Problem Sets for Non-Archimedean Geometry

Fall 2020

Problem Set 1

Problem 1.1. A *norm* on a field *K* is a map $|\cdot|: K \to [0, \infty)$ such that |x| = 0 iff x = 0, $|xy| = |x| \cdot |y|$, and $|x + y| \le |x| + |y|$ for all $x, y \in K$. Show that the following are equivalent:

- (a) $|\cdot|$ is non-Archimedean, i.e. $|x + y| \le \max\{|x|, |y|\}$ for $x, y \in K$,
- (b) $|n| \leq 1$ for all $n \in \mathbb{Z}$,
- (c) $\mathcal{O} = \{x \in K : |x| \le 1\} \subset K$ is a subring of K.
- **Problem 1.2.** Show that $\mathbf{Z}_p \simeq \mathbf{Z}[[X]] / (X p)$.

Problem 1.3. Let $|\cdot|_1, |\cdot|_2 \colon K \to [0, \infty)$ be two *nontrivial* non-Archimedean norms on a field *K*. Show that the following are equivalent:

- (a) $|\cdot|_1$ and $|\cdot|_2$ define the same topology on *K*,
- (b) There exists a c > 0 such that $|\cdot|_1 = |\cdot|_2^c$,
- (c) $\{x \in K : |x|_1 \le 1\} \subseteq \{x \in K : |x|_2 \le 1\}.$

Problem 1.4. Describe the algebraic closure of C((t)) and its completion in terms of Laurent series in fractional powers of t (Puiseux series).

Problem 1.5 (Calculus of fractions). Let \mathscr{C} be a category and let $W \subseteq \mathscr{C}$ be a subcategory containing all isomorphisms and satisfying the two-out-of-three property: if f and g are composable arrows in \mathscr{C} and two of f, g, gf are in W then so is the third. There exists a functor

$$\mathscr{C} \to \mathscr{C}[W^{-1}]$$

which is initial among all functors $\mathscr{C} \to \mathscr{D}$ sending morphisms in W to isomorphisms; the category $\mathscr{C}[W^{-1}]$ is called the *localization* of \mathscr{C} in W.

We say that (\mathcal{C}, W) admits a *calculus of right fractions* if:

a) every pair of solid arrows as below with $u \in W$ can be completed to a commutative square

with $v \in W$, and

b) for every pair of parallel morphisms $f, g: X \to Y$ in \mathscr{C} and every map $u: Y \to Z$ in W such that uf = ug there exists a map $v: W \to X$ in W such that fv = gv.

Hint: Show that every finite extension of C((t)) is of the form C((s)) with $s^n = t$.

Equivalence:

Prove that if W admits a calculus of right fractions, then the localization $\mathscr{C}[W^{-1}]$ admits the following explicit description: the objects of $\mathscr{C}[W^{-1}]$ are the objects of \mathscr{C} , and the morphisms $c \to c'$ in $\mathscr{C}[W^{-1}]$ are equivalence classes of "roofs" $c \leftarrow c_0 \to c'$ with the backwards map in W, where $c \leftarrow c_0 \to c'$ and $c \leftarrow c_1 \to c'$ are equivalent if there exists a third $c \leftarrow c_2 \to c'$ and maps $c_0 \leftarrow c_2 \to c_1$ making the resulting diagram commute. Given $c \leftarrow c_0 \to c'$ and $c' \leftarrow c_1 \to c''$, applying axiom a) to $c_0 \to c' \leftarrow c_1$ gives $c_0 \leftarrow c_2 \to c_1$, and the composition is $c \leftarrow c_0 \leftarrow c_2 \to c_1 \to c''$.

Problem Set 2

Problem 2.1. Prove that $\overline{\mathbf{Q}}_p$ is not complete with respect to the unique extension of the *p*-adic norm $|\cdot|_p$ on \mathbf{Q}_p .

Problem 2.2. Let *A* be a ring and let $A^{\circ} \subseteq A$ be a subring endowed with a topology making it into a topological ring. Show that there exists at most one topology on *A* making it into a topological ring and such that $A^{\circ} \subseteq A$ is an open subring. Show that such a topology need not exist in general.

