
Term paper topics

Due date: Jan 31, 2021

Guidelines1

Each student should choose a topic based on their own interests, but all topics should be cleared
with me in advance. Some possible topics, some more advanced than others, are suggested below.
I am happy to help students choose a topic through individual consultations.

Format. Your paper should be written using Latex, and should be about 5–10 pages in length.

Style. Write your paper in the style of a research paper. That means that it has an introduction
which explains the main result, and a clearly organized overall structure. The paper should be
centered around one or two main results (as opposed to being a sequence of propositions and
lemmas with no clear start or end).

Additional Requirement. Every paper must contain at least one nontrivial example worked
out in detail.

Suggested topics

Project 1 (Berkovich spaces). Define the Berkovich space associated to an affinoid K -algebra A
(only as a topological space). Explain its relationship with the Riemann–Zariski space of A.

Suggested reading: [14, §2], [8], [21], [12, Appendix II B.3], [18]

Project 2 (Gluing vector bundles). Explain the results of Beauville and Laszlo on formal gluing
of vector bundles on an affine scheme, and the generalization of this result to non-affine schemes
due to Ben-Bassat and Temkin.

Suggested reading: [2], [3]

Project 3 (Adic spaces). Explain the basics of Huber’s theory of adic spaces.

Suggested reading: [6], [13, §1], [16, §2], [12, Appendix II A]

Project 4 (Nagata’s compactification theorem). Give an outline of the proof of Nagata’s com-
pactification theorem using Riemann–Zariski spaces.

Suggested reading: [12, Appendix II E], [17]

Project 5 (Mumford curves). Outline Mumford’s construction of uniformization of curves with
totally degenerate reduction.

Suggested reading: [5, Chapitre 6], [15, §2]
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Project 6 (Raynaud uniformization). Explain Raynaud’s uniformization of abelian varieties
with semiabelian reduction.

Suggested reading: [1], [15, §6]

Project 7 (Perfectoid spaces). Define perfectoid spaces over a perfectoid field and state the tilting
equivalence.

Suggested reading: [16], [11], [4]

Project 8 (Drinfeld’s upper half-plane). Define Drinfeld’s upper half plane and construct its
formal model.

Suggested reading: [5, Chapitre 7]

Project 9 (Non-Archimedean Hopf surface). Explain the construction of the non-Archimedean
Hopf surface following Voskuil, and construct its formal models.

Suggested reading: [20]

Project 10 (Étale cohomology). Study the basics of étale cohomology of rigid-analytic varieties.

Suggested reading: [7], [13, §0], [9]

Project 11 (Toric Riemann–Zariski spaces). Define and study the space of valuative submonoids
of Zr , as a “tropical” or “toric” analog of the Riemann–Zariski space of Gr

m .

Suggested reading: [10]

Project 12 (Resolution of surface singularities). Study Zariski’s original proof of resolution of
singularities for surfaces using valuations.

Suggested reading: [22], [19]
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