)∗ → k∗,

where the last arrow is the canonical projection.
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4.1 Elementary properties of moment maps

1. LetH → K be a Lie group homomorphism and p∗ : k∗ → h∗ the induced
Lie algebra homomorphism. Then if K acts on M with moment map
µK , then the induced action of H is also Hamiltonian, with moment
map µH = p∗ ◦ µK .

2. Let M1, M2 be two symplectic manifolds equipped with Hamiltonian
actions of K with moment maps µ1 : M1 → k∗ and µ2 : M2 → k∗. Then
the diagonal action of K on M1×M2 is Hamiltonian with moment map
µ1 + µ2.

3. If K,H act on M with moment maps µK , µH and the actions commute,
then K ×H acts on M with moment map µK ⊕ µH : M → k∗ ⊕ h.

Theorem 1 (Atiyah-Guillemin-Sternberg). Let T = (S1)m act on a compact
connected symplectic manifold M in a Hamiltonian way. Then the image of
the moment map is a convex polyhedron (the covex hull of the images of the
fixed points of the action).

5 Symplectic reduction

Definition 3 (Symplectic reduction). Let M be a compact symplectic man-
ifold equipped with a Hamiltonian action of a compact Lie group K, with
moment map µ : M → k∗. Assume 0 is a regular value of µ.

M//K := µ−1(0)/K.

The assumption that 0 is a regular value of the moment map is equivalent
to each m ∈ µ−1(0) having a finite stabilizer. It ensures that µ−1(0) is a man-
ifold and G acts locally freely on it. In particular, the symplectic reduction
M//K is (at least) an orbifold, and morover it’s a symplectic orbifold - there
is an induced symplectic structure in M//K.

Example 6 (Pn as symplectic reduction of Cn+1). Let U(1) < C∗ act on
Cn+1 the standard way. The moment map is µ(z) = |z|2 + c (for any c ∈ R).
Choose a = −1, then

Cn+1//U(1) =
|z|2 = 1

U(1)
=
S2n+1

U(1)
= Pn
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Example 7 (Gr(k, n)). Let U(k) act on Hom(Ck,Cn) (by matric multi-
plication). The moment map µ : Hom(Ck,Cn) → u(k)∗ ' u(k) is given
by

µ(A) = i(AA∗ − Id).

The elements of µ−1(0) are unitary k-tuples of vectors in Cn, diviing by the
action of U(k) gives us

Hom(Ck,Cn)//U(k) = Gr(k, n)

There is an important map, called the Kirwan map, associated to the
symplectic reduction, relating the cohomology of the symplectic reduction
with the equivariant cohomology of the original manifold.

Definition 4 (Kirwan map). The Kirwan map

κ : H∗K(M)→ H∗(µ−1(0)/K),

is defined as the composition (π∗)−1 ◦ i∗,

κ : H∗K(M)
(i∗)−−→ H∗K(µ−1(0))

(π∗)−1

−−−−→ H∗(µ−1(0)/K),

where i∗ is the map of equivariant cohomology induced by the inclusion i :
µ−1(0)→M and π∗ is the natural isomorphismH∗K(µ−1(0))→ H∗(µ−1(0)/K)
induced by the quotient map π : µ−1(0)→ µ−1(0)/K.

6 Symplectic reduction vs GIT quotient

Assume, as before, that we are in the following situation:

K < G y X

SU(n+ 1) < SL(n+ 1,C) y Pn

where K < G is a compact real subgroup whose complexification is G, X a
projective variety.

In this situation the action of K in Pn preserves the standard symplectic
form ω (Fubini-Study) and moreover K acts by symplectomorphisms on X.

Theorem 2 (Kempf-Ness). Under all the assumptions above we have:
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1. A G-orbit contains a zero of the moment map iff. it is polystable. It is
unique up to the action of K.

2. A G-orbit is semistable iff. its closure contains a zero of the moment
map, this zero is in the unique polystable orbit orbit in the closure of
the original orbit.

In particular, the GIT quotient X//G and the symplectic reduction X//K are
equal (as sets).
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