Problem 2.3. Show that a valuation ring is Noetherian if and only if it is a discrete valuation ring.

Problem 2.4. Let $\mathcal{O} = k[[t]]$, and let \mathfrak{X} be the inductive limit of the system of locally ringed spaces

$$\mathfrak{X} = \varinjlim_{n} X_{n}, \quad X_{n} = \operatorname{Spec}(\mathcal{O}/t^{n})[x]$$

which is the ringed space $(|X_0|, \varprojlim_n \mathcal{O}_{X_n})$. Prove that \mathfrak{X} is not a scheme.

Problem 2.5 (Corrected). Prove Lemma 2.5.2 in its corrected weak form:

Lemma Let $f \in K[X]$ be a polynomial whose Newton polygon has segments both of negative and non-negative slope. Then f is reducible.

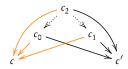
(Optional, additional credit) Find a counterexample to the earlier statement: if NP(f) has an inner point of the form $(m, \gamma) \in \mathbb{Z} \times v(K^{\times})$ then f is reducible.

Note: The weak form of the lemma is sufficient for the proof of Proposition 2.5.3. In turn, Theorem 2.5.1 implies a stronger form of Lemma 2.5.2: *the Newton polygon of an irreducible polynomial is a single segment*. The lecture notes will soon be updated with both forms of the lemma.

Problem Set 3

Problem 3.1. Let $A = K(X_1, ..., X_r)$ be the Tate algebra. Show that the functor

 $\begin{cases} Banach A-modules \\ + \text{ continuous} \\ A-module \text{ homomorphisms} \end{cases} \rightarrow \text{Sets,} \quad M \mapsto \text{Der}_{K}^{\text{cont}}(A, M) \end{cases}$



Composition:

Hint: Consider $\mathbf{Q}_p(x)$ with $x = \sum_{n=1}^{\infty} \zeta_n p^n \in \mathbf{C}_p$ where ζ_n is a primitive root of unity for (n, p) = 1 and $\zeta_n = 1$ otherwise.

Hint: For the second statement, consider $A^{\circ} = k[[t,x]]$ and $A = A^{\circ}[1/t]$ (Thanks to Alex for this example!).

Hint: Use Example 2.3.3 and Figure 2.1 as an inspiration.

Hint: Consider the open subset D(x).

Hint: Use Hensel's lemma in the form as in Proposition 2.A.1(b) with h = 1.

Hint: $\Omega^1_{A/K}$ is what you guess it should be.

sending a Banach A-module M to the set of all continuous K-linear derivations $\delta: A \to M$ is representable. The representing object is denoted by $d: A \to \Omega^1_{A/K}$ (by abuse of notation) and called the module of *continuous (Kähler) differentials*. Compute $\Omega^1_{A/K}$. Is it the same as the module of Kähler differentials of A/K?

Problem 3.2. Prove that $f \in K(X_1, ..., X_r)$ is a unit if and only if |f(0)| > |f - f(0)|.

Problem 3.3. A nonarchimedean field *K* is *spherically complete* if every descending sequence of closed balls

$$B_1 \supseteq B_2 \supseteq \cdots \supseteq B_n \supseteq \cdots$$

has a non-empty intersection. Prove that the completed algebraic closure of C((t)) (PS1 Problem 4) is not spherically complete.

Problem 3.4. Consider the ring (see notes, §2.1, p. 8)

$$K\left\langle X, \frac{t}{X}\right\rangle := K\langle X, Y \rangle / (XY-t).$$

Prove that it is isomorphic to the following ring of Laurent series

$$\left\{f = \sum_{n \in \mathbb{Z}} a_n X^n : \lim_{n \to +\infty} a_n = 0, \lim_{n \to -\infty} a_n t^n = 0\right\}$$

Show that

$$|f| := \sup \left(\{ |a_n| : n \ge 0 \} \cup \{ |a_n| \cdot |t|^n : n \le 0 \} \right)$$

is a Banach algebra norm which is not multiplicative.

