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NON-ARCHIMEDEAN or rigid-analytic geometry is an analog of com-
plex analytic geometry over non-Archimedean fields, such as the field
of p-adic numbers Qp or the field of formal Laurent series k((t )). It was
introduced and formalized by Tate in the 1960s, whose goal was to under-
stand elliptic curves over a p-adic field by means of a uniformization simi-
lar to the familiar description of an elliptic curve over C as quotient of the
complex plane by a lattice. It has since gained status of a foundational tool
in algebraic and arithmetic geometry, and several other approaches have
been found by Raynaud, Berkovich, and Huber. In recent years, it has
become even more prominent with the work of Scholze and Kedlaya in
p-adic Hodge theory, as well as the non-Archimedean approach to mirror
symmetry proposed by Kontsevich. That said, we still do not know much
about rigid-analytic varieties, and many foundational questions remain
unanswered.

The goal of this lecture course is to introduce the basic notions of
rigid-analytic geometry. We will assume familiarity with schemes.

Problem sets and other materials related to the course are available at

http://achinger.impan.pl/lecture20f.html

Our basic reference is the book Lectures on Formal and Rigid Geometry by
Siegried Bosch. More references are found in the text.

This document uses the tufte-book LATEXdocument class based on the
design of Edward Tufte’s books; some typesetting tricks were shamelessly
stolen from Eric Peterson’s lecture notes.

These notes owe a lot to the generous help of Alex Youcis.

http://achinger.impan.pl/lecture20f.html
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1
Two interpretations of non-Archimedean geometry

THE p -ADIC NUMBERS Qp are usually defined either as the completion
of the rational numbers Q with respect to the p-adic absolute value

�

�

�

�

a
b

�

�

�

�

p
= pordp b−ordp a , (1.1)

or as the fraction field of the p-adic integers Zp defined as the inverse limit

Zp = lim←−
n

Z/pnZ. (1.2)

We can refer to (1.1) as the “metric” or “analytic” point of view, while
(1.2) represents a more “algebraic” (or “formal”) perspective. 1 1 We choose to ignore here the (rather

useless) definition of p-adic numbers in
terms of base- p digit expansions.

Both interpretations have their advantages and drawbacks. The metric
approach is admittedly closer to one’s intuition, and allows one to employ
right away the powerful tools of topology and analysis. However, the
topology of the p-adic numbers is quite pathological: Qp is a totally
disconnected topological space. This makes it difficult to proceed by
analogy with real or complex analysis.

The algebraic approach allows us to reduce questions about Qp to pure
algebra over the rather simple rings Z/pnZ. One therefore has commu-
tative algebra and algebraic geometry at their disposal, which, in turn,
allows one to more easily make sound and precise arguments. The down-
side: the relationship between objects over Qp and over Z/pnZ can often
be extremely convoluted.

TO ACHIEVE p -ADIC ENLIGHTENMENT, one needs a good grasp of
both2, as well as a means of switching between the two with ease. The 2 It seems as though we must use sometimes

the one theory and sometimes the other,
while at times we may use either. We are
faced with a new kind of difficulty. We
have two contradictory pictures of reality;
separately neither of them fully explains the
phenomena of light, but together they do.

A. Einstein, L. Infeld The Evolution of
Physics

goal of these lectures is to explain how to do p-adic geometry (or, more
generally, non-Archimedean geometry3) by combining the analytic and

3 More precisely, rigid (or rigid-analytic)
geometry, whose strange name we will
justify later on.

the algebraic approaches. Roughly speaking, the first will be represented
by Tate’s notion of rigid analytic varieties, and the second by Raynaud’s
approach using formal schemes.

WE WILL NOW GO BEYOND p-adic numbers and fix the notation
which we will use most of the time. By a non-Archimedean field we mean
a field K equipped with a non-Archimedean norm, which by definition is
a function

| · | : K→ [0,∞)
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such that

1. |x|= 0 if and only if x = 0,

2. |xy|= |x| · |y|,
3. |x + y| ≤max(|x|, |y|).
We also assume that |x| 6= 1 for some x 6= 0 (i.e. that | · | is nontrivial), and
that K is complete with respect to (the metric defined by) the norm. 4 4 In some sources, non-Archimedean fields

are not assumed to be complete and/or
nontrivially valued.

The third axiom, stronger than the triangle inequality |x+y| ≤ |x|+|y|,
is what makes the field non-Archimedean. It implies that the subset

O = {x ∈K such that |x| ≤ 1}
is a subring of K , called the valuation ring. It is local with maximal ideal

m= {x ∈K such that |x|< 1}.
We denote the residue field O /m by k.

Let t ∈ m be a nonzero element.5 Completeness of K is equivalent to 5 We call such a t a pseudouniformizer.

the fact that the natural map

O → lim←−
n

O /t nO

is an isomorphism. The field K can be recovered as the fraction field of O ,
in fact it is the localization K = O [ 1

t ]. The inverse limit above carries the
inverse limit topology (with the O /t nO being equipped with the discrete
topology), and the isomorphism is an isomorphism of topological rings if
O has the metric topology induced by the norm | · |. The topology on K
is the unique one with respect to which O is an open subring. This implies
that K is encoded as a topological field by the inverse system above.

The basic examples are complete discrete valuation fields (cdvf), which
can be characterized as those K as above for which the maximal ideal m
is principal, so that O is a complete discrete valuation ring (cdvr) with
maximal ideal m, residue field k = O /m, and fraction field K . Naturally,
our main example is

O = Zp , K =Qp , m= (p), k = Fp ,

and another one is the Laurent series field (over a base field k)6 6 Intuition: k((t )) is the field of functions
on the “infinitesimal punctured disc”

Spec k((t )) = Spec k[[t ]] \ {t = 0}.O = k[[t ]] := lim←−
n

k[t ]/(t n), K = k((t )) := O
�

1
t

�

.

The characteristic of k is called the residue characteristic of K . If it is
equal to the characteristic to K , we say that K is of equal characteristic,
otherwise it is of mixed characteristic. In the latter case, K has characteris-
tic zero. Thus Qp and its normed extensions are of mixed characteristic,
and the fields k((t )) have equal characteristic. In fact, every cdvf of equal
characteristic is of the form k((t )).

In general, we will have to work with non-Archimedean fields K which
are not cdvf’s, in which case the valuation ring O is non-Noetherian. In-
deed, it is often useful to consider K algebraically closed, while a complete
discrete valuation field is never algebraically closed.7

7 Consider a generator of m, i.e. an
element of valuation one. Does it have a
square root in K?
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1.1 First example: the unit disc

The study of schemes begins with the case of the affine line over a base
field k

A1
k = Spec k[x],

from which one obtains An
k by direct product, then affine schemes of

finite type over k by taking closed subschemes X ⊆ An
k , and finally

schemes locally of finite type over k by gluing. If k is algebraically closed,
then by Hilbert’s Nullstellensatz, closed points of A1

k are in bijection
with k.

In non-Archimedean geometry over an algebraically closed8 non- 8 We make this assumption only for
simplicity and only in this introduction.Archimedean field K , similar role is played by the closed unit disc

D1
K = {x ∈K : |x| ≤ 1}.

Proceeding by analogy with scheme theory, we start with the algebra of
functions on D1

K , which should consist of power series f =
∑

n≥0 an xn

which converge for |x| ≤ 1. An easy check shows that a series in K con-
verges if and only if its terms tend to zero. We conclude that we want the
ring of “holomorphic functions” on D1

K to be

K〈X 〉=
¨

∑

n≥0

anX n ∈K[[X ]] with an→ 0 as n→∞
«

.

