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Problem Set 1

Problem 1.1. A norm on a field K is a map | · | : K → [0,∞) such that |x| = 0 iff x = 0,

|xy|= |x| · |y|, and |x + y| ≤ |x|+ |y| for all x, y ∈K . Show that the following are equivalent:

(a) | · | is non-Archimedean, i.e. |x + y| ≤max{|x|, |y|} for x, y ∈K ,

(b) |n| ≤ 1 for all n ∈ Z,

(c) O = {x ∈K : |x| ≤ 1} ⊂K is a subring of K .

Problem 1.2. Show that Zp ' Z[[X ]]/(X − p).

Problem 1.3. Let | · |1, | · |2 : K → [0,∞) be two nontrivial non-Archimedean norms on a

field K . Show that the following are equivalent:

(a) | · |1 and | · |2 define the same topology on K ,

(b) There exists a c > 0 such that | · |1 = | · |c2,

(c) {x ∈K : |x|1 ≤ 1} ⊆ {x ∈K : |x|2 ≤ 1}.

Hint: Show that every finite exten-
sion of C((t )) is of the form C((s))
with s n = t .

Problem 1.4. Describe the algebraic closure of C((t )) and its completion in terms of Lau-

rent series in fractional powers of t (Puiseux series).

Problem 1.5 (Calculus of fractions). LetC be a category and let W ⊆C be a subcategory

containing all isomorphisms and satisfying the two-out-of-three property: if f and g are

composable arrows in C and two of f , g , g f are in W then so is the third. There exists a

functor

C →C [W −1]

which is initial among all functorsC →D sending morphisms in W to isomorphisms; the

category C [W −1] is called the localization of C in W .

We say that (C ,W ) admits a calculus of right fractions if:

a) every pair of solid arrows as below with u ∈ W can be completed to a commutative

square

•v∈W
�� ��
•
��

•
u∈W��

•

with v ∈W , and

b) for every pair of parallel morphisms f , g : X → Y inC and every map u : Y → Z in W

such that u f = u g there exists a map v : W →X in W such that f v = g v.



Prove that if W admits a calculus of right fractions, then the localization C [W −1] admits

the following explicit description: the objects of C [W −1] are the objects of C , and the

morphisms c → c ′ in C [W −1] are equivalence classes of “roofs” c ← c0 → c ′ with the

backwards map in W , where c ← c0 → c ′ and c ← c1 → c ′ are equivalent if there exists a

third c ← c2 → c ′ and maps c0 ← c2 → c1 making the resulting diagram commute. Given

c ← c0→ c ′ and c ′← c1→ c ′′, applying axiom a) to c0→ c ′← c1 gives c0← c2→ c1, and

the composition is c← c0← c2→ c1→ c ′′.

Equivalence:

c2

~~   

�� ��
c0

�� **

c1

tt ��
c c ′

Composition:

c2

~~

�� ��

  
c0

�� ��
c1

��   
c c ′ c ′′
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Hint: Consider Qp (x) with x =
∑∞

n=1 ζn pn ∈ Cp where ζn is
a primitive root of unity for
(n, p) = 1 and ζn = 1 otherwise.

Problem 2.1. Prove that Qp is not complete with respect to the unique extension of the

p-adic norm | · |p on Qp .

Hint: For the second statement,
consider A◦ = k [[t , x ]] and A =

A◦[1/t ] (Thanks to Alex for this
example!).

Problem 2.2. Let A be a ring and let A◦ ⊆A be a subring endowed with a topology making

it into a topological ring. Show that there exists at most one topology on A making it into

a topological ring and such that A◦ ⊆A is an open subring. Show that such a topology need

not exist in general.

Hint: Use Example 2.3.3 and Fig-
ure 2.1 as an inspiration.

Problem 2.3. Show that a valuation ring is Noetherian if and only if it is a discrete valuation

ring.

Hint: Consider the open subset
D(x).

Problem 2.4. Let O = k [[t ]], and let X be the inductive limit of the system of locally ringed

spaces

X= lim−→
n

Xn , Xn = Spec(O /t n)[x ],

which is the ringed space (|X0|, lim←−n
OXn

). Prove that X is not a scheme.

Hint: Use Hensel’s lemma in the
form as in Proposition 2.A.1(b)
with h = 1.

Problem 2.5 (Corrected). Prove Lemma 2.5.2 in its corrected weak form:

Lemma Let f ∈ K [X ] be a polynomial whose Newton polygon has segments both of negative and
non-negative slope. Then f is reducible.

