PURITY THEOREM

JĘDRZEJ GARNEK

1. Introduction

Notation: X_0 – over $k = \mathbb{F}_q$, of dimension r. $X = (X_0)_{\overline{k}}$. Suppose that X_0 is smooth and projective. Recall that, as shown on the last lecture:

$$Z(X_0, t) = \prod_{i=0}^{2r} P_i(t)^{(-1)^i}, \text{ where } P_i(t) = \det(I - Ft | H^i(X, \mathbb{Q}_\ell)) = \prod_j (1 - \alpha_{ij}t) \in \mathbb{Z}[t].$$

The remaining part of Weil's conjecture is:

Theorem 1 (Weil's Riemann hypothesis). X_0 – smooth and projective, λ – an eigenvalue of F on $H^i \Rightarrow all$ complex conjugates of λ have absolute value $q^{i/2}$.

There are two proofs due to Deligne:

- by induction, using Lefschetz fibration,
- by "generalizing" it to purity theorem.

2. Purity theorem for proper and smooth morphisms

Note that $H^i(X, \mathbb{Q}_\ell) = (R^i f_{0,*}(\mathbb{Q}_\ell))_{\overline{k}}$. This suggest a more general version for proper and smooth $f: X \to S$. In order to formulate it we need:

Definition. A constructible $\overline{\mathbb{Q}_{\ell}}$ -sheaf \mathcal{F}_0 on a k-scheme X_0 is **pure** of weight i if $\forall_{x \in X_0 \text{ - } closed} \forall_{\iota: \overline{\mathbb{Q}_{\ell}} \to \mathbb{C}}$ every \mathbb{Q}_{ℓ} -eigenvalue λ of F_x on $\mathcal{F}_{\overline{x}}$ satisfies:

$$|\iota(\lambda)| = (\#\kappa(x))^{i/2}.$$

Remark. If it this holds for a fixed ι , \mathcal{F} is ι -pure.

Remark. If a k-vector space has an action of Frobenius with eigenvalues as above, we will also say that it is pure of weight w.

Properties of pure sheaves: \mathcal{F}_0 , \mathcal{G}_0 are pure of weight $w_1, w_2 \Rightarrow$

- \mathcal{F}_0^{\vee} pure of weight $-w_1$,
- $\mathcal{F}_0 \otimes \mathcal{G}_0$ pure of weight $w_1 + w_2$,
- $\mathcal{F}_0(d)$ pure of weight $w_1 2d$.

Theorem 2 (purity for proper and smooth morphisms). Let $f_0: X_0 \to Y_0$ – a proper and smooth morphism of $k = \mathbb{F}_q$ -varieties. Let \mathcal{F}_0 – a pure lisse sheaf on X_0 of weight i. Then, for all j, $R^j f_{0,*} \mathcal{F}_0$ is pure of weight i + j.

Note that this implies Weil's Riemann Theorem for $Y_0 = \operatorname{Spec} k$, $\mathcal{F}_0 = \mathbb{Q}_\ell$.

 $^{1(\}alpha_{ij} \text{ is a } q\text{-Weil number of weight } i)$

J. GARNEK

3. Purity for non-proper morphisms

We will suppose now that X_0 is arbitrary. Recall that then:

$$P_i(t) = \det(I - Ft|H_c^i(X, \mathbb{Q}_\ell)).$$

Example. Let E_0 be an elliptic curve over k, $Z_0 = \{p_1, p_2\} \stackrel{i_0}{\hookrightarrow} E_0$, $X_0 = E_0 \setminus Z_0 \stackrel{j_0}{\hookrightarrow} E_0$. Then:

$$0 \to (j_0)_!(\mathbb{Z}/\ell^n) \to \mathbb{Z}/\ell^n \to (i_0)_*(\mathbb{Z}/\ell^n) \to 0$$

which gives:

$$0 \longrightarrow \frac{H^0(Z, \mathbb{Q}_{\ell})}{H^0(E, \mathbb{Q}_{\ell})} \longrightarrow H^1_c(U, \mathbb{Q}_{\ell}) \longrightarrow H^1(E, \mathbb{Q}_{\ell}) \longrightarrow 0$$

$$\downarrow \sim \qquad \qquad \qquad \downarrow \sim$$

$$\frac{\mathbb{Q}_{\ell}(0) \oplus \mathbb{Q}_{\ell}(0)}{\mathbb{Q}_{\ell}(0)} \cong \mathbb{Q}_{\ell}(0) \qquad weight \ 1 \ by \ purity$$

and thus $H_c^1(U, \mathbb{Q}_\ell)$ is not pure.