Next, we would like to equip D1
K with a sheaf of functions whose

global sections is the above algebra K〈X 〉. The naive idea is to define,
for an open subset U ⊆ D1

K , the ring O wobbly(U ) as the set of functions
U →K which can be represented locally as a power series.

Indeed, this is trivially a sheaf, and we do obtain an injection

K〈X 〉→ O wobbly(D1
K ).

However, this map is very far from being surjective. Indeed, D1
K is highly

disconnected, for example

D1
K = {|x|= 1} ∪ {|x|< 1} (1.3)

expresses D1
K as a union of two disjoint open (!) subsets. The function f ∈

O (D1
K ) equal to 1 on the first open and 0 on the second is not in the image

of K〈X 〉. (This example justifies the adjective wobbly.) Clearly, something
goes terribly wrong with analytic continuation in the nonarchimedean
setting!

1.2 Tate’s admissible topology on the unit disc

The first attempt at fixing this issue is due to Krasner, and is based on
a non-Archimedean analog of Runge’s theorem in complex analysis.
A Krasner analytic function on D1

K is a uniform limit of rational functions
with no poles inside D1

K . This leads to a presheaf O for which O (D1
K ) =

K〈X 〉, and which has the property that O (U ) is a domain if U “should
be” connected. Still, it is not a sheaf.
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Let us explain, in a simple case, Tate’s idea of fixing the issue. Consider
the following covering of D1

K :

D1
K = {|x| ≤ ρ}

︸ ︷︷ ︸

U

∪{ρ≤ |x| ≤ 1}
︸ ︷︷ ︸

V

(1.4)

with 0 < ρ < 1, ρ = |t | for some t ∈ K . The algebra of (Krasner analytic)
functions O (U ) on the smaller disc U = {|x| ≤ ρ} consists of power series
converging on this disc, i.e.

K
X

t

·

=
¨

f =
∑

n≥0

anX n ∈K[[X ]] : lim
n→∞ |an |ρn = 0

«

.

Similarly, for the annulus V = {ρ≤ |x| ≤ 1}, O (V ) consists of convergent
Laurent series

K
D

X ,
t
X

E

=
¨

f =
∑

n∈Z

anX n : lim
n→∞ |an |= 0, lim

n→−∞ |an |ρn = 0

«

,

and functions O (U ∩V ) on the intersection U ∩V = {|x|= ρ} are

K
X

t
,

t
X

·

=
¨

f =
∑

n∈Z

anX n : lim
|n|→∞

|an |ρn = 0

«

.

It turns out that we are lucky: the sequence

0→K 〈X 〉→K
X

t

·

×K
D

X ,
t
X

E

→K
X

t
,

t
X

·

(1.5)

is exact.9 Thus O satisfies the sheaf condition with respect to the covering 9 Check this!

U ∪V .

TATE’S SOLUTION is now to identify a class of admissible coverings
U =

⋃

Ui of opens U ⊆ D1
K . For U = D1

K , these are the coverings
admitting a finite refinement by subsets of the form

{|x − a| ≤ |t |, |x − ai | ≥ |ti |}.
The covering (1.3) is not admissible in this sense, while (1.4) is. Tate’s
acyclicity theorem says that the presheaf O satisfies the sheaf condition for
all admissible coverings. Exactness of (1.5) is a basic special case.

In particular, this implies that D1
K is quasi-compact with respect to

the admissible topology: every admissible cover admits a finite subcover.
Moreover, it becomes connected in the sense that there is no admissible
cover

U =
⋃

i∈I

Ui ∪
⋃

j∈J

V j ,

with both summands nonempty, such that Ui ∩V j = ; for (i , j ) ∈ I × J , as
reflected by the fact that O (D1

K ) =K〈X 〉 is a domain.
Formalizing the above requires the notion of a G-topology on a topo-

logical space X , which is the data of a class of admissible open subsets10 10 For D1
K , we declare all open subsets

admissible. The condition will however
not be empty for Dn

K with n > 1.
and of admissible coverings of admissible open subsets satisfying some
axioms. One has a natural notion of a sheaf with respect to a G-topology,
which is a presheaf on the category of admissible opens which satisfies the
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sheaf condition with respect to admissible coverings. Thus O is a sheaf
with respect to the admissible topology on D1

K .
In Tate’s formalism, which we shall work out in the first part of the

course, the basic geometric objects are rigid-analytic varieties. One uses
as building blocks the affinoid algebras, which are quotients of the Tate
algebras

K〈X1, . . . ,Xr 〉=
(

∑

n1,...,nr≥0

an1...nr
X n1

1 . . .X nr
r : an1...nr

→ 0 as n1+ . . .+ nr → 0

)

.

To an affinoid algebra A = K〈X1, . . . ,Xr 〉/I one associates the affinoid
SpA. Its underlying topological space is the corresponding closed subset
of

Dr
K = {(x1, . . . , xr ) ∈K r : |xi | ≤ 1 for i = 1, . . . , r }

cut out by the ideal I . One equips it with a G-topology (the admissible
topology), and a sheaf of rings O , similarly to the case of D1

K . A rigid-
analytic variety is a topological space with a G-topology and a sheaf of
rings with respect to that topology, which is locally (as a G-topologized
space!) isomorphic to SpA for some affinoid algebra A.

1.3 Raynaud’s approach

The main drawbacks of Tate’s theory are

• the admissible topology is counterintuitive and complicated to work
with,

• and the underlying spaces do not have enough points (e.g. there exist
nonzero abelian sheaves for the admissible topology whose stalk at
every point is zero),

• one is bound to work over a fixed field; for a non-algebraic extension of
nonarchimedean fields K ′/K (e.g. Cp/Qp ) there is no map D1

K ′ →D1
K ,

• (why should there have to be a base field at all?)

• it is quite far from algebraic geometry (e.g. the opens are not defined by
non-vanishing loci, but also be inequalities—not algebraic opens, but
semi-algebraic opens).

There are several frameworks which address these issues in different
ways, notably Huber’s theory of adic spaces, Berkovich’s theory of ana-
lytic spaces (usually called Berkovich spaces), and Raynaud’s approach via
formal schemes, worked out by Bosch and Lütkebohmert and recently
developed further by Fujiwara–Kato and Abbes. In the second half of this
course, we will become acquainted with all of these, mostly focusing on
Raynaud’s theory, as it is the closest to algebraic geometry.

THE STARTING POINT of Raynaud’s theory is the following isomor-
phism (where t ∈K is a pseudouniformizer)

We will prove this later, but you are
welcome to try and check it yourself.K〈X 〉=

�

lim←−
m

O [X ]/(t m)
�

�

1
t

�

. (1.6)
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The isomorphism (1.6) expresses K〈X 〉 in terms of (0) the polynomial
algebra O [X ] through the algebraic operations of (1) t -adic completion,
and (2) localization with respect to t . So, for example, if O is a discrete
valuation ring, we immediately see that K〈X 〉 is Noetherian, because
(0) the polynomial algebra O [X ] is Noetherian, (1) the completion of
a Noetherian ring with respect to an ideal is Noetherian, and (2) the
localization of a Noetherian ring is Noetherian. (Unfortunately, our O
will not always be Noetherian, so one needs to work harder.)

TO HAVE A GEOMETRIC PICTURE, we replace O [X ] with its spec-
trum X =A1

O . The projective system O /t nO [X ] corresponds to a system
of closed immersions

X0 ,→X1 ,→X2 ,→ ·· · , Xn =A1
O /t n+1O .

Each of these immersions is defined a nilpotent ideal, and hence is a home-
omorphism on the underlying spaces.

