Problem Set 10, part I due Jan 31, 2021

Problem 1. Let $X = \mathbf{A}_k^2 = \operatorname{Spec} k[x, y]$, let 0 = V(x, y) be the origin, and let $X' = \operatorname{Bl}_0 X$. Let $p \in X$ be the closed point in the exceptional divisor which lies on the strict transform of the line $V(x) \subseteq X$, and let $X'' = \operatorname{Bl}_p X'$. Find an ideal $I \subseteq k[x, y]$ for which $X'' = \operatorname{Bl}_{V(I)} X$. Perform a sanity check by computing the exceptional divisor.

Problem 2. Let X be a Noetherian scheme, let $U \subseteq X$ be an open subset with open immersion $j: U \hookrightarrow X$, and let $Y = X \setminus U$ be the complementary closed subset. Let $\operatorname{Coh}_Y X$ denote the full subcategory of $\operatorname{Coh} X$ consisting of coherent sheaves \mathscr{F} which are set-theoretically supported on Y. (This is equivalent to saying that $\mathscr{I}_Y^n \cdot \mathscr{F} = 0$ for $n \gg 0$, or to $j^* \mathscr{F} = 0$.) Let \mathscr{W} be the class of morphisms $f: \mathscr{F} \to \mathscr{F}'$ in $\operatorname{Coh} X$ such that both $\operatorname{ker}(f)$ and $\operatorname{cok}(f)$ belong to $\operatorname{Coh}_Y X$. Prove that j^* induces an equivalence of categories

$$j^*: (\operatorname{Coh} X)[\mathscr{W}^{-1}] \xrightarrow{\sim} \operatorname{Coh} U.$$

Problem 3 (Integral surface of infinite type). I learned the following example from Z. Jelonek.

- (a) Construct a morphism $u: \mathbf{A}_k^2 \to \mathbf{A}_k^2$ which is quasi-finite but not finite.
- (b) Use (a) combined with Noether Normalization and Zariski's Main Theorem to show that for every normal integral affine surface S of finite type over k there exists an open immersion S → S' where S' is a normal integral affine surface of finite type over k and S' ≠ S.
- (c) Use (b) to construct an infinite sequence of non-trivial open immersions

$$S_0 \hookrightarrow S_1 \hookrightarrow S_2 \hookrightarrow \cdots$$

of normal integral affine surfaces of finite type over k. Let $S_{\infty} = \bigcup_{n\geq 0} S_n$, which is a normal surface locally of finite type over k which is separated but not quasi-compact. Show that S_{∞} is not quasi-paracompact. *Hint:* This was partially solved during the lecture. Verify all the details.

Hint: Use [Hartshorne, Ex. II 5.15]. You do not have to solve that exercise. See also Stacks Project, Tag 05Q0.

Confession: Until I saw this example, I used to believe that if a separated scheme locally of finite type over k is not of finite type, then it must have infinitely many irreducible components.