PURITY THEOREM

JEDRZEJ GARNEK

1. INTRODUCTION

Notation: Xy — over k = F,, of dimension r. X = (Xo)s.
Suppose that Xg is smooth and projective. Recall that, as shown on the last lecture:

2r
Z(Xo,t) = [[ &)Y, where Pi(t) = det(I — Ft{H'(X,Qy)) = [[(1 - ay5t) € Z[t].
i=0 j
The remaining part of Weil’s conjecture is:

Theorem 1 (Weil’s Riemann hypothesis). Xo — smooth and projective, X\ — an eigenvalue of F' on H' = all

complex conjugates of X have absolute value ¢'/2.

There are two proofs due to Deligne:

e by induction, using Lefschetz fibration,
e by "generalizing" it to purity theorem.

2. PURITY THEOREM FOR PROPER AND SMOOTH MORPHISMS

Note that H (X, Q) = (R fo,+(Q¢))z. This suggest a more general version for proper and smooth f: X — S.
In order to formulate it we need:

Definition. A constructible Qp-sheaf Fo on a k-scheme Xg is pure of weight i if Vocx, - closed Vu@[%c every
Qe-eigenvalue A of F,, on Fz satisfies: '

LN = (#r(x)) 2.
Remark. If it this holds for a fized v, F is t-pure.

Remark. If a k-vector space has an action of Frobenius with eigenvalues as above, we will also say that it is
pure of weight w.

Properties of pure sheaves: Fy, Gg are pure of weight wy, wy =

e Fy — pure of weight —wy,
o Fy® Gp — pure of weight wy + wo,
e Fo(d) — pure of weight wy — 2d.

Theorem 2 (purity for proper and smooth morphisms). Let fo: Xo — Yy — a proper and smooth morphism of
k = F,-varieties. Let Fo — a pure lisse sheaf on Xq of weight i. Then, for all j, R’ fo..Fo is pure of weight i+ j.

Note that this implies Weil’s Riemann Theorem for Yy = Spec k, Fo = Qy.

Yy is a g-Weil number of weight )
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3. PURITY FOR NON-PROPER MORPHISMS
We will suppose now that Xy is arbitrary. Recall that then:
Py(t) = det(I — Ft|HI(X, Q).
Example. Let Ey be an elliptic curve over k, Zy = {p1,p2} AN Ey, Xo=Ey\ 2o 2% Ey. Then:
0— (Jo(Z/") — Z)" — (io)«(Z/0") — 0,

which gives:

HO(Z,
0 HO((E%?) H)U, Q) ——— HYE,Q) ——— 0

%&)@)AO) ~ Q,(0) weight 1 by purity

and thus H}(U,Qy) is not pure.

Definition. F is mized with weights wy, ..., wy, if it has a finite increasing filtration by constructible Qg-
subsheaves with quotients pure of weights w1, ..., wy,.

Theorem 3 (Deligne’s purity theorem). Let fo : Xg — Yy — a separated morphism of k-varieties. Let Fy — a
mized sheaf on Xo of weights < i. Then, for all j, R7(fo)1Fo is mized of weights < i+ j. Moreover, each weight
of R*(fohFo is congruent mod Z to a weight of Fo.

Corollary 4 (Riemann’s hypothesis for general varieties). X — a variety over k =H!(X,Qy) is mized with
weights <1, i.e.
Volo(aij)| = ¢?  for some | = lij € Z,1 <.

Corollary 5 (RH for proper smooth varieties). X — smooth and proper =H'(X,Qy) is pure of weight i.

Proof. By Poincaré duality:
H'(X,Qq) = H* (X, Qq(r))".

Deligne purity implies that H?(X, Q) is mixed of weight < i and H* ~H(X,Qq(r)) = H* ~/(X,Qy)(r) is mixed
of weight < (2r — i) — 2r = —i. Thus H*(X,Qy) is pure of weight i. O

Another applications:

e hard Lefschetz theorem: (not proven today)
Theorem 6. The map:
cr(H)": H ™ (X, Qo) — HE (X, Qo)
(n-fold cup product by the cohomology class of hyperplane section) is an isomorphism.

e Lang—Weil estimates.