The above inductive system does not have a limit in the category of
schemes. Instead, one can take its limit in the larger category of locally
ringed spaces:

X= (|X|,OX) = lim−→
n

Xn .

Since |Xn | ,→ |Xn+1| are homeomorphisms, we can identify |X| with |X0|.
Treating OXn

as a sheaf on |X0|= |X|, we have

OX = lim←−
n

OXn
= lim←−

n

OX /(t
n+1).

The locally ringed space X is an example of a formal scheme, the formal
completion of X = A1

K with respect to the ideal tOX . In fact, in this
context we could define formal schemes over O as systems of closed im-
mersions X0 ,→ X1 ,→ ·· · between O -schemes, with Xn defined by the
ideal t n+1OXn+1

.
The final step, inverting t , is the hardest: in Raynaud’s approach, one

wants to define a rigid-analytic variety over O as the “generic fiber” of
a formal scheme over O . This is done purely formally by localizing the
category of formal schemes over O with respect to admissible blow-ups, i.e.
blowups along an ideal containing a power of t . In the words of Fujiwara
and Kato, rigid geometry is the birational geometry of formal schemes.

1.4 Why study rigid geometry?

The goal of the course is not only to introduce the basic definitions and
facts surrounding rigid-analytic varieties—we will see some important
applications of the theory as well. I will now try to give a short preview
without spoilers.

Disclaimer: There are many possible answers to the question above.
The following is heavily influenced by my own perspective and expertise
as an algebraic geometer interested in the topology of algebraic varieties.

The broad answer is:

Rigid geometry allows us to use methods of topology and analysis in an otherwise purely algebraic context.
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For an explicit example, consider a complex algebraic curve, say a
smooth plane curve X in P2 of degree d . As one learns in the basic alge-
braic geometry course, this curve has genus

g =
(d − 1)(d − 2)

2
.

Over the complex numbers, the underlying manifold (the complex analyti-
fication) of X is an oriented surface with g many handles. Can we make
sense of the last sentence algebraically? The question sounds crazy at first:
to begin with, the underlying topological space of X (with the Zariski
topology) does not see the genus at all, so how can we try to decompose it
into handles?

Rigid geometry allows us to break varieties into pieces and perform surgery.

The answer is to degenerate the curve until it breaks and becomes easier
to manage.11 Thus, let `1, . . . ,`d be generically chosen linear forms on P2. 11 Can we study algebraic curves by

putting them inside the Large Hadron
Collider?

If { f = 0} is the homogeneous equation of our curve X , we consider the
equation with an additional parameter t

Xt = {t f +(1− t )`1 · . . . · `d = 0} ⊆ P2
k[t ].

Thus X1 =X , while X0 is the union of d lines in P2 in general position.
The curve X0, while much easier to understand than X , is singular.

Its topology differs from that of X . The idea, made possible by rigid
geometry, is to study the smooth fibers Xt which “infinitesimally close”
to X0. To make this precise, we first base change the above family to the
field K = k((t )), obtaining a smooth algebraic curve XK over K . Next, we
turn it into a rigid-analytic varietyX = (XK )an, its rigid analytification. It
is cut out by the same equation in a rigid-analytic version of P2

K .
It turns out thatX is “close enough” to X0 that there exists a natural

morphism of topological spaces (the specialization map)

sp: |X |→ |X0|.

The preimage Ui = sp−1(Li ) of the line Li = {`i = 0} ⊆ |X0| happens to
be an open rigid subvariety ofX which closely resembles a sphere with
d − 1 discs removed (the discs are the preimages of the points Li ∩ L j for
j 6= i under sp). This gives a combinatorial decomposition ofX which
one can use in place of the triangulation or handlebody decomposition on
the complex analytification. For cubic curves (elliptic curves) one has the
following picture:

L1

L3

L2U2

U3

U1

X0X
sp

Figure 1.1: Intuitive picture of the special-
ization map (d = 3, so g = 1).
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HERE ARE SOME EXAMPLES of serious applications of rigid geometry
roughly along the above lines:

• Uniformization of curves and abelian varieties. (In fact, construct-
ing a p-adic analytic analog of the expression of a complex elliptic
curve as C modulo a lattice was Tate’s original motivation for defining
rigid-analytic varieties. We will see Tate’s uniformization later in the
course.)

• The approach to SYZ mirror symmetry proposed by Kontsevich.

• Raynaud’s solution to Abhyankar’s conjecture (constructing finite
étale covers of A1

Fp
with given Galois group).

• Study of moduli of curves (often done using tropical methods, which is
philosophically similar).

• Semistable reduction.

Other extremely important applications belong to p-adic Hodge the-
ory.



2
Non-archimedean fields

In this chapter, we learn some fundamentals about the kind of base fields
we will work with — fields complete with respect to a nontrivial non-
archimedean norm. We start with basic facts about general valuation
rings; the extra generality is not needed for Tate’s theory, but will prove
useful later on.

In the appendix to this chapter, we review henselian local rings and
Hensel’s lemma.

2.1 Valuation rings and valuations

Definition 2.1.1. A subring O of a field K is a valuation (sub)ring of K if
for every x ∈K×, either x ∈ O or x−1 ∈ O .

The above condition implies that K = FracO . This motivates the
terminology: we will call a ring O a valuation ring if O is a domain and if
it is a valuation ring of K = FracO .

Lemma 2.1.2. Every valuation ring is a local ring.

Proof. It suffices to check that the set of non-units is closed under addi-
tion. If x, y ∈ O are nonzero non-units, then either xy−1 ∈ O , in which
case x+y = y(xy−1+1) is a non-unit because y is a non-unit, or y x−1 ∈ O ,
and we swap x and y.

Lemma 2.1.3. The relation

x ≤ y if y x−1 ∈ O (2.1)

induces a linear order on Γ = K×/O ×, making Γ into a linearly ordered
group. 1 1 An ordered abelian group is an abelian

group Γ with an order relation ≤ such that
a ≤ b implies a+ c ≤ b + c . It is linearly
or totally ordered if ≤ is a linear order.

Proof. First, if x ′ = u x and y ′ = v x with u, v ∈ R×, then x ≤ y ⇐⇒ x ′ ≤
y ′, so that ≤ induces a relation on K×/O ×. The fact that either x ≤ y or
y ≤ x is the definition of a valuation ring. The rest is straightforward.

The quotient homomorphism

K×→K×/O ×

is a “valuation” on the field K , as we shall now define. First, we introduce
the following convention: for an ordered abelian group Γ (written ad-
ditively), we shall write Γ ∪ {∞} for the ordered commutative monoid
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obtained by adding an element∞ and declaring

γ ≤∞ and γ +∞=∞+∞=∞ (γ ∈ Γ ).
Definition 2.1.4. A valuation on a field K is a group homomorphism

ν : K×→ Γ
into a linearly ordered group Γ (written additively, so that ν(xy) = ν(x) +
ν(y)), which, when extended to a map of monoids ν : K → Γ ∪ {∞} by
ν(0) =∞, satisfies

ν(x + y)≥min{ν(x), ν(y)}.
The value group of a valuation ν : K× → Γ is the image ν(K×). Thus ν

trivially induces a surjective valuation ν ′ : K× → ν(K×), and it is useful to
identify ν and ν ′. More generally, we will call two valuations νi : K× → Γi
(i = 1,2) equivalent if there exists a third valuation ν : K× → Γ and
monotone homomorphisms ϕi : Γ → Γi (i = 1,2) such that νi = ϕi ◦ ν :

Γ1

K×

ν1

77

ν2
''

ν // Γ

ϕ1

??

ϕ2

��
Γ2.

