
PURITY THEOREM

J�DRZEJ GARNEK

1. Introduction

Notation: X0 � over k = Fq, of dimension r. X = (X0)k.

Suppose that X0 is smooth and projective. Recall that, as shown on the last lecture:

Z(X0, t) =

2r∏
i=0

Pi(t)
(−1)i , where Pi(t) = det(I − Ft|H i(X,Q`)) =

∏
j

(1− αijt) ∈ Z[t].

The remaining part of Weil's conjecture is:

Theorem 1 (Weil's Riemann hypothesis). X0 � smooth and projective, λ � an eigenvalue of F on H i ⇒all

complex conjugates of λ have absolute value qi/2. 1

There are two proofs due to Deligne:

• by induction, using Lefschetz �bration,

• by "generalizing" it to purity theorem.

2. Purity theorem for proper and smooth morphisms

Note that H i(X,Q`) = (Rif0,∗(Q`))k. This suggest a more general version for proper and smooth f : X → S.

In order to formulate it we need:

De�nition. A constructible Q`-sheaf F0 on a k-scheme X0 is pure of weight i if ∀x∈X0 � closed ∀ι:Q`→C every

Q`-eigenvalue λ of Fx on Fx satis�es:

|ι(λ)| = (#κ(x))i/2.

Remark. If it this holds for a �xed ι, F is ι-pure.

Remark. If a k-vector space has an action of Frobenius with eigenvalues as above, we will also say that it is

pure of weight w.

Properties of pure sheaves: F0, G0 are pure of weight w1, w2 ⇒

• F∨0 � pure of weight −w1,

• F0 ⊗ G0 � pure of weight w1 + w2,

• F0(d) � pure of weight w1 − 2d.

Theorem 2 (purity for proper and smooth morphisms). Let f0 : X0 → Y0 � a proper and smooth morphism of

k = Fq-varieties. Let F0 � a pure lisse sheaf on X0 of weight i. Then, for all j, Rjf0,∗F0 is pure of weight i+ j.

Note that this implies Weil's Riemann Theorem for Y0 = Spec k, F0 = Q`.

1(αij is a q-Weil number of weight i)

1
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3. Purity for non-proper morphisms

We will suppose now that X0 is arbitrary. Recall that then:

Pi(t) = det(I − Ft|H i
c(X,Q`)).

Example. Let E0 be an elliptic curve over k, Z0 = {p1, p2}
i0
↪→ E0, X0 = E0 \ Z0

j0
↪→ E0. Then:

0→ (j0)!(Z/`n)→ Z/`n → (i0)∗(Z/`n)→ 0,

which gives:

0 H0(Z,Q`)
H0(E,Q`)

H1
c (U,Q`) H1(E,Q`) 0

Q`(0)⊕Q`(0)
Q`(0)

∼= Q`(0) weight 1 by purity

∼ ∼

and thus H1
c (U,Q`) is not pure.

De�nition. F is mixed with weights w1, . . . , wn, if it has a �nite increasing �ltration by constructible Q`-

subsheaves with quotients pure of weights w1, . . . , wn.

Theorem 3 (Deligne's purity theorem). Let f0 : X0 → Y0 � a separated morphism of k-varieties. Let F0 � a

mixed sheaf on X0 of weights ≤ i. Then, for all j, Rj(f0)!F0 is mixed of weights ≤ i+ j. Moreover, each weight

of Rw(f0)!F0 is congruent mod Z to a weight of F0.

Corollary 4 (Riemann's hypothesis for general varieties). X � a variety over k ⇒H i
c(X,Q`) is mixed with

weights ≤ i, i.e.
∀σ|σ(αij)| = ql/2 for some l = lij ∈ Z, l ≤ i.

Corollary 5 (RH for proper smooth varieties). X0 � smooth and proper ⇒H i(X,Q`) is pure of weight i.

Proof. By Poincaré duality:

H i(X,Q`) ∼= H2r−i(X,Q`(r))
∨.

Deligne purity implies that H i(X,Q`) is mixed of weight ≤ i and H2r−i(X,Q`(r)) = H2r−i(X,Q`)(r) is mixed

of weight ≤ (2r − i)− 2r = −i. Thus H i(X,Q`) is pure of weight i. �

Another applications:

• hard Lefschetz theorem: (not proven today)

Theorem 6. The map:

c1(H)n : H2r−n
et (X,Q`)→ H2r+n

et (X,Q`)

(n-fold cup product by the cohomology class of hyperplane section) is an isomorphism.

• Lang�Weil estimates.

