
LIFTABILITY OF FROBENIUS
(JOINT WITH J. WITASZEK AND M. ZDANOWICZ)

Throughout the talk we fix an algebraically closed field k of characteristic p > 0.

1. Liftability to(wards) characteristic zero

It often very useful to reduce a given scheme over a field K of characteristic 0 modulo p and use
characteristic p techniques to study the reduction. One important example is the bend and break
technique of Mori, used to show that every Fano variety contains a rational curve. Similarly,
given a scheme X over our k of positive characteristic, it is a good idea to lift X to characteristic 0
and use e.g. complex analysis. So the first question is:

Q 1. Does a given X/k lift to characteristic zero?

More precisely, the question asks whether there exists a local domain R whose residue field is
of characteristic zero and residue field k and a flat ∼X/R with ∼X⊗R k � X. Unfortunately the answer
is no in general (the first such example is due to Serre). We will see another example later.

As first observed by Deligne and Illusie, for many purposes the following weaker version of
the question suffices:

Q 2. Does X admit a lift modulo p2?

The precise statement is whether there exists a flat ∼X over Z/p2Z with ∼X ⊗Z/p2Z Fp � X. This
is equivalent to the existence of a flat ∼X over the ring W2(k) of Witt vectors of length two with
∼X ⊗W2(k) k. The reason why this question is interesting is the following:

Theorem (Deligne–Illusie [DI87]). Suppose that X is smooth projective, liftable modulo p2 and
that p > dim X. Then

(1) Kodaira vanishing holds, that is

H j(X,Ωi
X/k ⊗ L) = 0, (L ample, i + j > dim X).

(2) The Hodge to de Rham spectral sequence

Ei j
1 = H j(X,Ωi

X/k) ⇒ Hi+ j(X,Ω•X/k)

degenerates.

There are known counterexamples to (1) (Mumford, Raynaud) and hence to Q2.

2. Liftability of Frobenius

For a k-scheme X, let us denote by FX : X→ X or simply by F the Frobenius morphism of X. It
is not k-linear, which is remedied by considering the relative Frobenius FX/k : X→ X′ instead; we
choose to be a bit sloppy with this distinction here. The main motivating question of this talk is:

Q 3. When does X admit a lifting to characteristic zero or modulo p2 together with its Frobenius
morphism FX?
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Thus we are asking for the existence of an ∼X as before together with ∼F : ∼X → ∼X such that the
square

X

F
��

� � // ∼X
∼F
��

X �
� // ∼X

commutes. Again, in the modulo p2 case such an ∼F automatically commutes with the Witt vector
Frobenius on W2(k). We will focus on the mod p2 case and if the answer to the above question is
yes we will say that X is F-liftable.

Moral of the talk: F-liftability is extremely rare.

In the case when X is smooth and affine, the answer is always positive. Troubles start if X is
either non-affine or singular, so we actually mean two things: that F-liftable smooth projective
varieties are rare, and that F-liftable singularities are rare. In this talk I will focus on the former
case. The known examples of F-liftable smooth projective varieties are:

Example 1 (Toric varieties). Every toric variety is F-liftable. A toric variety over a base ring R
(one can take R = Z) is glued from spectra of monoid algebras R[P] for some monoids P, and the
multiplication by p maps P→ P glue to give a global lift of Frobenius.

Example 2 (Ordinary abelian varieties). An abelian variety A/k is F-liftable if and only if it is
ordinary. In this situation Serre–Tate theory provides a canonical lift ∼X/W(k) satisfying certain
functoriality properties, which in particular imply the existence of a unique Frobenius lifting
∼F : ∼X→ ∼X.

Example 3 (Quotients of ordinary abelian varieties). More generally, suppose that a finite group
G acts freely on an ordinary abelian variety A. Then X = A/G is F-liftable [MS87].

Example 4 (Toric fibrations over ordinary abelian varieties). To mix the first two examples: let
T be a torus over k, Y a toric variety on which T acts, A an ordinary abelian variety, P → A a
principal bundle under T. Take X = P(Y) := P ×T Y. This comes with a fibration a : X → A,
Zariski-locally trivial with toric fiber Y. One can show that X is Frobenius liftable.