A valuation is trivial if it has trivial value group, i.e. ν(x) = 0 for all
x ∈K×.

Proposition 2.1.5. Let K be a field.

(a) If O ⊆ K is a valuation ring and Γ = K×/O × is equipped with the linear
order (2.1), then the projection map ν : K×→ Γ is a valuation on K.

(b) Conversely, if ν : K×→ Γ is a valuation, then

O = {x ∈K | ν(x)≥ 0}
is a valuation ring of K, and its maximal ideal is m= {x ∈K | ν(x)> 0}.

(c) Constructions in (a) and (b) produce mutually inverse bijections

{valuation rings of K} ' {valuations on K}/equivalence.

Proof. (a) We check the property ν(x + y) ≥ min{ν(x), ν(y)}, which
resembles the proof that a valuation ring is local. Let x, y ∈ K×, and
suppose xy−1 ∈ O , then

ν(x + y) = ν(y(xy−1+ 1)) = ν(y)+ ν(xy−1+ 1)
︸ ︷︷ ︸

≥0 since xy−1+1∈O
≥ ν(y),

and similarly if y x−1 ∈ O .
(b) Clearly for x ∈ K either x ∈ O or x−1 ∈ O and O is closed under

multiplication. The fact that it is also closed under addition follows from
ν(x + y)≥min{ν(x), ν(y)}.
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(c) Clearly, equivalent valuations define the same valuation ring. The
only non-obvious assertion is that if ν2 : K× → Γ2 = K×/O × is the valu-
ation associated via (b) to the valuation ring O associated to a valuation
ν1 : K×→ Γ1 via (a), then ν1 and ν2 are equivalent. We let Γ = Γ2 = K×/O ×,
ϕ2 the identity, and ϕ2 : Γ =K×/O ×→ Γ1 the map induced by ν1.

Γ1

K× //

55

))

K×/O ×

::

K×/O ×

2.2 Valuations and norms

If the value group is a subgroup of R, one can turn a valuation into a
“norm.”

Definition 2.2.1. A valuation of height one2 is a valuation ν : K×→R. 2 This terminology is slightly nonstandard:
what is usually meant by a valuation of
height one is a nontrivial valuation whose
value group embeds in R.

More generally, the height (or rank) of
a valuation is the order type of the set of
all convex subgroups of the value group,
(linearly) ordered by inclusion, where a
subgroup A⊆ Γ is convex if a ≤ x ≤ b and
a, b ∈A implies x ∈A.

As it turns out, and is easy to show,
this is just the Krull dimension of the
corresponding valuation ring O .

Note that two valuations of height one νi : K× → R (i = 1,2) are
equivalent if and only if ν2(x) = cν1(x) for some positive real c .3

3 Exercise 3 on Problem Set 1.

Definition 2.2.2. A nonarchimedean norm on a field K is a map

| · | : K→ [0,∞)
such that

i. |xy|= |x| · |y|,
ii. |x|= 0 if and only if x = 0,

iii. |x + y| ≤max{|x|, |y|}.
Proposition 2.2.3. Let K be a field.

(a) If ν : K→R is valuation of height one, then4 4 The base e of the exponential is of course
an arbitrary choice. Sometimes there
exists a more natural one. For example, if
K is p-adic, i.e. |p|< 1 for a prime p, then
one usually considers the norm

|x|= p−ν(x).

|x|= exp(−ν(x))
(where exp(−∞) = 0) defines a nonarchimedean norm on K.

(b) Conversely, if | · | is a norm on K, then

ν(x) =− log |x|
(where log0=−∞) defines a valuation of height one. The corresponding
valuation ring is the “closed ball” O = {x | |x| ≤ 1}.

(c) The constructions in (a) and (b) produce mutually inverse bijections

{height one valuations on K} ' {nonarchimedean norms on K}.

Proof. Clear.

Proposition 2.2.4. Let | · | be a nonarchimedean norm on a field K. Then

d (x, y) = |x − y|
defines a metric on K, making K into a topological field. This metric and the
induced topology have the following properties:

(a) Every triangle is isosceles, every point of an open ball is its center, and
every two (open or closed) balls are either disjoint or one contains the
other,
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(b) The open ball {|x − a| < ρ}, the closed ball {|x − a| ≤ ρ}, and the sphere
{|x − a| = ρ} are both open and closed for ρ > 0. In particular, the
valuation ring O = {|x| ≤ 1} ⊆K is an open subring.

(c) The topological space K is totally disconnected,

(d) Suppose that K is complete (every Cauchy sequence converges). A series
∑∞

n=0 an with an ∈K converges if and only if liman = 0.

Proof. Continuity of addition, multiplication, and inverse is clear and left
to the reader.

(a) The key observation is that if |x|> |y|, then |x−y|=max{|x|, |y|}=
|x|. Indeed, we have

|x|= |y +(x − y)| ≤max{|y|, |x − y|} ≤max{|y|, |x|, |y|}= |x|,

so the inequalities are equalities, implying |x − y| = |x|. Similarly, if |y| >
|x| then |x − y| = |y|, thus in general two of the numbers |x|, |y|, |x − y|
have to be equal.

If a triangle has vertices a, b , c , apply the above to x = c − a, y = c − b
to see that it is isosceles, with two longest sides being equal.

Now consider an open ball B(a,ρ) = {|x − a| < ρ} and let b ∈ B ,
i.e. |b − a| < ρ. If c ∈ K , then consider the triangle with vertices a, b , c .
The above observation shows that |c − a| ≥ ρ if and only if |c − b | ≥ ρ,
showing B(a,ρ) = B(b ,ρ).

ab

c
If two open balls B and B ′ intersect at a point b , then taking b as the

center of both balls shows that one is contained in the other.
(b) The open ball is of course open, and the closed ball is the union of

the open ball and the sphere. It suffices to treat the sphere S = {|x| = ρ}
(centered at zero for simplicity). Let a ∈ S; we claim that the open ball
{|x−a|<ρ} is contained in S. Indeed, if |x−a|<ρ then |x|= |a+(x−a)|
and since |x − a|<ρ= |a|, we have |x|= |a|= ρ, so x ∈ S.

(c) Let S ⊆ K be a subset and let a, b ∈ S be two distinct points,
ρ= |a− b |> 0. Then

S = (S ∩{|x − a|<ρ/2})∪ (S ∩{|x − a| ≥ ρ/2})

expresses S as a sum of two disjoint and non-empty open subsets. Thus S
cannot be connected if it has more than one point.

(d) Clearly if
∑

an converges then liman = 0. Conversely, suppose
liman = 0; we check that bn = a1+ · · ·+ an forms a Cauchy sequence. Let
ε > 0, and let N be such that |an |< ε for n ≥N . Then for m > n >N

|bm − bn |= |an+1+ · · ·+ am |<max{|an+1|, . . . , |am |}< ε.

2.3 Geometric examples of valuations
This section is a bit of a digression, but
will become important later in the course.Long long time ago, before schemes were invented by Grothendieck,

varieties were studied (or even defined) using valuations on their function
fields. E.g. Zariski’s proof of resolution of singularities on surfaces heavily
relied on the classification of valuations on their function fields. We will
see some of these below.
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Example 2.3.1. Let R be a Dedekind domain with field of fractions K ,
and let m⊆ R be a maximal ideal. Standard examples:

• R = Γ (X ,OX ) for X a smooth affine algebraic curve, with m corre-
sponding to a closed point x ∈X ,

• R= OK the ring of integers in a number field K , e.g. R= Z[i].