(Optional, additional credit) Find a counterexample to the earlier statement: if NP( f ) has

an inner point of the form (m,γ ) ∈ Z× ν(K×) then f is reducible.

Note: The weak form of the lemma is sufficient for the proof of Proposition 2.5.3. In

turn, Theorem 2.5.1 implies a stronger form of Lemma 2.5.2: the Newton polygon of an

irreducible polynomial is a single segment. The lecture notes will soon be updated with both

forms of the lemma.
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Hint: Ω1
A/K is what you guess it

should be.

Problem 3.1. Let A= K〈X1, . . . ,Xr 〉 be the Tate algebra. Show that the functor
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→ Sets, M 7→ Dercont
K (A, M )



sending a Banach A-module M to the set of all continuous K -linear derivations δ : A→M is

representable. The representing object is denoted by d : A→ Ω1
A/K (by abuse of notation)

and called the module of continuous (Kähler) differentials. Compute Ω1
A/K . Is it the same as

the module of Kähler differentials of A/K?

Problem 3.2. Prove that f ∈K〈X1, . . . ,Xr 〉 is a unit if and only if | f (0)|> | f − f (0)|.

Hint: See Example 2.3.5 and Re-
mark 2.3.6.

Problem 3.3. A nonarchimedean field K is spherically complete if every descending sequence

of closed balls

B1 ⊇ B2 ⊇ · · · ⊇ Bn ⊇ · · ·

has a non-empty intersection. Prove that the completed algebraic closure of C((t )) (PS1

Problem 4) is not spherically complete.

Problem 3.4. Consider the ring (see notes, §2.1, p. 8)

K
D

X ,
t
X

E

:= K〈X ,Y 〉/(X Y − t ).

Prove that it is isomorphic to the following ring of Laurent series

¨

f =
∑

n∈Z

anX n : lim
n→+∞

an = 0, lim
n→−∞

an t n = 0

«

.

Show that

| f | := sup ({|an | : n ≥ 0}∪{|an | · |t |
n : n ≤ 0})

is a Banach algebra norm which is not multiplicative.

Problem 3.5. Let K = Cp , with the absolute value normalized so that |p|= 1/ p. Compute

the radius of convergence of

exp z =
∑

n≥0

zn

n!
∈ K [[z ]].
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Affinoid algebras

Hint: Use the characterization of
a such that |a|sup ≤ 1 proved in the
lecture. Try to reduce to this by
rescaling.

Problem 4.1. Let A be an affinoid K -algebra and let a ∈A. Show that |a|sup < 1 if and only

if lim an = 0. (The latter means that lim |an |α = 0 for some/every residue norm | · |α.)

Sites

Problem 4.2. Construct an equivalence of categories Sh(R)' Shadm(Q).

Hint: Compare with [Vakil, The-
orem 2.5.1]. Its proof uses stalks at
points, which you cannot do here,
so you need a different argument.
If you really get stuck, try [SGA4

Vol. I Exposé III, Théorème 4.1].
You may also find the Stacks
Project helpful.

Problem 4.3 (Sheaves on a base, site version). Let C be a site and let C0 ⊆ C be a full

subcategory closed under fiber products. Suppose that every object c ∈ obC admits a

covering family {cα→ c}α∈I with every cα ∈ obC0. EndowC0 with the induced topology:

a family {cα→ c} is a covering family if it is a covering family inC . Prove that the inclusion

functor induces an equivalence Sh(C )' Sh(C0).



Blowing up

For the following exercises, it will be helpful to brush up on blow-ups, e.g. [Hartshorne,

Chapter II 7, pp. 160–169] and on the valuative criteria of separatedness and properness

[Chapter II 4].

Problem 4.4. Let X be a Noetherian scheme.

(a) Let Y ,Z ⊆ X be closed subschemes and let X ′ = BlY∩Z X be the blow-up of their

intersection. Prove that the strict transforms Ỹ , Z̃ of Y and Z in X ′ are disjoint. = [Hartshorne, Exercise II 7.12]

(b) Suppose that X is integral, and let f ∈K(X ) be a nonzero rational function on X . Prove

that there exists a blow-up X ′ = BlW →X which admits an open cover X ′ = X ′+ ∪X ′−
such that f is a regular function on X ′+ and f −1 is a regular function on X ′−.

Hint: In part (b), use Problem 4 to
construct O , and the valuative cri-
terion of properness to construct a
point of ZR(X ).

Problem 4.5 (Riemann–Zariski space). Let X be a separated integral scheme of finite type

over a field k, and let K be the field of rational functions on X .