Definition. \mathcal{F} is **mixed** with weights w_1, \ldots, w_n , if it has a finite increasing filtration by constructible \mathbb{Q}_{ℓ} -subsheaves with quotients pure of weights w_1, \ldots, w_n .

Theorem 3 (Deligne's purity theorem). Let $f_0: X_0 \to Y_0$ – a separated morphism of k-varieties. Let \mathcal{F}_0 – a mixed sheaf on X_0 of weights $\leq i$. Then, for all j, $R^j(f_0)_!\mathcal{F}_0$ is mixed of weights $\leq i+j$. Moreover, each weight of $R^w(f_0)_!\mathcal{F}_0$ is congruent mod \mathbb{Z} to a weight of \mathcal{F}_0 .

Corollary 4 (Riemann's hypothesis for general varieties). X – a variety over $k \Rightarrow H_c^i(X, \mathbb{Q}_\ell)$ is mixed with $weights \leq i$, i.e.

$$\forall_{\sigma} |\sigma(\alpha_{ij})| = q^{l/2}$$
 for some $l = l_{ij} \in \mathbb{Z}, l \leq i$.

Corollary 5 (RH for proper smooth varieties). X_0 – smooth and proper $\Rightarrow H^i(X, \mathbb{Q}_\ell)$ is pure of weight i.

Proof. By Poincaré duality:

$$H^{i}(X, \mathbb{Q}_{\ell}) \cong H^{2r-i}(X, \mathbb{Q}_{\ell}(r))^{\vee}.$$

Deligne purity implies that $H^i(X, \mathbb{Q}_{\ell})$ is mixed of weight $\leq i$ and $H^{2r-i}(X, \mathbb{Q}_{\ell}(r)) = H^{2r-i}(X, \mathbb{Q}_{\ell})(r)$ is mixed of weight $\leq (2r-i) - 2r = -i$. Thus $H^i(X, \mathbb{Q}_{\ell})$ is pure of weight i.

Another applications:

• hard Lefschetz theorem: (not proven today)

Theorem 6. The map:

$$c_1(H)^n: H^{2r-n}_{et}(X, \mathbb{Q}_\ell) \to H^{2r+n}_{et}(X, \mathbb{Q}_\ell)$$

(n-fold cup product by the cohomology class of hyperplane section) is an isomorphism.

• Lang-Weil estimates.

4. Lang-Weil estimates

Idea: by Riemann's hypothesis:

$$\#X(\mathbb{F}_q) = \sum_{i=0}^{2r} \operatorname{tr}(F|H^i) \approx q^r + (\sum_{i<2r} \dim_k H^i) \cdot q^{r-1/2}$$

Theorem 7 (Lang-Weil estimates). Let $X \subset \mathbb{P}^n_k$ be irreducible of dimension r and degree d. Then:

$$|\#X(k) - q^r| \le (d-1)(d-2)q^{r-1/2} + A(n,d,r)q^{r-1}.$$

Lemma 8 ("weak Lang-Weil"). $\#X(k) \leq A_1(n,d,r)q^r$

Proof. Induction on n, using:

$$|X(k)| \le \sum_{\lambda \in \mathbb{P}^1} |(X \cap H_\lambda)(k)|,$$

where $H_{\lambda} = \{x_0 = \lambda x_1\}.$

Lemma 9. $\#\{H\subset \mathbb{P}^n_k - k$ -hyperplane: $X\cap H$ is not geo. irreducible or not gen. reduced $\}\leq A_2(n,d,r)\cdot q^{n-1}$

Proof of Lang-Weil. For r = 0 – easy, for r = 1 – we take the normalization of X and apply Riemann's hypotheses to it (exercise!).

 $T(r-1) \Rightarrow T(r)$: we use induction on n. Let:

$$W := \{(x, H) \in X \times (\mathbb{P}^n_k)^* : x \in H\}.$$

Then, using $\operatorname{pr}_1:W\to X$:

$$#W(\mathbb{F}_q) = #\mathbb{P}^{n-1}(\mathbb{F}_q) \cdot #X(\mathbb{F}_q)$$

and on the other hand, using $\operatorname{pr}_2:W\to(\mathbb{P}^n_k)^*$:

$$\#W(\mathbb{F}_q) = \sum_{H} |(X \cap H)(\mathbb{F}_q)| = \sum_{H_1} |(X \cap H_1)(\mathbb{F}_q)| + \sum_{H_2} |(X \cap H_2)(\mathbb{F}_q)|$$

where H_1 's are such that $X \cap H_1$ is not geometrically irreducible or not generically reduced.