The local ring O = Rm is a discrete valuation subring of K . The corre-
sponding valuation on K is ν(x) =max{k : x ∈ mk}. Every valuation on
K which is trivial on k is equivalent to exactly one of these. 5 5 Sound familiar? [2, Chapter I 6]

The remaining examples deal valuations on function fields of surfaces
over a base field k, where the situation is much more complicated, essen-
tially due to the existence of non-trivial blowups. 6 We only consider 6 See [2, Exercise II 4.12].

valuations whose restriction to k is trivial.

Example 2.3.2 (Divisorial valuation). Let X be a normal surface with
field of rational functions K and let D ⊆ S be a prime divisor. Then
[reference Hartshorne] D defines a function “order of zero along D”

νD : K = k(S)→ Z∪{∞}

which is a valuation. The corresponding valuation ring is OX ,ξ where ξ is
the generic point of D . Its residue field is k(D), the function field of D .

Example 2.3.3 (Valuation of height two). In the situation of Exam-
ple 2.3.2, let p ∈ D be a closed point at which D is regular. Then x defines
a valuation νp on k(D) as in Example 2.3.1. We can combine the valua-
tions νD on K = k(S) and νp on k(D) into a height two valuation

νD , p : K→ Z2
lex ∪{∞},

where Z2
lex is Z2 with the lexicographic order ((x, y) ≥ (x ′, y ′) if x > x ′ or

x = x ′ and y ≥ y ′). To define νD , p , we pick a uniformizer (generator of the
maximal ideal) π ∈ OX ,ξ = OνD without zero or pole at p and set

νD , p ( f ) = (νD ( f ), νp (g )), g = (π−νD ( f ) f )|ξ ,

where the restriction makes sense because νD (g ) = 1, so g ∈ OνD .
The valuation ring OνD , p

consists of rational functions with no pole
along D and whose restriction to D has no pole at p. It has three prime
ideals, is of Krull dimension two, and is non-Noetherian. Its residue field
is k. See Figure 2.1 for the monoid of monomials in OνD , p

for S =A2.

Example 2.3.4 (Valuations from formal curve germs). Let again S be a
normal surface with function field K , and let

γ : Spec k[[t ]]→ S

be a morphism of schemes (a “formal curve germ”). We say that γ is
nonalgebraic if its image is not contained in a proper closed subscheme of
S, equivalently if γ maps the generic point Spec k((t )) of Spec k[[t ]] to the
generic point η = SpecK of S.7 The composition of γ ∗ with the standard 7 There is plenty of nonalgebraic curve

germs on an algebraic surface. For exam-
ple, consider S = SpecC[x, y] the affine
plane and γ defined by

γ ∗(x) = t , γ ∗(y) = exp t =
∑

n≥0

t n

n!
.
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Figure 2.1: In Example 2.3.3, consider
S = A2 with coordinates x, y, the divisor
D = {x = 0} ⊆ S, and the point p = {y =
0} ⊆ D . The figure shows the monoid
consisting of all (m, n) ∈ Z2 for which
ν(x m yn) ≥ 0. Can you see why this
monoid is not finitely generated? This is
related to the fact that the valuation ring is
non-Noetherian.

valuation on k((t )) gives a height one valuation

νγ : K→ k((t ))→ Z∪{∞}
with residue field k.

Example 2.3.5 (Height one valuation with dense value group). Suppose
that K = k(x, y). Let λ be an irrational real number. Define the weight
function on monomials in x and y by

weightλ(x
m yn) = m+λn ∈ R.

Define the valuation νλ : K→R∪{∞} by first defining it on polynomials:

νλ

�

∑

m,n≥0

amn x m yn

�

=min{weightλ(x
m yn) : amn 6= 0}

and extending to k(x, y) by νλ( f /g ) = νλ( f )−νλ(g ). This gives a valuation
on K which has height one but whose value group Z⊕λZ' Z2 is dense in
R. See Figure 2.2 for the monoid of monomials in the valuation ring.

Remark 2.3.6. The valuation vλ in Example 2.3.5 can be thought of
as the valuation of the type considered in Example 2.3.4 induced by the
“formal curve germ”

t 7→ (t , tλ).

In fact, for λ′ = a/b rational with (a, b ) = 1, we can define the curve germ

γa,b : SpecC[[t ]]→A2
x,y , γ ∗a,b (x) = t b , γ ∗a,b (x) = t a .

Let νa,b =
1
b νγa,b

where γa,b is the valuation associated to the curve germ as
in Example 2.3.4. If an/bn → λ, then the corresponding valuations νan ,bn

converge pointwise to νλ.

2.4 Nonarchimedean fields

Definition 2.4.1. A nonarchimedean field8 is a field K equipped with a 8 For many authors, “nonarchimedean
field” is simply a field with a nonar-
chimedean norm.

nontrivial nonarchimedean norm | · | with respect to which it is complete.
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Figure 2.2: The monoid of all (m, n) ∈ Z2

for which ν(x m yn) ≥ 0 (Example 2.3.5).
The boundary of the gray area is the line
with slope −1/λ

x +λy = 0.

Since λ /∈Q, this line contains no nonzero
lattice points.

Proposition 2.4.2. Let K be a field endowed with a nontrivial nonar-
chimedean norm | · |. The ring operations on K extend uniquely to the
completion bK of K with respect to d (x, y) = |x − y|, making bK into a
nonarchimedean field.

Definition 2.4.3. Let K be a field endowed with a nonarchimedean norm
| · |. A pseudouniformizer is an element t ∈K with 0< |t |< 1.9 9 In other words, t is a topologically

nilpotent unit, where topologically
nilpotent means that |t n | → 0.Thus | · | is nontrivial if and only if K admits a pseudouniformizer.

Proposition 2.4.4. Let K be a field endowed with a nontrivial nonar-
chimedean norm | · |, and let t ∈ K be a pseudouniformizer. Let O = {x ∈
K | |x| ≤ 1} be the valuation ring. Then K is complete (i.e. K is a nonar-
chimedean field) if and only if O is t -adically complete and separated, i.e. if
the natural map Warning: if K is not discretely valued,

then O will not be a complete local ring!
In that case, the maximal ideal of O
satisfies m2 =m, and hence O /mn = k for
all n, so that ÒO ' k. This is why we need
to work with pseudouniformizers.

π : O → lim←−
n

O /t nO

is an isomorphism. In this case, the map π is a homeomorphism, where the
target is endowed with the inverse limit topology where each O /t nO is given
the discrete topology.

Proof. Set ρ= |t |; we have 0<ρ< 1. First, we note that

t nO = {x ∈K : |x| ≤ ρn}.
The kernel of π is

⋂

n≥0 t nO = {|x| ≤ 0} = {0}. Thus π is always
injective.

An element f̄ of the inverse limit is a compatible system ( f̄n ∈ O /t nO ).
Let fn ∈ O be elements mapping to f̄n ∈ O /t nO . We claim that ( fn)
is a Cauchy sequence. Indeed, we have fn − fm ∈ t nO for m > n, so
| fn − fm | ≤ ρn for m > n. Thus if K is complete, then ( fn) has a limit
f ∈ O . Now for every n, we have

| f − fn |= | fn − fm | ≤ ρn for m� 0,

which shows that f − fn ∈ t nO . Thus π( f ) = f̄ , i.e. π is surjective if K is
complete.
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Conversely, suppose that π is surjective. We will show that O is com-
plete with respect to | · | (this easily implies that K is complete). Let
( fn) ∈ O be a Cauchy sequence. For every m, the images of fn in O /t mO
have to stabilize for n � 0. Let f̄m ∈ O /t mO be the stable value (i.e.
f̄m = limn( fn mod t m) for the discrete topology on O /t nO ). It is easy to
see that f̄ = ( f̄m) is an element of the inverse limit of O /t nO . Let f ∈ O
be an element with π( f ) = f̄ , then f = lim fn .