The analog of Deligne–Illusie in the presence of a Frobenius lift is the following much stronger

Theorem ([BTLM97, MS87]). Suppose that X is smooth projective and F-liftable (modulo p2).
Then

(1) Bott vanishing holds:

H j(X,Ωi
X/k ⊗ L) = 0 (L ample, j > 0).

(2) The Hodge to de Rham spectral sequence degenerates.
(3) X is Frobenius split (that is, the morphism F∗ : OX → F∗OX is a split injection).

3. Nonliftability of Frobenius

The above theorem makes it very easy to find non-F-liftable varieties, as it imposes the following
restrictions:

3.1. Kodaira dimension. Since X is smooth, then F is flat, and hence by duality for the finite flat
morphism we have a Frobenius-linear isomorphism

Hom(F∗OX,OX) � Hom(OX,F!OX) � Hom(OX, ωX/k ⊗ F∗ω−1
X/k) � H0(X, ω1−p

X ).

So if X is Frobenius split, then its Kodaira dimension is ≤ 0.
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3.2. Fano case. Another restriction comes from Bott vanishing, which is seen most easily if X is
Fano (i.e., ω−1

X is ample). In this case, we have

0 = H1(X,Ωn−1
X/k ⊗ ω

−1
X/k) � H1(X,TX),

so X must be rigid.

3.3. The Calabi–Yau case. (i.e.,ωX/k numerically trivial) is also heavily restricted. It follows from
the main result of [MS87] that a F-liftable smooth projective variety with ωX/k numerically trivial
is of the type mentioned in Example 3. In particular, π1(X) has to be nontrivial.

3.4. Homogeneous spaces. A rich family of examples which do not fall into these types are
homogeneous spaces. Their F-liftability was studied in [BTLM97], where the authors showed
using Bott non-vanishing that most homogeneous spaces are not F-liftable. For example, a smooth
quadric hypersurface Q ⊆ Pn

k (n > 3) is not F-liftable because

H1(Q,Ωn−2
Q/k ⊗ OQ(n − 3)) , 0.

They conjectured that the only F-liftable homogeneous spaces are products of projective spaces.

3.5. Hypersurfaces. The above examples together allow one to show easily that a degree d > 1
hypersurface in Pn

k (n > 1) is not F-liftable unless n + d ≤ 5. Indeed, for d = 2 we have a smooth
quadric, for 2 < d < n + 1 we have a non-rigid Fano, for d = n + 1 we have a simply-connected
Calabi-Yau, and for d > n + 1 we have a variety of positive Kodaira dimension.

3.6. A nonliftable example. Using the above considerations it is relatively easy to provide an
example of a smooth projective variety which does not lift modulo p2. Let Q ⊆ Pn

k (n > 3) be a
smooth quadric, and letπ : X→ Q×Q be the blowup of Q×Q along the graph ΓF of the Frobenius
morphism. Using deformation theory, one can show that if X was liftable to W2(k), so would be
the pair (Q ×Q,ΓF), and hence Q would be F-liftable, a contradiction.

4. The main conjecture

Given our lists of examples and restrictions, we pose the following conjecture (almost) charac-
terizing F-liftability.

Conjecture 1 (Main Conjecture – answer to Q3). Let X be a smooth projective variety over k.
Suppose that X lifts modulo p2 together with the Frobenius. Then there exists a finite étale Galois
cover f : Y→ X such that the Albanese morphism of Y

aY : Y −→ A = Alb(Y)

is a Zariski-locally trivial fibration over an ordinary abelian variety A whose fibers are smooth
toric varieties.

In particular, a Frobenius liftable rationally connected variety is toric.

This is an almost ‘if an only if’ statement. The subtlety comes from the fact that one cannot
combine Examples 3 and 4: if a finite group G acts freely on X is in Example 4, then X/G may or
may not be F-liftable.

In addition to the aforementioned list of non-examples, we are able to verify the conjecture in
the following special cases.

Theorem 1. Conjecture 1 is true in the following cases:

(1) If X has a normal crossings divisor D ∼ −KX which admits a lifting ∼D ⊆ ∼X compatible with ∼F
in the sense that

∼F∗∼D = p∼D.
(2) If dim X ≤ 2.
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(3) If X is a Fano threefold.
(4) If X is homogeneous space.