Problem 3.5. Let $K = C_p$, with the absolute value normalized so that |p| = 1/p. Compute the radius of convergence of

$$\exp z = \sum_{n \ge 0} \frac{z^n}{n!} \quad \in \quad K[[z]].$$

Problem Set 4

Affinoid algebras

Problem 4.1. Let *A* be an affinoid *K*-algebra and let $a \in A$. Show that $|a|_{sup} < 1$ if and only if $\lim a^n = 0$. (The latter means that $\lim |a^n|_{\alpha} = 0$ for some/every residue norm $|\cdot|_{\alpha}$.)

Sites

Problem 4.2. Construct an equivalence of categories $Sh(\mathbf{R}) \simeq Sh^{adm}(\mathbf{Q})$.

Problem 4.3 (Sheaves on a base, site version). Let \mathscr{C} be a site and let $\mathscr{C}_0 \subseteq \mathscr{C}$ be a full subcategory closed under fiber products. Suppose that every object $c \in \operatorname{ob} \mathscr{C}$ admits a covering family $\{c_{\alpha} \to c\}_{\alpha \in I}$ with every $c_{\alpha} \in \operatorname{ob} \mathscr{C}_0$. Endow \mathscr{C}_0 with the induced topology: a family $\{c_{\alpha} \to c\}$ is a covering family if it is a covering family in \mathscr{C} . Prove that the inclusion functor induces an equivalence $\operatorname{Sh}(\mathscr{C}) \simeq \operatorname{Sh}(\mathscr{C}_0)$.

Hint: Use the characterization of *a* such that $|a|_{sup} \leq 1$ proved in the lecture. Try to reduce to this by rescaling.

Hint: Compare with [Vakil, Theorem 2.5.1]. Its proof uses stalks at points, which you cannot do here, so you need a different argument. If you really get stuck, try [SGA4

Vol. I Exposé III, Théorème 4.1]. You may also find the Stacks Project helpful.

Hint: See Example 2.3.5 and Remark 2.3.6.

Blowing up

For the following exercises, it will be helpful to brush up on blow-ups, e.g. [Hartshorne, Chapter II 7, pp. 160–169] and on the valuative criteria of separatedness and properness [Chapter II 4].

Problem 4.4. Let *X* be a Noetherian scheme.

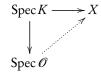
- (a) Let $Y, Z \subseteq X$ be closed subschemes and let $X' = Bl_{Y \cap Z}X$ be the blow-up of their intersection. Prove that the strict transforms \tilde{Y}, \tilde{Z} of Y and Z in X' are disjoint.
- (b) Suppose that X is integral, and let $f \in K(X)$ be a nonzero rational function on X. Prove that there exists a blow-up $X' = Bl_W \to X$ which admits an open cover $X' = X'_+ \cup X'_$ such that f is a regular function on X'_+ and f^{-1} is a regular function on X'_- .

Problem 4.5 (Riemann–Zariski space). Let X be a separated integral scheme of finite type over a field k, and let K be the field of rational functions on X.

- (a) Show that nontrivial blow-ups X'→X of X form a cofiltering subcategory 𝔅_X of the slice category Sch_{/X}.
- (b) Consider the topological space (called the Riemann-Zariski space)

$$\mathbf{ZR}(X) = \varprojlim_{X' \to X \in \mathscr{B}_X} |X'| \quad \in \quad \mathbf{Top}$$

Construct a bijection between points of $\mathbb{ZR}(X)$ and the set of valuation subrings $\mathscr{O} \subseteq K$ such that there exists a dotted arrow making the triangle below commute



(the dotted arrow is unique if it exists, thanks to the valuative criterion of properness). We say that the valuation subring $\mathscr{O} \subseteq K$ has center on X.

(c) Endow the set of valuation subrings $\mathcal{O} \subseteq K$ with center on X with the topology generated by the subsets

$$X(f) = \{ \mathcal{O} : f \in \mathcal{O} \} \text{ for } f \in K.$$

Prove that the bijection constructed in (b) is a homeomorphism.