The claim about the topologies follows from the fact that t nO = {|x| ≤
ρn} is a basis of neighborhoods of zero in O .

2.5 Extensions of nonarchimedean fields

The treatment here follows [1, Appendix A] and [3, II §4 and §6].

Theorem 2.5.1. Let K be a nonarchimedean field and let L/K be a finite
extension. Then there exists a unique norm | · | on L extending K. The field L
endowed with this norm is a nonarchimedean field.

Figure 2.3: Newton polygon of the
polynomial

1+π−1X −π−1X 2+πX 3+π2X 5

For f =
∑n

i=0 ai x i ∈ K[X ], we define its Newton polygon NP( f ) as the
lower convex envelope of the set {(0, ν(a0)), . . . , (n, ν(an))} in R2. Its basic
property is that NP( f g ) = NP( f ) +NP(g ) (Minkowski sum, i.e. sort
the segments of both polygons by slope and concatenate). In particular,
if f is reducible, then NP( f ) contains a point of the form (m,γ ) with
0 < m < deg f an integer and γ an element of the value group. One form
of Hensel’s lemma10 states the converse:

10 In the appendix to this lecture, we shall
discuss different formulations of Hensel’s
lemma.

Lemma 2.5.2 (Variant of Hensel’s lemma). Let f ∈ K[X ] be a nonzero
polynomial with f (0) 6= 0. Then f is irreducible if and only if NP( f ) is a
single segment without interior points of the form (m,γ ) with m ∈ Z and
γ ∈ ν(K×).
Proposition 2.5.3. In the situation of Theorem 2.5.1, let O = {|x| ≤ 1} be
the valuation ring of K. An element x ∈ L is integral over O if and only if
NmL/K (x) ∈ O .

Proof. Let f ∈ K[X ] be the minimal polynomial of x. Since f is irre-
ducible, by Lemma 2.5.2 its Newton polygon has to be the line segment
with endpoints (deg f , 0) and (0, c) where c = ν(a0) is the valuation of
the constant term of f (Figure 2.4). But c = (−1)n NmL/K (x), so if
NmL/K (x) ∈ OK then NP( f ) lies entirely above the line y = 0, which
implies that f ∈ O [X ], so that x is integral over O .

(deg f , 0)

(0, ν(a0))

Figure 2.4: Newton polygon of an irre-
ducible monic polynomial f (Proof of
Proposition 2.5.3)

Conversely, if x is integral, then in fact its minimal polynomial f
belongs to O [X ]; in particular, NmL/K (x) = (−1)deg f f (0) ∈ O . To see
this, let g ∈ O [X ] be monic with g (x) = 0. We have g = f h for some
(also monic) h ∈ K[X ]. Then NP(g ) = NP( f ) +NP(h) lies above the
line y = 0 and ends on it (because it is monic), and hence all of its slopes
are non-positive. However, NP( f ) is a single segment (connecting (0, c)
and (deg f , 0)), and its slope is one of the slopes of NP(g ) and hence is
non-positive. Thus c ≥ 0, i.e. f ∈ O [X ].
Proof of Theorem 2.5.1. Let O = {|x| ≤ 1} ⊆ K be the valuation ring of K
and let O ′ ⊆ L be the integral closure of O inside L. By Proposition 2.5.3,
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x ∈ O ′ if and only if |NmL/K (x)| ≤ 1. Since the norm is multiplicative,
this shows that O ′ is a valuation ring of L. Moreover, O ′ ∩K = O because
O is integrally closed.11 11 Easy exercise: show that every valuation

ring is integrally closed.Define |x|= |NmL/K (x)|1/d for x ∈ L, where d = [L : K]. This restricts
to the norm on K , is multiplicative, and |x| 6= 0 for x 6= 0. To show
|x + y| ≤ max{|x|, |y|}, we use the fact that {|x| ≤ 1} = O ′ is a valuation
ring.

If | · |′ is some other norm extending | · | to L, then since the corre-
sponding valuation ring {|x|′ ≤ 1} is integrally closed, it contains O ′. This
implies that | · | ≤ | · |′, and by Exercise 3 from Problem Set 1, we have
| · |′ = | · |c for some constant c . But c = 1 since the two agree on K .

Theorem 2.5.4 (Krasner). Let K be a nonarchimedean field, and let K be
an algebraic closure of K, which we endow with the unique extension of | · |.
Let bK denote the completion of K with respect to this norm. Then ÒK̄ = K

∧
is

algebraically closed.

Proof. Let L be a finite extension of bK . By Theorem 2.5.1, there exists

a unique norm on L extending the norm on bK and L is complete with

respect to that norm. To show L= bK , it therefore suffices to prove that bK
is dense in L.

Let x ∈ L and let 1 > ρ > 0. We shall find a y ∈ bK with |x − y| <
ρ. Without loss of generality, we may assume that |x| ≤ 1. Let f =
∑n

i=0 ai X
i ∈ bK[X ] be its minimal polynomial (with an = 1). Since K is

dense in bK , we can find bi ∈ K (i = 0, . . . , n) with |ai − bi | < ρ (and again
bn = 1). This implies that

|g (x)|= |g (x)− f (x)|=
�

�

�

�

�

n
∑

i=0

(ai − bi )x
i

�

�

�

�

�

<ρ.

Now, the polynomial g =
∑n

i=0 bi X
i splits completely in K :

g =
n
∏

i=1

(X − yi ), y1, . . . , yn ∈K .

Evaluating at x and taking absolute value, we obtain

ρ> |g (x)|=
n
∏

i=1

|x − yi |.

Therefore one of the factors is less than ρ.
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2.A Henselian rings

Hensel’s lemma played an important in the proof of Theorem 2.5.1. The
first goal of this section is to elucidate its role by introducing the notion
of a henselian local ring. Roughly speaking, it is a local ring in which the
assertion of Hensel’s lemma holds. There are however many equivalent
characterizations of this class of local rings, reviewed in Proposition 2.A.1
below, and the reader familiar with the étale topology will surely appre-
ciate the topological flavor of some of them. The second goal is to prove
Hensel’s lemma in its general form: a local ring complete with respect to a
m-primary ideal is henselian.

Our treatment follows the Stacks Project [4, Tag 04GE] .
The ultimate reference is Raynaud’s book
Anneaux locaux henseliens.

[4, Tag 04GG]Proposition 2.A.1. Let A be a local ring with maximal ideal m. We set
k = A/m, x = Spec k, X = SpecA, i : x → X the inclusion. The following
conditions are equivalent:

(a) If f ∈ A[T ] is monic and t0 ∈ k is a root of f̄ = f mod m ∈ k[T ]
such that f̄ ′(t0) 6= 0, then there exists a unique root t ∈ A of f such that
t mod m= t0.

(b) If f ∈ A[T ] is monic and f̄ = g h is a factorization of f̄ = f mod m ∈
k[T ] with g , h ∈ k[T ] coprime, then there exists a factorization f = g̃ h̃
with g̃ , h̃ ∈ A[T ] such that g̃ mod m = g , h̃ mod m = h, and deg g̃ =
deg g .

(c) Every finite A-algebra is a product of local rings.

(d) For every étale A-algebra B and every prime p⊆ B lying over m and such
that k(p) = k, there exists a section s : B→A of A→ B with p= s−1(m).