Case (1) is a logarithmic version of the main result of [MS87], to which paper our project owes
a great deal. Case (2) is quickly reduced to rational surfaces, in which case the question is still not
completely trivial. Case (3) is tedious as it relies on the Mori–Mukai classification with about 100
families; the example which caused us the most trouble is the blow-up of P3

k along the twisted
cubic. The most subtle case is (4) which in particular settles the question phrased in [BTLM97].

5. Images of toric varieties

Our second motivation comes from characteristic zero. The template question is:

Q 4. Let f : X → Y be a surjective morphism of smooth projective varieties. If X belongs to a
certain class of varieties, what can one say about Y?

Here are a few famous examples of such statements:

Theorem. Let f : X→ Y be as in Q4, over a base field of characteristic zero.

(1) (Lazarsfeld [Laz84]) If X � Pn then Y � Pn.
(2) (Demailly–Hwang–Mok–Peternell) If X is an abelian variety then Y admits as a finite étale

cover the product of an abelian variety and projective spaces.
(3) (Occhetta–Wiśniewski [OW02]) If X is a toric variety and Pic Y � Z then Y is a toric variety

(i.e., Y � Pn).

Occhetta and Wiśniewski conjectured that:

Conjecture 2 (Occhetta–Wiśniewski). Let f : X→ Y be a surjective morphism of smooth projec-
tive varieties in characteristic zero. If X is toric then so is Y.

Smoothness of Y is an important assumption: consider Y = X/G for a finite group G acting on
X = Pn. Then usually Y will be singular. It is not difficult to reduce the question to the case when
f is a finite morphism by considering the Stein factorization.

Our second main result links the two conjectures:

Theorem 2. If Conjecture 1 is true then Conjecture 2 is true.

Sketch of proof. As mentioned before, we can assume that f is finite; let m = deg f .

We spread out f : X→ Y over a finitely generated Z-algebra R. Shrinking the base Spec R, we
can assume that R is smooth over Z and that for every maximal p ⊆ R, Xp is a smooth toric variety
and Yp is smooth, and that p = char R/p is prime to m.

The main point is to show that each Yp is Frobenius liftable. Since R is smooth over Z, there
is a ∼p ⊆ p such that R/∼p = W2(R/p). We set ∼Xp = X∼p and ∼Yp = Y∼p. By deformation theory, the
obstruction σ∼Xp of lifting FXp to ∼Xp lies in Ext1(F∗XpΩ

1
Xp
,OXp ). These obstructions are functorial in

the sense that the diagram

F∗YpΩ
1
Yp

σ∼Yp //

f ∗

��

OYp [1]

f ∗[1]

��
fp∗F∗XpΩ

1
Xp σ fp∗

∼Xp

// fp∗OXp [1]

commutes. Since m is prime to p, the right arrow is a split injection. Thus if the bottom arrow is
zero, so is the top one. But Xp is a toric variety, and hence is Frobenius liftable.

Now what is left is showing that if Yp is a toric variety for all maximal p ⊆ R then Y is toric.
We omit the proof. �
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6. Homogeneous spaces

Finally, we would like to sketch the proof of Theorem 1(4). Let X be a homogeneous space,
that is, a smooth projective variety over k whose automorphism group acts transitively. Suppose
that X is F-liftable.

Step 1. The Borel–Remmert decomposition:

X � A ×
r∏

i=1

Gi/Pi

where A is an abelian variety, Gi are simple linear algebraic groups, and the Pi ⊆ Gi are parabolic
subgroup schemes (possibly nonreduced). One can show easily that X is F-liftable if and only if
the factors in the above decomposition are. This reduces the question to the case X = G/P with G
simple linear algebraic and P ⊆ G a possibly non-reduced parabolic.

Step 2. A theorem of Lauritzen and Mehta states that if X = G/P is Frobenius split (which
is weaker than F-liftable) then X � G/Pred, so we can assume that P is reduced, so X is a ‘flag
variety.’

Step 3. We reduce the question to the case where P ⊆ G is maximal, i.e. Pic X � Z. In this case
the statement is that X � Pn

k . Let P ⊆ Q be a maximal (reduced) parabolic. Then one can descend
the Frobenius lifting along the map

π : X = G/P→ G/Q.