Problem Set 5

Problem 5.1. Let $\varphi: A \to B$ be a *K*-algebra homomorphism between affinoid *K*-algebras. Suppose that there exists a surjection

$$\beta: K\langle X_1, \ldots, X_r \rangle \to B, \quad \beta(X_i) = b_i$$

= [Hartshorne, Exercise II 7.12]

Hint: In part (b), use Problem 4 to construct O, and the valuative criterion of properness to construct a point of $\mathbb{ZR}(X)$.

cofiltering = Every two objects are dominated by a third one, and every two parallel arrows can be equalized. and powerbounded elements $a_1, \ldots, a_r \in A$ such that

$$|b_i - \varphi(a_i)|_{\beta} < 1$$
 for $i = 1, \dots, r$.

Prove that φ is surjective. Give an example showing that the assumption that the a_i are powerbounded is necessary.

Problem 5.2. Prove that every covering of SpA by Zariski open subsets is admissible.

Problem 5.3 (Inadmissible open). Consider the following open subset of $X = \text{Sp}K\langle X, Y \rangle$:

$$U = \{|y| = 1\} \cup \bigcup_{n \ge 1} \{|x| \le |t|^n, |y| \le |t|^{1/n}\}.$$

Prove that U is not an admissible open.

Problem 5.4 (Admissible sheaf with zero stalks). Let $D = \operatorname{Sp} K\langle X \rangle$ be the unit disc over an algebraically closed non-Archimedean field K. For an affinoid subdomain $U \subseteq D$, we say that U is *huge* if U contains the complement of finitely many open discs of radii ≤ 1 . We set

$$\mathscr{F}(U) = \begin{cases} \mathbf{Z} & \text{if } U \text{ is huge} \\ \mathbf{0} & \text{otherwise.} \end{cases}$$

Prove that \mathscr{F} is a sheaf for the admissible topology. Note: $\mathscr{F} \neq 0$ but $\mathscr{F}_x = 0$ for every $x \in D$.

Problem 5.5 (The Riemann–Zariski space is quasi-compact). Let $k \subseteq K$ be a field extension and let $\mathbb{ZR}(K/k)$ be the space of all valuation subrings of K containing k, with topology generated by the sets

$$X(f) = \{ \mathcal{O} : f \in \mathcal{O} \}, \quad f \in K^{\times}$$

Show that $\mathbf{ZR}(K/k)$ is quasi-compact.

Problem Set 6

Problem 6.1. Let $D = \operatorname{Sp} K\langle X \rangle$ and let $o \in D$ be the origin. Prove that the local ring $\mathcal{O}_{D,o}$ is henselian.

Problem 6.2. Suppose that K is algebraically closed but not spherically complete. Show that there exists a descending sequence of open discs $D_n^{\circ} \subseteq D = \operatorname{Sp} K\langle X \rangle$ with empty intersection. Let $U_n = D \setminus D_n^{\circ}$, which is an increasing sequence of affinoid subdomains of D covering D. Show that $\{U_n\}$ is not an admissible cover of D, and that there is a unique structure of a rigid-analytic space on D with $\{U_n\}$ an admissible open cover. If D' is the resulting space, show that the identity map $D' \to D$ is a morphism of rigid-analytic spaces.

Problem 6.3. A rigid-analytic space *X* is called *quasi-compact* if every admissible cover admits a finite subcover, and *quasi-separated* if the intersection of two quasi-compact admissible

Hint: Embed the set $\mathbf{ZR}(K/k)$

Hint: Use the classification of affinoid subdomains of D given in

Theorem 9.7.2/2 in BGR.

into $2^{K^{\times}}$. Show that with the induced topology $\mathbf{ZR}(K/k)$ becomes compact Hausdorff. Compare this topology with the given topology on $\mathbf{ZR}(K/k)$.

Hint: Since this example is quite puzzling, here is a toy example analog. One can define a natural "admissible topology" on $\mathbf{Q} \setminus \{\sqrt{2}\} = \mathbf{Q}$ by considering only closed rational intervals $[a, b]_{\mathbf{Q}}$ with $\sqrt{2} \notin [a, b]$. The resulting map of *G*-topological spaces $\mathbf{Q} \setminus \{\sqrt{2}\} \rightarrow \mathbf{Q}$ is a continuous bijection but not an isomorphism.

Hint: Use Theorem 6.4.1.

opens is quasi-compact. Prove that X is quasi-compact if and only if it admits an finite admissible cover by affinoids, and that it is quasi-separated if and only if the intersection of two affinoid opens admits a finite admissible cover by affinoids.