(e) For every étale morphism f : U →X and every lifting ĩ : x→ U of i (i.e.
i = f ◦ ĩ ) there exists a unique section s : X →U such that s ◦ i = ĩ .12 12 Useful to picture this condition as a

lifting problem:

x
ĩ //

i
��

U

f

��
X

∃! s

>>

X .

Proof. Maybe I’ll write something here later.

Definition 2.A.2. (a) A local ring A is henselian if the equivalent condi-
tions of Proposition 2.A.1 hold.

(b) A local ring A is strictly henselian if it is henselian and its residue field
k is separably closed.13 13 Equivalently: every étale cover of SpecA

admits a section.

(c) A valued field (K , ν) is henselian if the valuation ring O = {x | ν(x)≥ 0}
is henselian.

Remark 2.A.3. Condition (d) of Proposition 2.A.1 allows one to con-
struct the henselization of a local ring A as the direct limit

Ah = lim−→
(B ,s)∈CA

B

where CA is the category of pairs (B , s) with B an étale A-algebra and
s : B → k a homomorphism extending A→ k. (This category is filtering
and essentially small.)

https://stacks.math.columbia.edu/tag/04GE
https://stacks.math.columbia.edu/tag/04GG
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Universal property: A→ Ah is a local homomorphism into a henselian
local ring which is initial among such (in the category of local rings and
local homomorphisms).

Similarly, given a separable closure k sep of k, we can construct the strict
henselization Ash by considering the category of étale A-algebras endowed
with a homomorphism to k sep extending A→ k sep. (Using the algebraic
closure k̄ instead of k sep gives the same result.)

Remark 2.A.4. The strict henselization of a local ring is the local ring
for the étale topology. To make this precise, we reformulate everything in
terms of geometry. Recall that a geometric point of a scheme X is a map
x̄ → X with x̄ = Spec k(x̄) for some separably closed field k(x̄). (Again,
one can use algebraically closed fields instead.) An étale neighborhood of
a geometric point x̄ of X is an étale morphism U → X endowed with a
lifting x̄→ U of x̄→X . Étale neighborhoods of x̄ in X form a cofiltering
category N (X , x̄), and the colimit

OX ,x̄ = lim−→
U∈N (X ,x̄)

Γ (U ,OU )

is isomorphic to the strict henselization O sh
X ,x of OX ,x where x is the im-

age of x̄ in X (and where we use the separable closure of k(x) in k(x̄) as
k(x)sep). 14 14 Similarly, the henselization is related

in the same way to local rings for the
Nisnevich topology.Proposition 2.A.5 (Hensel’s lemma). Every local ring A which is J -adically

complete and separated for an m-primary15 ideal J ⊆ A is henselian. In 15 This means that for x ∈ m we have
xN ∈ J for N � 0 depending on x.particular, every complete local ring is henselian.

For fans of the étale topology, we give a geometric proof:

Proof. We prove condition (e). Let X = SpecA and x = Spec k as before,
and let

U

f
��

x

ĩ
??

i
// X

be an étale neighborhood of x → X . Set Xn = SpecA/J n+1 for n ≥ 0.
First, consider the diagram

x ĩ //

��

U

f
��

X0
//

s0

>>

X .

Since x→X0 is an immersion defined by the nil ideal16 m/J ⊆A/J , by the

16 An ideal in a commutative ring is nil
(locally nilpotent in [4]) if it consists of
nilpotent elements.

infinitesimal criterion for étaleness17 there exists a unique diagonal arrow

17 Infinitesimal criterion for étale
maps: A morphism f : X → Y locally
of finite presentation is étale if and only
if for every ring A and nil ideal I ⊆ A
(equivalently, every square zero ideal), and
every commutative square of solid arrows

SpecA/I //

��

X

f

��
SpecA //

<<

Y

there exists a unique dotted arrow making
the diagram commute.

s0 making the square commute.
Starting from s0, we shall successively build maps sn : Xn → U lifting

Xn → X along f . It suffices to apply the infinitesimal criterion to the
squares

Xn
sn //

��

U

f
��

Xn+1
//

sn+1

==

X .
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Since A is J -adically complete, in the limit, the maps give the desired
section s : X →U .18

18 If you are confused with the last step,
set U = SpecB and temporarily revert to
commutative algebra.

Remark 2.A.6. The most common proof uses condition (a) of Propo-
sition 2.A.1, and uses “Newton’s method” to iteratively construct the
desired root t using explicit induction steps. Proofs in [1, Appendix A]
and [3] use condition (b), which gives a more direct approach to proving
Theorem 2.5.1, but makes for a messier and less illuminating argument.

Corollary 2.A.7. Every nonarchimedean field is henselian.

Proof. Let K be a nonarchimedean field, let O ⊆ K be its valuation ring,
and let t ∈ O be a pseudouniformizer. Apply Proposition 2.A.5 with
A= O and J = (t ).

Lemma 2.A.8. The following are equivalent for a field K endowed with a
height one valuation ν .

(a) K is henselian.

(b) The assertion of Lemma 2.5.2 holds.

Proof. Left as exercise.

The universal property of henselization induces a map Ah → bA.

Proposition 2.A.9. For a valued field (K , ν), the following are equivalent:

(a) K is henselian,

(b) every finite extension L of K admits a unique extension of the valua-
tion ν .

Proof. Suppose that K is henselian. Given Lemma 2.A.8, we can repeat
the proof of Proposition 2.5.3 word for word. The first paragraph of the
proof of Theorem 2.5.1 shows that we can extend the valuation ring of K
to L, which gives an extension of the valuation, easily seen to be unique.
For the reverse direction, see [3, Theorem II 6.6].

Henselian rings will appear later in the course: the local ring OX ,x of a
point x on a rigid analytic space X is not complete, but it is henselian.19 19 The same holds for complex analytic

spaces, e.g. the local ring C{t} of power
series with positive radius of convergence
is henselian.



3
The Tate algebra

In this chapter, we fix a nonarchimedean field K . We denote by O its
valuation ring, by k = O /m its residue field, and by t ∈ m a fixed pseu-
douniformizer.

We first introduce the Tate algebra, slightly emphasizing the “alge-
braic” point of view. We equip it with the Gauss norm, for which we give
a geometric interpretation which facilitates the verification of some basic
properties like multiplicativity or the Maximum Principle. The Gauss
norm makes the Tate algebra into a Banach K -algebra; we prove that it
satisfies a universal property in the category of Banach K -algebras. Next,
we prove that the Tate algebra satisfies a number of favorable algebraic or
topological properties, namely:

• it satisfies a version of Noether normalization,

• the residue fields of its maximal ideals are finite extensions of K ,

• it is Noetherian, Jacobson, and regular,

• all of its ideals are closed.

In the appendix, written jointly with Alex Youcis, we figure out one
can view Banach spaces over K algebraically through the lens of O /t n -
modules.

3.1 Definition of the Tate algebra

Definition 3.1.1. The algebra of restricted power series in r variables is the
t -adic completion of the polynomial algebra O [x1, . . . , xr ]:

O 〈x1, . . . , xr 〉= lim←−
n

O [x1, . . . , xr ]/(t
n) = lim←−

n

((O /t n)[x1, . . . , xr ]) .

The Tate algebra in r variables is the localization

K〈x1, . . . , xr 〉= O 〈x1, . . . , xr 〉⊗O K = O 〈x1, . . . , xr 〉
�

1
t

�

.