If the assertion is true in the Picard rank one case, then G/Q � Pn for all maximal Q containing P.
Using the classification of homogeneous spaces, one can show that this can hold only if P itself is
maximal, or if X is the incidence variety

F1,n(kn+1) = {(`,H) ∈ Pn
× (Pn)∗ : ` ⊆ H},

which is easily shown to be non-F-liftable (already in [BTLM97]).

Step 4. From now on, the only assumptions we need are as follows: X is an F-liftable smooth
projective Fano variety of Picard rank one whose tangent bundle TX is nef. It is easily shown that
X must by simply connected and H0(X,Ω1

X/k) = 0.

Interlude: Cartier operation. The Frobenius lift ∼F induces the following ‘Cartier operation’ on
the level of Ω1

X/k: take a local section ω ∈ Ω1
X/k, lift it to a section ∼ω ∈ Ω1

∼X/W2(k)
and pull back by ∼F.

The resulting form ∼F∗∼ω reduces to 0 mod p (since F∗ acts as zero on Ω1
X/k), and hence ∼F∗∼ω = p ·ϕ(ω)

for some ϕ(ω) ∈ Ω1
X/k which depends only on ω and not on the choice of ∼ω. If ω is multiplied by

f ∈ OX, then ϕ(ω) is multiplied by f p, and this defines a map

ϕ : F∗Ω1
X/k → Ω1

X/k

whose adjoint Ω1
X/k → F∗Ω1

X/k has image in F∗Z1
X/k (closed forms) and is a splitting of the Cartier

operator F∗Z1
X/k → Ω1

X/k. The map ϕ is an isomorphism over a dense open U ⊆ X, and its
determinant

detϕ ∈ Hom(det F∗Ω1
X/k → det Ω1

X/k) � Hom(F∗ωX/k, ωX/k) � H0(X, ω1−p
X/k)

is the map corresponding to the Frobenius splitting induced by ∼F.

We regard ϕ as a p-linear endomorphism of the cotangent bundle T∗X. Let Y = (T∗X)ϕ ⊆ T∗X
be its fixed point locus. Then the projection π : Y → X is étale and its restriction to U is finite of
degree pdim X.

Thus if U = X then we are done: either X is not simply connected or it admits a global one-form.
Similarly if some component of Y (except for the zero section T∗XX ⊆ Y) is finite over X.
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Step 5. We will try to produce such a component of Y by looking at its restriction to rational
curves f : P1

→ X. Since TX is nef, we have

f ∗Ω1
X/k � O⊕r

⊕

⊕
O(ai)

with r ≥ 0 and ai < 0 (the curve f is free). It is easy to see that f ∗ϕ preserves the O⊕r factor, and
hence that Y ×X P1

→ P1 has pr sections. If we find enough curves with r > 0 covering X then we
might be able to ‘glue’ these sections to a finite étale cover of X.

Step 6. Let us call a rational curve f : P1
→ X very free if f ∗TX is ample (i.e., r = 0). We would

like to show that if X is not a projective space then we can find a covering family of rational curves
which are not very free. The following celebrated result is due to Mori:

Theorem 6.1. Let X be a smooth projective Fano variety. Pick a general point x ∈ X and assume that
every rational curve through x is very free. Then X ' Pn. (In particular, if TX is ample then X � Pn).

Step 7. The final step is a bit involved, but the key idea is to construct (under the assumption
that X is not a projective space) a family of non-very free rational curves in X parametrized by a
proper scheme M,

C
f //

π

��

X

M
such that f : C → X is proper and smooth, and such that over a big open subset M◦ ⊆ M, the
corresponding rational curves intersect the open subset U ⊆ X.

A version of the argument in Step 5 can be used to construct a component of Y ×X C which is
finite over C◦ = π−1(M◦) and then using Zariski–Nagata purity one can show the existence of a
suitable component of Y ×X C finite over C. One can then ‘push down’ this component to Y.

References

[BTLM97] Anders Buch, Jesper F. Thomsen, Niels Lauritzen, and Vikram Mehta, The Frobenius morphism on a toric variety,
Tohoku Math. J. (2) 49 (1997), no. 3, 355–366. MR 1464183
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