Problem Set 2 due Nov 1, 2020

Problem 1. Prove that $\overline{\mathbf{Q}}_p$ is not complete with respect to the unique extension of the *p*-adic norm $|\cdot|_p$ on \mathbf{Q}_p .

Problem 2. Let *A* be a ring and let $A^{\circ} \subseteq A$ be a subring endowed with a topology making it into a topological ring. Show that there exists at most one topology on *A* making it into a topological ring and such that $A^{\circ} \subseteq A$ is an open subring. Show that such a topology need not exist in general.

Problem 3. Show that a valuation ring is Noetherian if and only if it is a discrete valuation ring.

Problem 4. Let $\mathcal{O} = k[[t]]$, and let \mathfrak{X} be the inductive limit of the system of locally ringed spaces

$$\mathfrak{X} = \varinjlim_{n} X_{n}, \quad X_{n} = \operatorname{Spec}(\mathcal{O}/t^{n})[x],$$

which is the ringed space $(|X_0|, \varprojlim_n \mathcal{O}_{X_n})$. Prove that \mathfrak{X} is not a scheme.

Problem 5 (Corrected). Prove Lemma 2.5.2 in its corrected weak form:

Lemma Let $f \in K[X]$ be a polynomial whose Newton polygon has segments both of negative and non-negative slope. Then f is reducible.

(Optional, additional credit) Find a counterexample to the earlier statement: if NP(f) has an inner point of the form $(m, \gamma) \in \mathbb{Z} \times \nu(K^{\times})$ then f is reducible.

Note: The weak form of the lemma is sufficient for the proof of Proposition 2.5.3. In turn, Theorem 2.5.1 implies a stronger form of Lemma 2.5.2: *the Newton polygon of an irreducible polynomial is a single segment.* The lecture notes will soon be updated with both forms of the lemma.

Hint: Consider $\mathbf{Q}_p(x)$ with $x = \sum_{n=1}^{\infty} \zeta_n p^n \in \mathbf{C}_p$ where ζ_n is a primitive root of unity for (n, p) = 1 and $\zeta_n = 1$ otherwise.

Hint: For the second statement, consider $A^{\circ} = k[[t,x]]$ and $A = A^{\circ}[1/t]$ (Thanks to Alex for this example!).

Hint: Use Example 2.3.3 and Figure 2.1 as an inspiration.

Hint: Consider the open subset D(x).

Hint: Use Hensel's lemma in the form as in Proposition 2.A.1(b) with b = 1.