Let n = (t , x1, . . . , xr ) ⊆ O [x1, . . . , xr ]. The n-adic completion of
O [x1, . . . , xr ] is the ring of formal power series

O [[x1, . . . , xr ]] = lim←−
n

O [x1, . . . , xr ]/n
n .
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Since n⊇ (t ), we get the induced map on the respective completions:

O 〈x1, . . . , xr 〉→ O [[x1, . . . , xr ]]. (3.1)

Lemma 3.1.2. The map (3.1) is injective, and its image consists of the power
series whose coefficients tend to zero: 1 1 Here we use the multi-index notation:

if n = (n1, . . . , nr ) ∈ Nr , we set xn =
xn1

1 · . . . · xnr
r and |n|= n1+ . . .+ nr .

O 〈x1, . . . , xr 〉 '
¨

∑

n∈Nr

anxn ∈ O [[x1, . . . , xr ]] : an→ 0 as |n| →∞
«

.

Proof. We define the inverse homomorphism ϕ. Let f =
∑

anxn ∈ O [[x]]
be an element of the right hand side. The condition that an → 0 means
precisely that for every m ≥ 0, all but finitely many of the coefficients
an are divisible by t m . Thus, for every m ≥ 0, the image fm of f in
O [[x]]/t m = (O /t m)[[x]] is a polynomial. The elements fm ∈ (O /t m)[x]
form a compatible system, and give rise to an element ϕ( f ) of O 〈x〉. One
easily checks that ϕ is the inverse to (3.1).

By inverting t , we obtain an isomorphism

K〈x1, . . . , xr 〉 '
¨

∑

n∈Nr

anxn ∈K[[x1, . . . , xr ]] : an→ 0 as |n| →∞
«

.

As we have observed in §1.1, the right hand side is precisely the algebra of
power series with coefficients in K which converge in the unit disc

Dr
bK
= {(x1, . . . , xr ) ∈ bK : |xi | ≤ 1 for i = 1, . . . , r }.

3.2 The topology on K〈x1, . . . , xr 〉 and the Gauss norm

The ring O 〈x1, . . . , xr 〉, being defined as a completion, carries a natural
inverse limit topology, called the t -adic topology. It extends uniquely to
a topology of the Tate algebra K〈x1, . . . , xr 〉 for which O 〈x1, . . . , xr 〉 is
an open subring; that topology can be described as the inductive limit
topology, since

K〈x1, . . . , xr 〉=
⋃

n≥0

t−nO 〈x1, . . . , xr 〉.

Below, we describe the natural norm inducing these topologies.

Definition 3.2.1. The Gauss norm on K〈x1, . . . , xr 〉 is defined by

| f |=max{|an | : n ∈Nr } if f =
∑

n∈Nr

anxn .

In other words, | f | is the infimum of the values of |c | for c ∈ K× such
that c−1 f ∈ O 〈x1, . . . , xr 〉. In particular, we have

O 〈x1, . . . , xr 〉= { f ∈K〈x1, . . . , xr 〉 : | f | ≤ 1} .
The topology on O 〈x1, . . . , xr 〉 induced by the metric d (x, y) = |x − y| is
the t -adic topology.

The geometric interpretation: suppose that K is discretely valued, and
that t ∈ O is a uniformizer. Then X = SpecO [x1, . . . , xr ] = Ar

O is a
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Noetherian regular scheme, and Y = {t = 0} = Ar
k is a prime divisor on

X . Therefore Y defines a valuation of height one νY on k(X ) (“order of
zero or pole along Y ”). It agrees with the Gauss norm in the weak sense
that for f ∈K[x1, . . . , xr ]⊆K〈x1, . . . , xr 〉, we have

| f |Gauss = |t |−νY ( f ).

In fact, K[x1, . . . , xr ] is dense in K〈x1, . . . , xr 〉 with respect to the t -adic
topology, and the Gauss norm is the unique continuous extension of the
norm |t |−νY ( f ) to K〈x1, . . . , xr 〉.

The proofs of the following two easy results employ the above intu-
ition.

Lemma 3.2.2 (The Gauss norm is multiplicative). We have | f g |= | f | · |g |
for f , g ∈K〈x1, . . . , xr 〉.
Proof. Clearly this holds if f ∈ K is a constant. We can therefore rescale
f and g so that | f | = 1 = |g |. Equivalently f , g ∈ O 〈x1, . . . , xr 〉 and their
residues modulo the maximal ideal m⊆O

f̄ , ḡ ∈ O 〈x1, . . . , xr 〉/m= k[x1, . . . , xr ]

are nonzero. Since k[x1, . . . , xr ] is a domain, f g ∈ O 〈x1, . . . , xr 〉 has
nonzero image f̄ ḡ in k[x1, . . . , xr ], and hence | f g |= 1= | f | · |g |.
Proposition 3.2.3 (The Maximum Principle). For f ∈ K〈x1, . . . , xr 〉, we
have

| f |= sup
¦

| f (x1, . . . , xr )| : (x1, . . . , xr ) ∈K r , |xi | ≤ 1
©

.

Proof. As in the previous proof, we can reduce to the case | f | = 1.
Clearly, the right hand side is ≤ 1; we will show it equals 1. We have
f ∈ O 〈x1, . . . , xr 〉 and its image f̄ ∈ k[x1, . . . , xr ] is nonzero. We can there-
fore find a point (ξ̄1, . . . , ξ̄r ) ∈ k̄ r such that f̄ (ξ̄1, . . . , ξ̄r ) 6= 0. Now k̄ is the
residue field of (the integral closure of O in) K ; let (ξ1, . . . ,ξr ) ∈ K r be an
element lifting (ξ̄1, . . . , ξ̄r ). Then |ξi | ≤ 1 and | f (ξ̄1, . . . , ξ̄r )|= 1.

Remark 3.2.4. The above proof shows three things in addition. First, the
supremum is a maximum, and therefore attained in Lk for L a finite exten-
sion of K . Second, if the residue field k is infinite, the above maximum is
attained at a point in K r . Lastly, the maximum is attained at a point with
|x1|= · · ·= |xr |= 1.

The Gauss norm makes the Tate algebra into a Banach K -algebra, as
defined below.

Definition 3.2.5 (Banach spaces and Banach algebras). Let V be a vector
space over K . A vector space norm on V is a function

| · | : V → [0,∞)

such that

i. |xv |= |x| · |v | for x ∈K , v ∈V ,

ii. |v |= 0 if and only if v = 0,
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iii. |v +w| ≤max{|v |, |w|} for v, w ∈V .

It is called a Banach norm if V is complete with respect to the induced
metric d (x, y) = |x − y|. A Banach space over K is a vector space over K
equipped with a Banach norm.

Let A be a K -algebra. A K-algebra norm on A is a vector space norm | · |
on A which satisfies

iv. |vw| ≤ |v | · |w| for v, w ∈A.

It is a Banach algebra norm if | · | is a Banach norm. A Banach K-algebra is a
K -algebra over K equipped with a Banach norm.

Proposition 3.2.6. The Tate algebra K〈x1, . . . , xr 〉 is a Banach algebra when
equipped with the Gauss norm.

Proof. Axioms i.–iii. are clear, and iv. follows from Lemma 3.2.2. It re-
mains to show that K〈x1, . . . , xr 〉 is complete. It suffices to show that the
closed unit ball {| f | ≤ 1}= O 〈x1, . . . , xr 〉 is complete. This in turn follows
from the fact that O 〈x1, . . . , xr 〉 is t -adically complete.

Corollary 3.2.7. The Tate algebra K〈x1, . . . , xr 〉 is the completion of
K[x1, . . . , xr ] with respect to the Gauss norm.

Proof. It suffices to observe that O [x1, . . . , xr ] is dense in O 〈x1, . . . , xr 〉,
which follows from the definition (and the fact that the metric topology
induced by the Gauss norm agrees with the t -adic topology).

3.3 The Tate algebra is Noetherian

Coming soon!
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