Hodge theory over C((t))

RAMpAGe Seminar Oct 22, 2020

Piotr Achinger IMPAN Warsaw Ι

Complex and Kähler geometry

What can we say about the homotopy type of a complex manifold X?

$$H^*(X, \mathbf{Z}), \quad \pi_1(X), \quad \dots$$

Example questions/results:

- Can X be S^{2n} ? Open for n = 3.
- $\pi_1(X)$ can be any finitely presented group (Taubes)

We can say more if X is Kähler.

Kähler manifolds

X compact Kähler manifold (e.g. $X \hookrightarrow \mathbf{P}^n$)

1 $H^n(X, \mathbf{Q})$ carries a Hodge structure

$$H^n(X,\mathbf{Q})\otimes \mathbf{C}\simeq \bigoplus_{p+q=n} H^{p,q}, \quad H^{p,q}=H^q(X,\Omega_X^p), \quad \overline{H^{p,q}}=H^{q,p}.$$

2 Hard Lefschetz:

$$-\cup [\omega]^k$$
 : $H^{d-k}(X, \mathbb{C}) \xrightarrow{\sim} H^{d+k}(X, \mathbb{C}).$

6 nonabelian Hodge theory \Rightarrow restrictions on $\pi_1(X)$ (Kähler groups)

Example. HOPF SURFACE

$$X = (\mathbf{C}^2 \setminus \mathbf{0})/q^{\mathbf{Z}}, \quad \mathbf{0} < |q| < 1$$

It is homeomorphic to $S^1 \times S^3$. Thus $\pi_1(X) \simeq Z$ and X is not Kähler.

I

Non-Archimedean geometry

Rigid-analytic varieties

K non-Archimedean field

e.g.
$$k((t)), \mathbf{Q}_p, \mathbf{C}_p$$

Tate: theory of rigid-analytic varieties over K

1 Tate algebra

$$K\langle x_1, \dots, x_r \rangle = \left\{ \sum_{n \in \mathbf{N}^r} a_n \mathbf{x}^n \in K[[x_1, \dots, x_r]] : a_n \to 0 \text{ as } |n| \to \infty \right\}$$

2 Affinoid spaces

$$X = \operatorname{Sp} K\langle x_1, \dots, x_r \rangle / I$$

(underlying set = maximal ideals)

3 Glued together using the admissible topology

Rigid-analytic varieties = generic fibers of formal schemes

 $\mathcal{O} = \{ |x| \le 1 \} \subseteq K \text{ valuation ring}$

0 < |t| < 1 pseudouniformizer

$$K = \left(\varprojlim_{n} \mathcal{O}/t^{n+1} \right) \left[\frac{1}{t} \right]$$
$$K\langle X_{1}, \dots, X_{r} \rangle = \left(\varprojlim_{n} \mathcal{O}[X_{1}, \dots, X_{r}]/t^{n+1} \right) \left[\frac{1}{t} \right]$$

Rigid varieties/K} $\stackrel{?}{\simeq} \left(\varprojlim_{n} \operatorname{Sch}_{\mathcal{O}/t^{n+1}}^{\mathrm{f.t.}} \right) \left[\frac{1}{t} \right]$

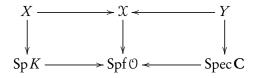
Theorem (Raynaud, Bosch-Lütkebohmert)

 $\begin{cases} qcqs rigid-analytic \\ varieties over K \end{cases} \simeq \begin{cases} admissible formal \\ schemes over O \end{cases} [admissible blowups^{-1}]$

Semistable models

Setup:

- $K = \mathbf{C}((t))$ from now on, so $\mathcal{O} = \mathbf{C}[[t]]$
- $\mathcal{X} = (X_n / \operatorname{Spec} \mathcal{O} / t^{n+1})$ semistable formal scheme
- $Y = X_0/\mathbf{C}$ with induced log structure log special fiber
- ► $X = X_K$ rigid-analytic generic fiber; X is called a formal model of X



Theorem (Semistable reduction)

Every smooth qcqs rigid-analytic variety X over $K = \mathbf{C}((t))$ admits a semistable formal model \mathfrak{X} over $\mathbf{C}[[t^{1/m}]]$ for some $m \ge 1$.

Ш

The Betti homotopy type

Log schemes simplified

Working definition

A (DF) log structure on a scheme X is a tuple of maps from line bundles to O_X

$$s_i: L_i \to \mathcal{O}_X, \quad i = 1, \dots, s.$$

Examples.