4. LANG-WEIL ESTIMATES
Idea: by Riemann’s hypothesis:
2r
#X(Fy) = tr(F[H') ~ ¢ + () dimg H') - ¢/
i=0 i<2r
Theorem 7 (Lang-Weil estimates). Let X C P} be irreducible of dimension r and degree d. Then:
#X (k) — "] < (d=1)(d=2)¢" > + A(n, d.r)g "
Lemma 8 ("weak Lang-Weil"). #X (k) < Ai(n,d,r)q"
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Proof. Induction on n, using:

IX(R) < D X N H)(EK),

AeP?

where Hy = {z9 = \z1}. O
Lemma 9. #{H C P} - k-hyperplane : X N H s not geo. irreducible or not gen. reduced } < As(n,d,r)-q" "
Proof of Lang-Weil. For r = 0 — easy, for r = 1 — we take the normalization of X and apply Riemann’s hypotheses
to it (exercise!).
T(r—1) = T(r): we use induction on n. Let:

Wi={(z,H) e X x (P})":x € H}.
Then, using pr; : W — X:
#W(Fq) = #Pn_l(Fq) ) #X(Fq)
and on the other hand, using pry : W — (P})*:
#W (Fg) = D [(X N H)(Fg)| =D 1(X N H)(E)| + Y [(X N Hz)(F,)l
H Hy

H>

where Hi’s are such that X N H; is not geometrically irreducible or not generically reduced.

o By Lemma [0} #{H:} = [#(P")" = #{Hp}| < A3 - ¢" ",
e By Lemma : (X NH;p)(Fy)| <d-Ai1g" Y,

(note that the number of irreducible components of (X N Hy)yeq is < d, and each has degree < d.)
e By induction on n: [(X N Ha)pea(Fy) — ¢ < (d—1)-(d—2)¢g" 32+ A(n — 1,d,7 — 1) - ¢" 2.

Proof of Lemma [9) Let V C P" be a closed subvariety of dimension r. Consider the set:

{(H1,...,Hep) € (P10 (H; NV # 2}

One can show it is a hypersurface Z(Ry) in (P™)"*! (where Ry is a polynomial in (r + 1) sets of (n + 1)
variables), homogeneous of degree d in each set of variables).

Definition. Ry is the Cayley form of V. Coefficients of Ry are the Chow coordinates of V, denoted
c(V) € PM where M = (n+1)-(r+1)—1.

Definition. If D =37, n;V;, then Rp :=[[; Ry}, ¢(D) = coefficients of Rp.
Proof of Lemma[d We want to estimate the cardinality of:
R:={H € (P")*: HN R is not a variety}.
Let:
C = {c¢(D): D is acycle of dim. r and degree d, which is not a variety }
= Z(¢1,...,05) CPY,

where ¢; € Fp[...] depend only on n, r and d. Note that Rxqp(...) = Rx(...,H) and thus cx(H) := ¢(X N H)
is a tuple of forms of degree d in the "variable" H € (P")*. Then:

RCZ(¢1ocx,...,¢s0cx)

and we can use Lemma 8 for each of hypersurfaces Z(¢; o cx) (dimension = n — 1, degree = deg ¢;). O

5. ABOUT THE PROOF OF PURITY THEOREM

Very general outline:
(1) Prove purity for real sheaves (i.e. characteristic polynomial of Frobenius has real coefficients).
(2) Reduce to the purity of H(PP!, j,F), where Fo — sheaf on Uy, jo : Uy C P*.
(3) Use Fourier transform — it is real (and thus pure) and its stalk is H' (P!, j,.F).
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6. FOURIER TRANSFORM

With every Qg-constructible sheaf Fy on Xy we can associate the function
fro X(Fgn) = C, f]:o(:f) =t (Fz|(Fo)x)
for every n. We can define also f%° for Ky € D%( Xy, Q) as:
fKo — Z(_l)ifwko_
i
Then:
(1) ff0®90 — fJ:o .fg()’
(2) foro = fKooy,
(3) fRo%o(2) = X ex, m o) £ (1)
Remark (optional). If F is lisse and semisimple, then 7 determines F, because the Frobenii are dense in the
monodromy group.
From now on: Xy = Al. Let v : F, — @X be a fixed non-trivial additive character. Note that ¢ induces a

map Fgn LN F, i @X, which we will denote also by .