Problem 6.4. Let $D = \text{Sp}K\langle X \rangle$. Rigorously construct a rigid-analytic space "D with doubled W," where (1) W = the origin, (2) $W = \{|X| < 1\}$, (3) $W = \{|X| \le |t|\}$. Which of those spaces are quasi-separated?

Problem 6.5. Let X be a G-topological space satisfying (G_0) , (G_1) , and (G_2) , and let Γ be a group acting freely and continuously on X (meaning that the maps $\gamma: X \to X$ are continuous maps of G-topological spaces for all $\gamma \in \Gamma$). We call this action *properly discontinuous* if X admits an admissible cover of the form $\{\gamma \cdot U_i\}_{i \in I, \gamma \in \Gamma}$ with $\gamma \cdot U_i \cap U_i = \emptyset$ for $\gamma \neq e$ and such that the sets $\bigcup_{\gamma \in \Gamma} \gamma \cdot U_i$ are admissible for all $i \in I$.

- (a) Show that if the action of Γ on X as above is properly discontinuous, then there exists a natural structure of a G-topological space on the orbit space $Y = X/\Gamma$ satisfying (G_0) , (G_1) , and (G_2) and such that $\pi: X \to Y$ is continuous.
- (b) A Γ -equivariant sheaf on X is a sheaf \mathscr{F} endowed with isomorphisms $u_{\gamma} \colon \gamma^* \mathscr{F} \to \mathscr{F}$ for which the following diagrams commute for all $\gamma, \delta \in \Gamma$:

With assumptions and notation as in (a), construct an equivalence of categories between sheaves on Y and Γ -equivariant sheaves on X.

(c) Let $q \in K$ with 0 < |q| < 1. Show that the action of $q^{\mathbb{Z}}$ on $\mathbf{A}_{K}^{n,an} \setminus 0$ by rescaling the coordinates is properly discontinuous.

Problem Set 7

Problem 7.1. Show that finite maps between rigid-analytic spaces are proper.

Problem 7.2. Let X be a proper scheme over K. Prove that the associated rigid-analytic space X^{an} is proper.

Problem 7.3. Let $q \in K$ be such that 0 < |q| < 1, and consider the action of the cyclic group $q^{\mathbb{Z}}$ on the punctured plane $X = (\mathbf{A}_{K}^{2} \setminus 0)^{\mathrm{an}}$ by rescaling. Show that the action is properly discontinuous and describe the quotient $Y = X/q^{\mathbb{Z}}$ (called the non-Archimedean Hopf surface) as a union of four affinoids glued along affinoid subdomains.

Problem 7.4. Let $Y = (\mathbf{A}_K^2 \setminus 0)^{\mathrm{an}}/q^{\mathbb{Z}}$ be the non-Archimedean Hopf surface. Compute $H^1(Y, \mathcal{O}_Y)$ and $H^0(Y, \Omega^1_{Y/K})$.

Hint: Prove the case of topological spaces first.

Hint: Use Chow's lemma to show that X^{an} is quasi-compact.

Hint: $H^0(Y, \Omega^1_{Y/K})$ are just the $q^{\mathbf{Z}}$ -invariant differentials on X.

Problem 7.5. Let $K \subseteq K'$ be an extension of non-Archimedean fields (that is, the norm on K' restricts to the norm on K). Define a base change functor

$$(-)_{K'}$$
: $\operatorname{Rig}_{K}^{\operatorname{qs}} \to \operatorname{Rig}_{K'}^{\operatorname{qs}}$

Problem Set 8

Problem 8.1. Recall Jacobi triple product formula in the form from the lecture:

$$\sum_{n \in \mathbb{Z}} (-1)^n q^{\frac{n(n+1)}{2}} w^n = (1-w^{-1}) \prod_{m \ge 1} (1+q^m) (1-wq^m) (1-w^{-1}q^m).$$

Here $w, q \in K^{\times}$ and |q| < 1 in some non-Archimedean field *K*. Prove the weaker version: there exists a constant C(q) depending on *q* such that

$$\sum_{n \in \mathbf{Z}} (-1)^n q^{\frac{n(n+1)}{2}} w^n = C(q) \cdot (1 - w^{-1}) \prod_{m \ge 1} (1 - wq^m) (1 - w^{-1}q^m)$$

for every $w \in K^{\times}$.