- By Lemma 9: $\#\{H_1\} = |\#(\mathbb{P}^n)^* \#\{H_2\}| \le A_2 \cdot q^{n-1}$,
- By Lemma 8: $|(X \cap H_1)(\mathbb{F}_q)| \le d \cdot A_1 q^{r-1}$, (note that the number of irreducible components of $(X \cap H_1)_{red}$ is $\le d$, and each has degree $\le d$.)
- By induction on $n: |(X \cap H_2)_{red}(\mathbb{F}_q) q^{r-1}| \le (d-1) \cdot (d-2)q^{r-3/2} + A(n-1,d,r-1) \cdot q^{r-2}$.

Proof of Lemma 9. Let $V \subset \mathbb{P}^n$ be a closed subvariety of dimension r. Consider the set:

$$\{(H_1,\ldots,H_{r+1})\in((\mathbb{P}^n)^*)^{\times(r+1)}:\bigcap_iH_i\cap V\neq\varnothing\}.$$

One can show it is a hypersurface $Z(R_V)$ in $(\mathbb{P}^{n*})^{r+1}$ (where R_V is a polynomial in (r+1) sets of (n+1) variables), homogeneous of degree d in each set of variables).

Definition. R_V is the Cayley form of V. Coefficients of R_V are the Chow coordinates of V, denoted $c(V) \in \mathbb{P}^M$, where $M = (n+1) \cdot (r+1) - 1$.

Definition. If $D = \sum_i n_i V_i$, then $R_D := \prod_i R_{V_i}^{n_i}$, c(D) = coefficients of R_D .

Proof of Lemma 9. We want to estimate the cardinality of:

$$R := \{ H \in (\mathbb{P}^n)^* : H \cap R \text{ is not a variety} \}.$$

Let:

$$C := \{c(D) : D \text{ is a cycle of dim. } r \text{ and degree } d, \text{ which is not a variety }\}$$

= $Z(\phi_1, \ldots, \phi_s) \subset \mathbb{P}^M$,

where $\phi_i \in \mathbb{F}_p[...]$ depend only on n, r and d. Note that $R_{X \cap H}(...) = R_X(..., H)$ and thus $c_X(H) := c(X \cap H)$ is a tuple of forms of degree d in the "variable" $H \in (\mathbb{P}^n)^*$. Then:

$$R \subset Z(\phi_1 \circ c_X, \dots, \phi_s \circ c_X)$$

and we can use Lemma 8 for each of hypersurfaces $Z(\phi_i \circ c_X)$ (dimension = n-1, degree = deg ϕ_i).

5. About the proof of purity theorem

Very general outline:

- (1) Prove purity for real sheaves (i.e. characteristic polynomial of Frobenius has real coefficients).
- (2) Reduce to the purity of $H^1(\mathbb{P}^1, j_!\mathcal{F})$, where \mathcal{F}_0 sheaf on $U_0, j_0: U_0 \subset \mathbb{P}^1$.
- (3) Use Fourier transform it is real (and thus pure) and its stalk is $H^1(\mathbb{P}^1, j_!\mathcal{F})$.

4 J. GARNEK

6. Fourier transform

With every \mathbb{Q}_{ℓ} -constructible sheaf \mathcal{F}_0 on X_0 we can associate the function

$$f^{\mathcal{F}_0}: X(\mathbb{F}_{q^n}) \to \mathbb{C}, \quad f^{\mathcal{F}_0}(x) := \operatorname{tr}(F_x|(\mathcal{F}_0)_x)$$

for every n. We can define also f^{K_0} for $K_0 \in D^b_c(X_0, \mathbb{Q}_\ell)$ as:

$$f^{K_0} := \sum_{i} (-1)^i f^{\mathcal{H}^i K_0}.$$

Then:

- $(1) f^{\mathcal{F}_0 \otimes \mathcal{G}_0} = f^{\mathcal{F}_0} \cdot f^{\mathcal{G}_0},$
- $(2) f^{g^*\mathcal{K}_0} = f^{\mathcal{K}_0} \circ g,$
- (3) $f^{\mathbf{R}g_!\mathcal{K}_0}(x) = \sum_{y \in X_x(\mathbb{F}_{a^n})} f^{\mathcal{K}_0}(y)$.