E.g. $X = \operatorname{Spec} \mathbb{C}[t]$ or $\operatorname{Spec} \mathbb{C}[[t]]$ and $Y = \{t = 0\}, \{t : \mathcal{O}_X \to \mathcal{O}_X\}$

2 Restrict the log structure to $Y: \{s_i = \mathcal{O}_Y(-Y_i)|_Y \to \mathcal{O}_Y\}$

E.g. $Y = \operatorname{Spec} \mathbf{C}$ with $\{0: \mathcal{O}_Y \to \mathcal{O}_Y\}$ standard log point

This applies also to Y = X₀ the special fiber of our semistable formal scheme X over O.

Kato–Nakayama space X_{log} of a log scheme X

Functor $X \mapsto X_{log}$: {f.t. log schemes/C} \rightarrow {topological spaces}, modeled on

$$\overline{\mathbf{C}} = \mathbf{R}_{\geq 0} \times \mathbf{S}^1 \qquad \mathbf{O} \xrightarrow{(r,\theta) \mapsto r \cdot \theta} \bullet \mathbf{C}$$

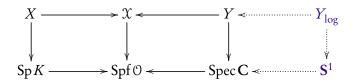
X a scheme of finite type over **C** with a log structure

$$s_i: L_i \to \mathcal{O}_X \quad \longleftrightarrow \quad \sigma_i: X \to [\mathbf{A}^1/\mathbf{G}_m].$$

We take the pull-back

E.g. For the standard log point (Spec C, 0: $0 \rightarrow 0$) we have $X_{log} = S^1$.

The Kato–Nakayama space of the special fiber Y



Slogan: the topology Y_{log} reflects the topology of X with its monodromy

Theorem (Nakayama–Ogus)

- 1 The space Y_{log} is a manifold with corners.
- **2** If Y is proper, then $Y_{\log} \rightarrow S^1$ is proper and a locally trivial fibration.

The Betti homotopy type

Theorem (A.–Talpo)

The homotopy type of Y_{log}/S^1 does not depend on the choice of \mathfrak{X} . This gives rise to a functor

 Ψ_{rig} : {smooth rigid-analytic spaces over K} \longrightarrow (∞ -category of spaces/ S^1).

Theorem (Stewart-Vologodsky, Berkovich)

The cohomology groups

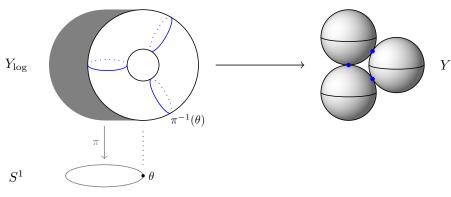
$$H^*(\widetilde{\Psi}(X), \mathbf{Z}) := H^*(\widetilde{Y}_{\log}, \mathbf{Z}), \quad \widetilde{Y}_{\log} = Y_{\log} \times_{\mathbf{S}^1} \mathbf{R}(1)$$

carry a natural MHS.

Examples

Example 1. DWORK ELLIPTIC CURVE

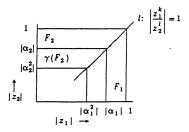
$$X = \{ t(X^{3} + Y^{3} + Z^{3}) = XYZ \}$$
$$X = \{ t(X^{3} + Y^{3} + Z^{3}) = XYZ \}$$
$$Y = \{ 0 = XYZ \}$$



Examples

Example 2. NON-ARCHIMEDEAN HOPF SURFACE

$$X = (\mathbf{A}_{\mathbf{C}((t))}^2 \setminus \mathbf{0})_{\mathrm{an}}/t^{\mathbf{Z}}$$



(source: H. Voskuil Non archimedean Hopf surfaces 1991)

Special fiber $Y = \operatorname{Bl}_{P} \mathbf{P}_{\mathbf{C}}^{2} / (\tilde{L} \sim E)$. We have $\Psi_{\operatorname{rig}}(X) \simeq \mathbf{S}^{1} \times \mathbf{S}^{3}$. Coincidence?

IV

Projective reduction and Hodge symmetry

Rigid varieties with projective reduction

Definition (Li)

A rigid variety X over K has *projective reduction* if there exists a formal model \mathcal{X} with $Y = \mathcal{X}_0$ projective.

Intuition: projective reduction ~ Kähler

Theorem (Li, Hansen-Li)

If X has projective reduction, then $\operatorname{Pic}^{0}(X)$ is proper and $h^{1,0}(X) = h^{0,1}(X)$.

They **asked** whether then $h^{p,q}(X) = h^{q,p}(X)$ for all $p, q \ge 0$.

