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Outline
Non-Archimedean or rigid-analytic geometry is an analog of complex analytic geometry

over non-Archimedean fields, such as the field of p-adic numbers Qp or the field of formal
Laurent series k((t )). It was introduced and formalized by Tate in the 1960s, whose goal was
to understand elliptic curves over a p-adic field by means of a uniformization similar to the
familiar description of an elliptic curve over C as quotient of the complex plane by a lattice. It
has since gained status of a foundational tool in algebraic and arithmetic geometry, and several
other approaches have been found by Raynaud, Berkovich, and Huber. In recent years, it has
become even more prominent with the work of Scholze and Kedlaya in p-adic Hodge the-
ory, as well as the non-Archimedean approach to mirror symmetry proposed by Kontsevich.
That said, we still do not know much about rigid-analytic varieties, and many foundational
questions remain unanswered.

The goal of this lecture course is to introduce the basic notions of rigid-analytic geometry.
We will assume familiarity with schemes.

Course format
(tentative) Two 1hr lectures per week, weekly homework problem sets, no discussion

sessions but participation in office hours encouraged. Oral exam.
The course should be available to all graduate students at IM PAN and all students of the

University of Warsaw, with appropriate ECTS credit.
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Tentative syllabus

0. Outline; topology of p-adic numbers

1. Topological & adic rings

2. Formal schemes I

3. Formal schemes II

4. Tate algebras

5. G-ringed spaces & the admissible topology

6. Rigid-analytic spaces I

7. Rigid-analytic spaces II

8. Examples of rigid-analytic spaces

9. The Tate curve

10. Raynaud’s approach

11. Applications

12. Additional topics:

(a) Huber’s theory of adic spaces
(b) Berkovich spaces
(c) Riemann–Zariski spaces
(d) Nagata’s compactification theorem
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Questions?
Contact Piotr Achinger pachinger@impan.pl
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