4. Lang�Weil estimates

Idea: by Riemann's hypothesis:

#X(Fq) =
2r∑
i=0

tr(F |H i) ≈ qr + (
∑
i<2r

dimkH
i) · qr−1/2

Theorem 7 (Lang�Weil estimates). Let X ⊂ Pnk be irreducible of dimension r and degree d. Then:

|#X(k)− qr| ≤ (d− 1)(d− 2)qr−1/2 +A(n, d, r)qr−1.

Lemma 8 ("weak Lang-Weil"). #X(k) ≤ A1(n, d, r)q
r
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Proof. Induction on n, using:

|X(k)| ≤
∑
λ∈P1

|(X ∩Hλ)(k)|,

where Hλ = {x0 = λx1}. �

Lemma 9. #{H ⊂ Pnk � k-hyperplane : X ∩H is not geo. irreducible or not gen. reduced } ≤ A2(n, d, r) · qn−1

Proof of Lang-Weil. For r = 0 � easy, for r = 1 � we take the normalization ofX and apply Riemann's hypotheses

to it (exercise!).

T (r − 1)⇒ T (r): we use induction on n. Let:

W := {(x,H) ∈ X × (Pnk)∗ : x ∈ H}.

Then, using pr1 :W → X:

#W (Fq) = #Pn−1(Fq) ·#X(Fq)
and on the other hand, using pr2 :W → (Pnk)∗:

#W (Fq) =
∑
H

|(X ∩H)(Fq)| =
∑
H1

|(X ∩H1)(Fq)|+
∑
H2

|(X ∩H2)(Fq)|

where H1's are such that X ∩H1 is not geometrically irreducible or not generically reduced.

• By Lemma 9: #{H1} = |#(Pn)∗ −#{H2}| ≤ A2 · qn−1,
• By Lemma 8: |(X ∩H1)(Fq)| ≤ d ·A1q

r−1,

(note that the number of irreducible components of (X ∩H1)red is ≤ d, and each has degree ≤ d.)
• By induction on n: |(X ∩H2)red(Fq)− qr−1| ≤ (d− 1) · (d− 2)qr−3/2 +A(n− 1, d, r − 1) · qr−2.

�

Proof of Lemma 9. Let V ⊂ Pn be a closed subvariety of dimension r. Consider the set:

{(H1, . . . ,Hr+1) ∈ ((Pn)∗)×(r+1) :
⋂
i

Hi ∩ V 6= ∅}.

One can show it is a hypersurface Z(RV ) in (Pn∗)r+1 (where RV is a polynomial in (r + 1) sets of (n + 1)

variables), homogeneous of degree d in each set of variables).

De�nition. RV is the Cayley form of V . Coe�cients of RV are the Chow coordinates of V , denoted

c(V ) ∈ PM , where M = (n+ 1) · (r + 1)− 1.

De�nition. If D =
∑

i niVi, then RD :=
∏
iR

ni
Vi
, c(D) = coe�cients of RD.

Proof of Lemma 9. We want to estimate the cardinality of:

R := {H ∈ (Pn)∗ : H ∩R is not a variety}.

Let:

C := {c(D) : D is a cycle of dim. r and degree d, which is not a variety }
= Z(φ1, . . . , φs) ⊂ PM ,

where φi ∈ Fp[...] depend only on n, r and d. Note that RX∩H(. . .) = RX(. . . , H) and thus cX(H) := c(X ∩H)

is a tuple of forms of degree d in the "variable" H ∈ (Pn)∗. Then:

R ⊂ Z(φ1 ◦ cX , . . . , φs ◦ cX)

and we can use Lemma 8 for each of hypersurfaces Z(φi ◦ cX) (dimension = n− 1, degree = deg φi). �

5. About the proof of purity theorem

Very general outline:

(1) Prove purity for real sheaves (i.e. characteristic polynomial of Frobenius has real coe�cients).

(2) Reduce to the purity of H1(P1, j!F), where F0 � sheaf on U0, j0 : U0 ⊂ P1.

(3) Use Fourier transform � it is real (and thus pure) and its stalk is H1(P1, j!F).
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6. Fourier transform

With every Q`-constructible sheaf F0 on X0 we can associate the function

fF0 : X(Fqn)→ C, fF0(x) := tr (Fx|(F0)x)

for every n. We can de�ne also fK0 for K0 ∈ Db
c(X0,Q`) as:

fK0 :=
∑
i

(−1)ifHiK0 .

Then:

(1) fF0⊗G0 = fF0 · fG0 ,
(2) fg

∗K0 = fK0 ◦ g,
(3) fRg!K0(x) =

∑
y∈Xx(Fqn ) f

K0(y).

Remark (optional). If F is lisse and semisimple, then fF determines F , because the Frobenii are dense in the

monodromy group.