(a) Show that nontrivial blow-ups X ′→X of X form a cofiltering subcategoryBX of the

slice category Sch/X . cofiltering = Every two objects
are dominated by a third one, and
every two parallel arrows can be
equalized.

(b) Consider the topological space (called the Riemann–Zariski space)

ZR(X ) = lim←−
X ′→X∈BX

|X ′| ∈ Top.

Construct a bijection between points of ZR(X ) and the set of valuation subringsO ⊆K

such that there exists a dotted arrow making the triangle below commute

SpecK

��

// X

SpecO

<<

(the dotted arrow is unique if it exists, thanks to the valuative criterion of properness).

We say that the valuation subring O ⊆K has center on X .

(c) Endow the set of valuation subrings O ⊆K with center on X with the topology gener-

ated by the subsets

X ( f ) = {O : f ∈ O } for f ∈K .

Prove that the bijection constructed in (b) is a homeomorphism.
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Problem 5.1. Let ϕ : A→ B be a K -algebra homomorphism between affinoid K -algebras.

Suppose that there exists a surjection

β : K〈X1, . . . ,Xr 〉→ B , β(Xi ) = bi



and powerbounded elements a1, . . . ,ar ∈A such that

|bi −ϕ(ai )|β < 1 for i = 1, . . . , r .

Prove that ϕ is surjective. Give an example showing that the assumption that the ai are

powerbounded is necessary.

Problem 5.2. Prove that every covering of SpA by Zariski open subsets is admissible.

Hint: Use Theorem 6.4.1.Problem 5.3 (Inadmissible open). Consider the following open subset of X = SpK〈X ,Y 〉:

U = {|y|= 1}∪
⋃

n≥1

{|x| ≤ |t |n , |y| ≤ |t |1/n}.

Prove that U is not an admissible open.

Hint: Use the classification of affi-
noid subdomains of D given in
Theorem 9.7.2/2 in BGR.

Problem 5.4 (Admissible sheaf with zero stalks). Let D = SpK〈X 〉 be the unit disc over an

algebraically closed non-Archimedean field K . For an affinoid subdomain U ⊆ D , we say

that U is huge if U contains the complement of finitely many open discs of radii ≤ 1. We

set

F (U ) =







Z if U is huge

0 otherwise.

Prove that F is a sheaf for the admissible topology. Note: F 6= 0 but Fx = 0 for every

x ∈D .

Hint: Embed the set ZR(K/k)
into 2K× . Show that with the
induced topology ZR(K/k) be-
comes compact Hausdorff. Com-
pare this topology with the given
topology on ZR(K/k).

Problem 5.5 (The Riemann–Zariski space is quasi-compact). Let k ⊆K be a field extension

and let ZR(K/k) be the space of all valuation subrings of K containing k, with topology

generated by the sets

X ( f ) = {O : f ∈ O }, f ∈K×.

Show that ZR(K/k) is quasi-compact.
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Problem 6.1. Let D = SpK〈X 〉 and let o ∈D be the origin. Prove that the local ring OD ,o

is henselian.

Hint: Since this example is quite
puzzling, here is a toy example
analog. One can define a natu-
ral “admissible topology” on Q \
{
p

2} = Q by considering only
closed rational intervals [a, b ]Q
with

p
2 /∈ [a, b ]. The resulting

map of G-topological spaces Q \
{
p

2} → Q is a continuous bijec-
tion but not an isomorphism.

Problem 6.2. Suppose that K is algebraically closed but not spherically complete. Show

that there exists a descending sequence of open discs D◦n ⊆ D = SpK〈X 〉 with empty in-

tersection. Let Un = D \D◦n , which is an increasing sequence of affinoid subdomains of

D covering D . Show that {Un} is not an admissible cover of D , and that there is a unique

structure of a rigid-analytic space on D with {Un} an admissible open cover. If D ′ is the

resulting space, show that the identity map D ′→D is a morphism of rigid-analytic spaces.

Problem 6.3. A rigid-analytic space X is called quasi-compact if every admissible cover ad-

mits a finite subcover, and quasi-separated if the intersection of two quasi-compact admissible



opens is quasi-compact. Prove that X is quasi-compact if and only if it admits an finite ad-

missible cover by affinoids, and that it is quasi-separated if and only if the intersection of

two affinoid opens admits a finite admissible cover by affinoids.

Problem 6.4. Let D = SpK〈X 〉. Rigorously construct a rigid-analytic space “D with dou-

bled W ,” where (1) W = the origin, (2) W = {|X | < 1}, (3) W = {|X | ≤ |t |}. Which of

those spaces are quasi-separated?