Question. How to construct a sheaf Fo with f5 = )¢

Definition. The Artin-Schreier sheaf Lo(1)) on A(l) is the sheaf corresponding to the representation:
Fl(Ava) - Fq ﬂ} @X7
where the first map comes from the finite étale cover:
A} = SpecF,[y] — SpecF,[x], z—yl—y.
Lemma 10. f2o®)(z) =~ 1(x).

Proof. Note that the action of m on Lo()z is (by definition) given by the above homomorphism m — Q.
Let o be the arithmetic Frobenius and let x € A}(F,n). We want to compute its image via:

Wl(A(l),f) — Fq

(i.e. in the Galois group of Artin-Schreier cover). Note that o(z) := z9", o(y) := y¢" . Thus:

y' o= yte
v o= yital=yta+al
gy = yta+al+.. 427 = Y+ tre,. /v, (7)

and o maps to translation by trg,_, /r,(z). Thus o acts by multiplication by ¢(try,, /r, (%)) =: ¥(x) on the stalk
and F, by ¢~ (z). O

Definition. Define the Fourier transform of f :Fyn — @X with respect to :

FTy(f) : B = Q" FTy(H)@) = Y fly)d(-ay).

yEFyn

Question. Given Fy, how to construct sheaf FTy(Fo) satisfying:
fFTw(J:o) — FT¢(fJ:0)?

Definition.
FTy(Ko) := Rpry (pry Ko @ m*Lo(¥)) [1]
where pr; : A x Al — Al and m : A x A — Al is the multiplication.
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Properties:
(1) if Ko = Fo is a sheaf, F'T;(Fp) is a complex with cohomology concentrated at most in degree —1,0, 1,
(2) frTe0) = —FTy(f70).
(3) (FTy(Fo))a = HA(A, F © L{)), where o (x) = p(a - @),
Proof. (2)
FEToFo) () = — pRopra(prs Kowm Lo(w)) () —

= - X kel
(y,) (AT xAL)(Fyn)

= - > Ry ey, a)
(yx)E(AT X AL)(Fgn)

= - > @ AWy
(yx) (AT X AL)(Fgn)

= - > o) -z y).

(y,x)€(AT XAL)(Fgn)

SOME DEFINITIONS

e constructible sheaves:
— F on X, is constructible if it is locally constant in etale topology and has finite stalks,
— F is Zy-constructible if F = (F,,), where F,, — constructible Z/¢™-module,
— category of Qy-constructible sheaves — Zy-constructible sheaves with Hom’s tensored by Qy,
(analogously we define E-constructible sheaves for [E : Qp] < 00)
— category of Qg-constructible sheaves — E-constructible sheaves for all [E : Q] < oo with Homs:

Hom@(}", G):=Homp(F ®p F,G®gp F)

(where F is E-constr. and G is E'-constr. and F D E, F’ is a finite field extension)
o lisse Qp-sheaf: F = (F,), where F,, is locally constant for each n,
o Ny =2 tr(F™|HE)
e cohomology with compact support:
— extension by zero: j: U — X — open embedding =j1F — sheaf associated with

FV), oV)cU

0, otherwise.

(¢:V—>X)0—>{

— HYX,F) = H(X, jF), where jo : Xo < X{, is an open embedding with dense image and X is
proper over k.
— f:X = S=RAF = R f.(jiF), where j : X < X' — open embedding with dense image into a
proper S-scheme X'
e DY(A},Qy) is the "derived" category of bounded complexes of étale Qp-sheaves on A} with constructible
cohomology sheaves
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