From now on: X0 = A1. Let ψ : Fq → Q`
×
be a �xed non-trivial additive character. Note that ψ induces a

map Fqn
tr→ Fq

ψ→ Q`
×
, which we will denote also by ψ.

Question. How to construct a sheaf F0 with fF = ψ?

De�nition. The Artin-Schreier sheaf L0(ψ) on A1
0 is the sheaf corresponding to the representation:

π1(A1
0, x) � Fq

ψ→ Q`
×
,

where the �rst map comes from the �nite étale cover:

A1
0 = SpecFq[y]→ SpecFq[x], x 7→ yq − y.

Lemma 10. fL0(ψ)(x) = ψ−1(x).

Proof. Note that the action of π1 on L0(ψ)x is (by de�nition) given by the above homomorphism π1 → Q`
×
.

Let σ be the arithmetic Frobenius and let x ∈ A1
0(Fqn). We want to compute its image via:

π1(A1
0, x)→ Fq

(i.e. in the Galois group of Artin�Schreier cover). Note that σ(x) := xq
n
, σ(y) := yq

n
. Thus:

yq = y + x

yq
2

= yq + xq = y + x+ xq

. . .

yq
n

= y + x+ xq + . . .+ xq
n−1

= y + trFqn/Fq(x)

and σ maps to translation by trFqn/Fq(x). Thus σ acts by multiplication by ψ(trFqn/Fq(x)) =: ψ(x) on the stalk

and Fx by ψ−1(x). �

De�nition. De�ne the Fourier transform of f : Fqn → Q`
×
with respect to ψ:

FTψ(f) : Fqn → Q`
×
, FTψ(f)(x) :=

∑
y∈Fqn

f(y)ψ(−xy).

Question. Given F0, how to construct sheaf FTψ(F0) satisfying:

fFTψ(F0) = FTψ(f
F0)?

De�nition.

FTψ(K0) := Rpr1,! (pr
∗
2K0 ⊗m∗L0(ψ)) [1]

where pri : A1 × A1 → A1 and m : A1 × A1 → A1 is the multiplication.



PURITY THEOREM 5

Properties:

(1) if K0 = F0 is a sheaf, FTψ(F0) is a complex with cohomology concentrated at most in degree −1, 0, 1,
(2) fFTψ(F0) = −FTψ(fF0).

(3) (FTψ(F0))a = H1
c (A1,F ⊗ L(ψa)), where ψa(x) := ψ(a · x).

Proof. (2)

fFTψ(F0)(x) = −fR pr1,!(pr∗2 K0⊗m∗L0(ψ))(x) =

= −
∑

(y,x)∈(A1×A1)(Fqn )

fpr
∗
2 K0⊗m∗L0(ψ)(y, x)

= −
∑

(y,x)∈(A1×A1)(Fqn )

fpr
∗
2 K0(y, x) · fm∗L0(ψ)(y, x)

= −
∑

(y,x)∈(A1×A1)(Fqn )

fK0(x) · fL0(ψ)(x · y)

= −
∑

(y,x)∈(A1×A1)(Fqn )

fK0(x) · ψ−1(x · y).

�

Some definitions

• constructible sheaves:

� F on Xet is constructible if it is locally constant in etale topology and has �nite stalks,

� F is Z`-constructible if F = (Fn), where Fn � constructible Z/`n-module,

� category of Q`-constructible sheaves � Z`-constructible sheaves with Hom's tensored by Q`,

(analogously we de�ne E-constructible sheaves for [E : Qp] <∞)

� category of Q`-constructible sheaves � E-constructible sheaves for all [E : Qp] <∞ with Homs:

HomQ`(F ,G) := HomF (F ⊗E F,G ⊗E F )

(where F is E-constr. and G is E′-constr. and F ⊃ E,E′ is a �nite �eld extension)

• lisse Q`-sheaf: F = (Fn), where Fn is locally constant for each n,

• Nm =
∑2d

r=0 tr(F
m|Hr

c )

• cohomology with compact support:

� extension by zero: j : U ↪→ X � open embedding ⇒j!F � sheaf associated with

(φ : V → X) 7→

{
F(V ), ϕ(V ) ⊂ U
0, otherwise.

� H i
c(X,F) := H i(X, j!F), where j0 : X0 ↪→ X ′0 is an open embedding with dense image and X ′0 is

proper over k.

� f : X → S ⇒Rif!F := Rif ′∗(j!F), where j : X ↪→ X ′ � open embedding with dense image into a

proper S-scheme X ′

• Db
c(A1

0,Q`) is the "derived" category of bounded complexes of étale Q`-sheaves on A1
0 with constructible

cohomology sheaves
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