Hint: Prove the case of topological
spaces first.

Problem 6.5. Let X be a G-topological space satisfying (G0), (G1), and (G2), and let Γ be

a group acting freely and continuously on X (meaning that the maps γ : X →X are contin-

uous maps of G-topological spaces for all γ ∈ Γ ). We call this action properly discontinuous

if X admits an admissible cover of the form {γ ·Ui}i∈I ,γ∈Γ with γ ·Ui ∩Ui = ; for γ 6= e

and such that the sets
⋃

γ∈Γ γ ·Ui are admissible for all i ∈ I .

(a) Show that if the action of Γ on X as above is properly discontinuous, then there exists a

natural structure of a G-topological space on the orbit space Y = X /Γ satisfying (G0),

(G1), and (G2) and such that π : X → Y is continuous.

(b) A Γ -equivariant sheaf on X is a sheaf F endowed with isomorphisms uγ : γ ∗F →F
for which the following diagrams commute for all γ ,δ ∈ Γ :

(γδ)∗F
uγδ // F

δ∗(γ ∗F )
δ∗(uγ )

// δ∗F .

uδ

OO

With assumptions and notation as in (a), construct an equivalence of categories between

sheaves on Y and Γ -equivariant sheaves on X .

(c) Let q ∈ K with 0 < |q | < 1. Show that the action of qZ on An,an
K \ 0 by rescaling the

coordinates is properly discontinuous.
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Problem 7.1. Show that finite maps between rigid-analytic spaces are proper.

Hint: Use Chow’s lemma to show
that X an is quasi-compact.

Problem 7.2. Let X be a proper scheme over K . Prove that the associated rigid-analytic

space X an is proper.

Problem 7.3. Let q ∈ K be such that 0 < |q | < 1, and consider the action of the cyclic

group qZ on the punctured plane X = (A2
K \ 0)an by rescaling. Show that the action is

properly discontinuous and describe the quotient Y = X /qZ (called the non-Archimedean

Hopf surface) as a union of four affinoids glued along affinoid subdomains.

Hint: H 0(Y ,Ω1
Y /K ) are just the

qZ-invariant differentials on X .
Problem 7.4. Let Y = (A2

K \ 0)an/qZ be the non-Archimedean Hopf surface. Compute

H 1(Y ,OY ) and H 0(Y ,Ω1
Y /K ).



Hint: Define the functor first on
affinoid algebras, and then pin
down (−)K ′ by a universal prop-
erty.

Problem 7.5. Let K ⊆K ′ be an extension of non-Archimedean fields (that is, the norm on

K ′ restricts to the norm on K). Define a base change functor

(−)K ′ : Rigqs
K →Rigqs

K ′ .
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Problem 8.1. Recall Jacobi triple product formula in the form from the lecture:

∑

n∈Z

(−1)n q
n(n+1)

2 wn = (1−w−1)
∏

m≥1
(1+ q m)(1−wq m)(1−w−1q m).

Here w, q ∈ K× and |q | < 1 in some non-Archimedean field K . Prove the weaker version:

there exists a constant C (q) depending on q such that

∑

n∈Z

(−1)n q
n(n+1)

2 wn = C (q) · (1−w−1)
∏

m≥1
(1−wq m)(1−w−1q m)

for every w ∈K×.

Problem 8.2. Let f (q) = q−1 +
∑

n≥0 an qn ∈ K((t )) be a Laurent series with |an | ≤ 1.

Show that f defines a bijection between the sets {0< |q |< 1} and {|w|> 1}.

Problem 8.3. Let Y = Gan
m /qZ be a Tate curve. Prove that every endomorphism of Y lifts

to an endomorphism Gan
m . Conclude that End(Y )' Z.

Problem 8.4. Let Y = Gan
m /qZ be a Tate curve. For every n ≥ 1, compute the order of the

n-torsion subgroup Y (K)[n].

Problem 8.5. Let k be an algebraically closed field and let B be the category of finitely

generated field extensions K of k. LetP denote the category of projective varieties over k

and dominant maps, and let W ⊆P be the subcategory consisting of all non-trivial blow-

up maps π : X ′→X ∈P . Prove that W admits calculus of right fractions and that the

association X 7→K(X ) induces an equivalence of categories

P [W −1]
∼−→Bop.
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In the following exercises,O is a complete discrete valuation ring with uniformizer t , residue

field k, and fraction field K .

Hint: An example was featured at
the beginning of Lecture 17. To
simplify it further, you can try to
makeX , Y and S affine.