Problem 8.2. Let $f(q) = q^{-1} + \sum_{n \ge 0} a_n q^n \in K((t))$ be a Laurent series with $|a_n| \le 1$. Show that f defines a bijection between the sets $\{0 < |q| < 1\}$ and $\{|w| > 1\}$.

Problem 8.3. Let $Y = \mathbf{G}_m^{\mathrm{an}}/q^{\mathbf{Z}}$ be a Tate curve. Prove that every endomorphism of Y lifts to an endomorphism $\mathbf{G}_m^{\mathrm{an}}$. Conclude that $\operatorname{End}(Y) \simeq \mathbf{Z}$.

Problem 8.4. Let $Y = \mathbf{G}_m^{\mathrm{an}}/q^{\mathbf{Z}}$ be a Tate curve. For every $n \ge 1$, compute the order of the *n*-torsion subgroup $Y(\overline{K})[n]$.

Problem 8.5. Let k be an algebraically closed field and let \mathscr{B} be the category of finitely generated field extensions K of k. Let \mathscr{P} denote the category of projective varieties over k and dominant maps, and let $W \subseteq \mathscr{P}$ be the subcategory consisting of all non-trivial blow-up maps $\pi: X' \to X \in \mathscr{P}$. Prove that W admits calculus of right fractions and that the association $X \mapsto K(X)$ induces an equivalence of categories

$$\mathscr{P}[W^{-1}] \xrightarrow{\sim} \mathscr{B}^{\mathrm{op}}.$$

Problem Set 9

In the following exercises, O is a complete discrete valuation ring with uniformizer t, residue field k, and fraction field K.

Problem 9.1. Give an example of a diagram $\mathscr{X} \to \mathscr{S} \leftarrow \mathscr{Y}$ of admissible \mathscr{O} -formal schemes such that the fiber product $\mathscr{Z} = \mathscr{X} \times_{\mathscr{S}} \mathscr{Y}$ in the category of \mathscr{O} -formal schemes is not admissible. Compute \mathscr{Z}_{ad} .

Hint: An example was featured at the beginning of Lecture 17. To simplify it further, you can try to make \mathcal{X}, \mathcal{Y} and \mathcal{S} affine.

Hint: Define the functor first on affinoid algebras, and then pin down $(-)_{K'}$ by a universal property.

Problem 9.2. Let X be (a) the affine line $\mathbf{A}^1_{\mathcal{O}}$ with doubled "zero section" V(x), or (b) the affine line $\mathbf{A}^1_{\mathcal{O}}$ with doubled "origin in the special fiber" V(x, t), where x is the coordinate on $\mathbf{A}^1_{\mathcal{O}}$. In both cases, compute the canonical map of rigid-analytic spaces

$$(\widehat{X})_{\mathrm{rig}} \to (X_K)^{\mathrm{an}}$$

and check that it is not an open immersion.

Problem 9.3. Let \mathscr{X} be a formal scheme locally of finite type over \mathscr{O} , let X_0 be its special fiber (a scheme locally of finite type over k), let $X = \mathscr{X}_{rig}$ be its rigid-analytic generic fiber, and let sp: $X \to \mathscr{X}$ be the specialization map. Let Z_i ($i \in I$) be the irreducible components of $|X_0|$. Show that the tubes

$$]Z_i[=\operatorname{sp}^{-1}(Z_i)\subseteq X \quad (i\in I)$$

(where we identify $|\mathscr{X}| = |X_0|$) form an admissible cover of X.

Problem 9.4. Construct a flat lifting X_1 of $X_0 = \mathbf{A}_k^2 \setminus 0$ over $k[[t]]/(t^2)$ for which the restriction map $\Gamma(X_1, \mathcal{O}_{X_1}) \to \Gamma(X_0, \mathcal{O}_{X_0}) = k[x, y]$ is not surjective.