Remark (optional). If \mathcal{F} is lisse and semisimple, then $f^{\mathcal{F}}$ determines \mathcal{F} , because the Frobenii are dense in the monodromy group.

From now on: $X_0 = \mathbb{A}^1$. Let $\psi : \mathbb{F}_q \to \overline{\mathbb{Q}_\ell}^{\times}$ be a fixed non-trivial additive character. Note that ψ induces a map $\mathbb{F}_{q^n} \stackrel{\text{tr}}{\to} \mathbb{F}_q \stackrel{\psi}{\to} \overline{\mathbb{Q}_\ell}^{\times}$, which we will denote also by ψ .

Question. How to construct a sheaf \mathcal{F}_0 with $f^{\mathcal{F}} = \psi$?

Definition. The Artin-Schreier sheaf $\mathcal{L}_0(\psi)$ on \mathbb{A}^1_0 is the sheaf corresponding to the representation:

$$\pi_1(\mathbb{A}^1_0, \overline{x}) \to \mathbb{F}_q \stackrel{\psi}{\to} \overline{\mathbb{Q}_\ell}^\times,$$

where the first map comes from the finite étale cover:

$$\mathbb{A}_0^1 = \operatorname{Spec} \mathbb{F}_q[y] \to \operatorname{Spec} \mathbb{F}_q[x], \qquad x \mapsto y^q - y.$$

Lemma 10. $f^{\mathcal{L}_0(\psi)}(x) = \psi^{-1}(x)$.

Proof. Note that the action of π_1 on $\mathcal{L}_0(\psi)_{\overline{x}}$ is (by definition) given by the above homomorphism $\pi_1 \to \overline{\mathbb{Q}_\ell}^{\times}$. Let σ be the arithmetic Frobenius and let $x \in \mathbb{A}^1_0(\mathbb{F}_{q^n})$. We want to compute its image via:

$$\pi_1(\mathbb{A}^1_0, \overline{x}) \to \mathbb{F}_q$$

(i.e. in the Galois group of Artin-Schreier cover). Note that $\sigma(x) := x^{q^n}$, $\sigma(y) := y^{q^n}$. Thus:

$$y^{q} = y + x$$

 $y^{q^{2}} = y^{q} + x^{q} = y + x + x^{q}$
...
 $y^{q^{n}} = y + x + x^{q} + \dots + x^{q^{n-1}} = y + \operatorname{tr}_{\mathbb{F}_{q^{n}}/\mathbb{F}_{q}}(x)$

and σ maps to translation by $\operatorname{tr}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(x)$. Thus σ acts by multiplication by $\psi(\operatorname{tr}_{\mathbb{F}_{q^n}/\mathbb{F}_q}(x)) =: \psi(x)$ on the stalk and F_x by $\psi^{-1}(x)$.

Definition. Define the **Fourier transform** of $f: \mathbb{F}_{q^n} \to \overline{\mathbb{Q}_\ell}^{\times}$ with respect to ψ :

$$FT_{\psi}(f): \mathbb{F}_{q^n} \to \overline{\mathbb{Q}_{\ell}}^{\times}, \quad FT_{\psi}(f)(x) := \sum_{y \in \mathbb{F}_{q^n}} f(y)\psi(-xy).$$

Question. Given \mathcal{F}_0 , how to construct sheaf $FT_{\psi}(\mathcal{F}_0)$ satisfying:

$$f^{FT_{\psi}(\mathcal{F}_0)} = FT_{\psi}(f^{\mathcal{F}_0})?$$

Definition.

$$FT_{\psi}(\mathcal{K}_0) := \mathbf{R} \operatorname{pr}_{1,!} \left(\operatorname{pr}_2^* \mathcal{K}_0 \otimes m^* \mathcal{L}_0(\psi) \right) [1]$$

where $\operatorname{pr}_i: \mathbb{A}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$ and $m: \mathbb{A}^1 \times \mathbb{A}^1 \to \mathbb{A}^1$ is the multiplication.