Problem 9.1. Give an example of a diagramX →S ←Y of admissible O -formal schemes

such that the fiber product Z = X ×S Y in the category of O -formal schemes is not

admissible. Compute Zad.



Problem 9.2. Let X be (a) the affine line A1
O with doubled “zero section” V (x), or (b) the

affine line A1
O with doubled “origin in the special fiber” V (x, t ), where x is the coordinate

on A1
O . In both cases, compute the canonical map of rigid-analytic spaces

(ÒX )rig→ (XK )
an

and check that it is not an open immersion.

Problem 9.3. LetX be a formal scheme locally of finite type over O , let X0 be its special

fiber (a scheme locally of finite type over k), let X =Xrig be its rigid-analytic generic fiber,

and let sp : X →X be the specialization map. Let Zi (i ∈ I ) be the irreducible components

of |X0|. Show that the tubes

]Zi [= sp−1(Zi )⊆X (i ∈ I )

(where we identify |X |= |X0|) form an admissible cover of X .

Hint: Use the standard covering
by two affine opens.

Problem 9.4. Construct a flat lifting X1 of X0 = A2
k \ 0 over k [[t ]]/(t 2) for which the

restriction map Γ (X1,OX1
)→ Γ (X0,OX0

) = k [x, y ] is not surjective.

Problem 9.5. Let X = A1
O with coordinate x and let X ′→X be the blowup at the “origin

of the special fiber,” defined by the ideal (t , x). Show that the induced morphism of rigid-

analytic generic fibers of formal completions

cX ′rig→ ÒXrig

is an isomorphism. (This is a basic example of an admissible blowup.)
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Hint: This was partially solved
during the lecture. Verify all the
details.

Problem 10.1. Let X = A2
k = Spec k [x, y ], let 0 = V (x, y) be the origin, and let X ′ =

Bl0 X . Let p ∈ X be the closed point in the exceptional divisor which lies on the strict

transform of the line V (x) ⊆ X , and let X ′′ = Blp X ′. Find an ideal I ⊆ k [x, y ] for which

X ′′ = BlV (I ) X . Perform a sanity check by computing the exceptional divisor.

Hint: Use [Hartshorne, Ex. II
5.15]. You do not have to solve
that exercise. See also Stacks
Project, Tag 05Q0.

Problem 10.2. Let X be a Noetherian scheme, let U ⊆ X be an open subset with open

immersion j : U ,→ X , and let Y = X \U be the complementary closed subset. Let

CohY X denote the full subcategory of CohX consisting of coherent sheavesF which are

set-theoretically supported on Y . (This is equivalent to saying that I n
Y ·F = 0 for n� 0,

or to j ∗F = 0.) Let W be the class of morphisms f : F → F ′ in CohX such that both

ker( f ) and cok( f ) belong to CohY X . Prove that j ∗ induces an equivalence of categories

j ∗ : (CohX )[W−1]
∼−→ Coh U .

https://stacks.math.columbia.edu/tag/05Q0


Problem 10.3 (Integral surface of infinite type). I learned the following example from

Z. Jelonek. Confession: Until I saw this exam-
ple, I used to believe that if a sepa-
rated scheme locally of finite type
over k is not of finite type, then
it must have infinitely many irre-
ducible components.

(a) Construct a morphism u : A2
k →A2

k which is quasi-finite but not finite.

(b) Use (a) combined with Noether Normalization and Zariski’s Main Theorem to show

that for every normal integral affine surface S of finite type over k there exists an open

immersion S ,→ S ′ where S ′ is a normal integral affine surface of finite type over k and

S ′ 6= S.

(c) Use (b) to construct an infinite sequence of non-trivial open immersions

S0 ,→ S1 ,→ S2 ,→ ·· ·

of normal integral affine surfaces of finite type over k. Let S∞ =
⋃

n≥0 Sn , which is a

normal surface locally of finite type over k which is separated but not quasi-compact.

Show that S∞ is not quasi-paracompact.

Hint: The morphism j is not
quasi-compact.

Problem 10.4. Let U = A1,an
K , X = P1,an

K , and let j : U →X be the open immersion. Prove

that there does not exist a formal model U→X of j which is an open immersion.

Hint: Use the finite type covering

X = U0 ∪
⋃

n>0

Un

by
U0 = {|x| ≤ |t |}

and

Un = {|t |
1
n ≤ |x| ≤ |t |

1
n+1 } (n > 1).

Problem 10.5. Construct a formal model of the open unit disc D◦K = {|x|< 1} ⊆D1
K over

K = k((t )). What does the special fiber look like?
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