Problem 9.5. Let $X = \mathbf{A}_{\mathcal{O}}^1$ with coordinate x and let $X' \to X$ be the blowup at the "origin of the special fiber," defined by the ideal (t, x). Show that the induced morphism of rigid-analytic generic fibers of formal completions

$$\widehat{X'}_{rig} \to \widehat{X}_{rig}$$

is an isomorphism. (This is a basic example of an admissible blowup.)

Problem Set 10

Problem 10.1. Let $X = \mathbf{A}_k^2 = \operatorname{Spec} k[x, y]$, let 0 = V(x, y) be the origin, and let $X' = \operatorname{Bl}_0 X$. Let $p \in X$ be the closed point in the exceptional divisor which lies on the strict transform of the line $V(x) \subseteq X$, and let $X'' = \operatorname{Bl}_p X'$. Find an ideal $I \subseteq k[x, y]$ for which $X'' = \operatorname{Bl}_{V(I)} X$. Perform a sanity check by computing the exceptional divisor.

Problem 10.2. Let X be a Noetherian scheme, let $U \subseteq X$ be an open subset with open immersion $j: U \hookrightarrow X$, and let $Y = X \setminus U$ be the complementary closed subset. Let $\operatorname{Coh}_Y X$ denote the full subcategory of $\operatorname{Coh} X$ consisting of coherent sheaves \mathscr{F} which are set-theoretically supported on Y. (This is equivalent to saying that $\mathscr{I}_Y^n \cdot \mathscr{F} = 0$ for $n \gg 0$, or to $j^* \mathscr{F} = 0$.) Let \mathscr{W} be the class of morphisms $f: \mathscr{F} \to \mathscr{F}'$ in $\operatorname{Coh} X$ such that both $\operatorname{ker}(f)$ and $\operatorname{cok}(f)$ belong to $\operatorname{Coh}_Y X$. Prove that j^* induces an equivalence of categories

$$j^* \colon (\operatorname{Coh} X)[\mathscr{W}^{-1}] \xrightarrow{\sim} \operatorname{Coh} U$$

Hint: Use the standard covering by two affine opens.

Hint: This was partially solved during the lecture. Verify all the details.

Hint: Use [Hartshorne, Ex. II 5.15]. You do not have to solve that exercise. See also Stacks Project, Tag 05Q0.

Problem 10.3 (Integral surface of infinite type). I learned the following example from Z. Jelonek.

- (a) Construct a morphism $u: \mathbf{A}_k^2 \to \mathbf{A}_k^2$ which is quasi-finite but not finite.
- (b) Use (a) combined with Noether Normalization and Zariski's Main Theorem to show that for every normal integral affine surface S of finite type over k there exists an open immersion S → S' where S' is a normal integral affine surface of finite type over k and S' ≠ S.
- (c) Use (b) to construct an infinite sequence of non-trivial open immersions

$$S_0 \hookrightarrow S_1 \hookrightarrow S_2 \hookrightarrow \cdots$$

of normal integral affine surfaces of finite type over k. Let $S_{\infty} = \bigcup_{n \ge 0} S_n$, which is a normal surface locally of finite type over k which is separated but not quasi-compact. Show that S_{∞} is not quasi-paracompact.

Problem 10.4. Let $U = \mathbf{A}_{K}^{1,\text{an}}$, $X = \mathbf{P}_{K}^{1,\text{an}}$, and let $j: U \to X$ be the open immersion. Prove that there does not exist a formal model $\mathfrak{U} \to \mathfrak{X}$ of j which is an open immersion.

Problem 10.5. Construct a formal model of the open unit disc $\mathbf{D}_{K}^{\circ} = \{|x| < 1\} \subseteq \mathbf{D}_{K}^{1}$ over K = k((t)). What does the special fiber look like?

Confession: Until I saw this example, I used to believe that if a separated scheme locally of finite type over k is not of finite type, then it must have infinitely many irreducible components.

Hint: The morphism j is not quasi-compact.

Hint: Use the finite type covering

$$X = U_0 \cup \bigcup_{n > 0} U_n$$

 $U_0 = \{|x| \le |t|\}$

and

by

$$U_n = \{ |t|^{\frac{1}{n}} \le |x| \le |t|^{\frac{1}{n+1}} \} \quad (n > 1).$$