Properties:

- (1) if $\mathcal{K}_0 = \mathcal{F}_0$ is a sheaf, $FT_{\psi}(\mathcal{F}_0)$ is a complex with cohomology concentrated at most in degree $-1, 0, 1, 1, 1, \dots$
- (2) $f^{FT_{\psi}(\mathcal{F}_0)} = -FT_{\psi}(f^{\mathcal{F}_0}).$
- (3) $(FT_{\psi}(\mathcal{F}_0))_{\overline{a}} = H_c^1(\mathbb{A}^1, \mathcal{F} \otimes \mathcal{L}(\psi_a)), \text{ where } \psi_a(x) := \psi(a \cdot x).$

Proof. (2)

$$f^{FT_{\psi}(\mathcal{F}_{0})}(x) = -f^{\mathbf{R} \operatorname{pr}_{1,!} \left(\operatorname{pr}_{2}^{*} \mathcal{K}_{0} \otimes m^{*} \mathcal{L}_{0}(\psi)\right)}(x) =$$

$$= -\sum_{(y,x) \in (\mathbb{A}^{1} \times \mathbb{A}^{1})(\mathbb{F}_{q^{n}})} f^{\operatorname{pr}_{2}^{*} \mathcal{K}_{0} \otimes m^{*} \mathcal{L}_{0}(\psi)}(y,x)$$

$$= -\sum_{(y,x) \in (\mathbb{A}^{1} \times \mathbb{A}^{1})(\mathbb{F}_{q^{n}})} f^{\operatorname{pr}_{2}^{*} \mathcal{K}_{0}}(y,x) \cdot f^{m^{*} \mathcal{L}_{0}(\psi)}(y,x)$$

$$= -\sum_{(y,x) \in (\mathbb{A}^{1} \times \mathbb{A}^{1})(\mathbb{F}_{q^{n}})} f^{\mathcal{K}_{0}}(x) \cdot f^{\mathcal{L}_{0}(\psi)}(x \cdot y)$$

$$= -\sum_{(y,x) \in (\mathbb{A}^{1} \times \mathbb{A}^{1})(\mathbb{F}_{q^{n}})} f^{\mathcal{K}_{0}}(x) \cdot \psi^{-1}(x \cdot y).$$

Some definitions

• constructible sheaves:

- $-\mathcal{F}$ on X_{et} is constructible if it is locally constant in etale topology and has finite stalks,
- $-\mathcal{F}$ is \mathbb{Z}_{ℓ} -constructible if $\mathcal{F}=(\mathcal{F}_n)$, where \mathcal{F}_n constructible \mathbb{Z}/ℓ^n -module,
- category of \mathbb{Q}_{ℓ} -constructible sheaves \mathbb{Z}_{ℓ} -constructible sheaves with Hom's tensored by \mathbb{Q}_{ℓ} , (analogously we define E-constructible sheaves for $[E:\mathbb{Q}_p]<\infty$)
- category of $\overline{\mathbb{Q}_{\ell}}$ -constructible sheaves E-constructible sheaves for all $[E:\mathbb{Q}_p]<\infty$ with Homs:

$$\operatorname{Hom}_{\overline{\mathbb{Q}_{\ell}}}(\mathcal{F},\mathcal{G}) := \operatorname{Hom}_F(\mathcal{F} \otimes_E F, \mathcal{G} \otimes_E F)$$

(where \mathcal{F} is E-constr. and \mathcal{G} is E'-constr. and $F \supset E, E'$ is a finite field extension)

- lisse \mathbb{Q}_{ℓ} -sheaf: $\mathcal{F} = (\mathcal{F}_n)$, where \mathcal{F}_n is locally constant for each n,
- $\bullet \ N_m = \sum_{r=0}^{2d} \operatorname{tr}(F^m | H_c^r)$
- cohomology with compact support:
 - extension by zero: $j: U \hookrightarrow X$ open embedding $\Rightarrow j_! \mathcal{F}$ sheaf associated with

$$(\phi: V \to X) \mapsto \begin{cases} \mathcal{F}(V), & \varphi(V) \subset U \\ 0, & \text{otherwise.} \end{cases}$$

- $-H_c^i(X,\mathcal{F}) := H^i(X,j_!\mathcal{F})$, where $j_0: X_0 \hookrightarrow X_0'$ is an open embedding with dense image and X_0' is proper over k.
- $-f: X \to S \Rightarrow R^i f_! \mathcal{F} := R^i f'_*(j_! \mathcal{F})$, where $j: X \hookrightarrow X'$ open embedding with dense image into a proper S-scheme X'
- $D_c^b(\mathbb{A}_0^1, \overline{\mathbb{Q}_\ell})$ is the "derived" category of bounded complexes of étale $\overline{\mathbb{Q}_\ell}$ -sheaves on \mathbb{A}_0^1 with constructible cohomology sheaves

Email address: jgarnek@amu.edu.pl