This was **disproved** by Petrov (2020): he found \mathfrak{X} over \mathbb{Z}_p with good reduction and $h^{3,0}(X) \neq h^{0,3}(X)$.

Hodge symmetry over C((t))

Theorem (A. 2020)

If $X/\mathbb{C}((t))$ is a smooth and proper rigid-analytic space with projective reduction, then $h^{p,q}(X) = h^{q,p}(X)$ for $p,q \ge 0$.

Proof steps:

(Nakkajima) The weight-monodromy thm implies log hard Lefschetz

$$c_1(L)^k \colon H^{d-k}(Y, \Omega^{\bullet}_{Y/\mathbb{C}}(\log)) \xrightarrow{\sim} H^{d+k}(Y, \Omega^{\bullet}_{Y/\mathbb{C}}(\log)).$$

This is compatible with the Hodge filtrations, showing

$$\dim H^p(Y, \Omega^q_{Y/\mathbb{C}}(\log)) = \dim H^{d-q}(Y, \Omega^{d-p}_{Y/\mathbb{C}}(\log)).$$

By log Serre duality (Tsuji), the latter equals dim $H^q(Y, \Omega_{Y/C}^p(\log))$.

2 (Illusie–Kato–Nakayama) The relative log Hodge cohomology $H^q(\mathfrak{X}, \Omega^p_{\mathfrak{X}/\mathbb{O}}(\log))$ is locally free and commutes with base change.

V

The Riemann–Hilbert correspondence

Classical Riemann-Hilbert correspondence

For a complex manifold X, one has the equivalence

 $LocSys_{\mathbb{C}}(X) \simeq MIC(X)$

between C-local systems and holomorphic vector bundles with an integrable connection.

Theorem (Deligne's Riemann–Hilbert correspondence) For a smooth complex algebraic variety *X*, one has an equivalence

$$\operatorname{LocSys}_{\mathbf{C}}(X_{\operatorname{an}}) \simeq \operatorname{MIC}_{\operatorname{reg}}(X),$$

where $MIC_{reg}(X)$ denotes algebraic vector bundles with an integrable connection which are regular at infinity.

Riemann-Hilbert on rigid-analytic spaces

 $MIC(X/C) = \{C\text{-linear int. conn. on } X\} \qquad (\text{so } \tau = t \frac{d}{dt} \text{ acts})$

 $\operatorname{MIC}_{\operatorname{reg}}(X/\mathbb{C}) \subseteq \operatorname{MIC}(X/\mathbb{C})$ regular connections

 $LocSys_{C}(\Psi_{rig}(X)) = C$ -local systems on Y_{log} (indep. of model \mathfrak{X})

"Theorem" (Riemann-Hilbert for rigid-analytic spaces)

Let X be a smooth qcqs rigid-analytic space over K = C((t)). There is an equivalence of categories

$$\operatorname{LocSys}_{\mathbf{C}}(\Psi_{\operatorname{rig}}(X)) \simeq \operatorname{MIC}_{\operatorname{reg}}(X/\mathbf{C}).$$

Proof relies on a similar theorem for regular log connections on Y.

Definition (tentative)

A variation of mixed Hodge structure (VMHS) on X consists of

- ► $V \in MIC_{reg}(X/\mathbb{C})$ with a Griffiths-transverse Hodge filtration $F^{\bullet}V$,
- ▶ $\mathcal{V} \in \operatorname{LocSys}_{\mathbf{Q}}(\Psi_{\operatorname{rig}}(X))$ with a weight filtration $W_{\bullet}\mathcal{V}$,
- an isomorphism $\iota: \operatorname{RH}(V) \simeq \mathcal{V}_{\mathbf{C}}$,

such that for every classical point s: $\operatorname{Sp} C((t^{1/N})) \to X$, the pull-back

 $s^*(V, F^{\bullet}, \mathcal{V}, W_{\bullet}, \iota)$

is an "admissible limit VMHS."

VI

Open questions

Some open questions

1 What are the possible $\pi_1(\Psi_{rig}(X))$?

compact com- plex manifolds	compact Kähler manifolds	proper smooth rigid varieties over $C((t))$	with projec- tive reduction
$\pi_1(X)$ =any f.p. group (Taubes)	Kähler groups		can $\pi_1(\Psi_{rig}(X))$ be non-Kähler?

2 Can $\Psi_{rig}(X)$ be homotopy equivalent to S^{2n} ?

S Link between the rigid motive of X (Ayoub) and the log motive of Y (Binda-Park-Østvaer)?