
Junior Algebraic Geometry Seminar, Spring 2019/20
Galois representations and modular forms

Deligne’s construction of Galois representations
In broad strokes the (global arithmetic) Langlands conjecture (for GLn ) attempts to relate two classes of

disparate objects. On the one hand we have automorphic representations—objects of harmonic analysis.

On the other hand we have Galois representations—objects of arithmetic. The Langlands conjecture

then roughly posits that there should be a natural bijection between these two classes of objects which

preserves natural data on both sides.

Well before Langlands started to formalize the program that would bear his name surprising connections

between analytic and arithmetic objects were being observed by Japanese mathematicians (e.g. Taniyama

and Shimura). They realized that there was a close connection between modular forms (of which auto-

morphic representations are generalizations of) and elliptic curves or, essentially equivalently, the Tate

modules of elliptic curves (which are Galois representations). Much work on this subject was performed

in the ’60s and ’70s with one of the major landmarks being Deligne’s general association in [Del71] of an

elliptic curve/Galois representation to a modular form (with some assumptions).

More explicitly associated to modular forms, elliptic curves, and Galois representations are analytic ob-

jects called L-functions which, roughly, encode analytically important numerical invariants of the respec-

tive objects. One can then understand Deligne’s result as the claim that associated to a (weight 2) modular

form f (with certain extra properties) there is an elliptic curve Ef , and a fortiori a Galois representation

ρf , with the property that we have an equality of L-functions

L(f , s) = L(Ef , s) = L(ρf , S)

(although truthfully he really only shows an equality of partial L-functions with the full equality only

being later shown by Carayol et al.). Deligne was motivated by a desire to use his recent results onf the

Weil conjecture to prove the longstanding Ramanujan conjecture.

The goal of this seminar is to cover enough material to rigorously understand the statement of Deligne’s

result as well as give a full account of his construction. Time permitting we then discuss applications of

this result (e.g. the Ramanujan conjecture) and future directions (e.g. the modularity conjecture of Wiles

et al. and the Langlands program at large).

References
There is no fully contained account of the background material for the results in [Del71]. A very broad

overview of the construction is given in [Sai]. That said the best approximation for a comprehensive

account are various chapters in [Sai13] and [Sai14]. In general we will jump around between a large

set of notes and books. There will be ancillary references listed below in case the reader would like to

compare sources.

Talks
The outlines below are only loose guidelines.

1. Introduction and overview This will be a talk given by Alex Youcis which will discuss the above outline

in more detail giving motivation for the objects that are involved.

Galois representations

2. Galois representations (I)

(1) Recall the de�nition of number �elds, the integer ring of a number �eld, the notion of a place of

a number �eld, and the completion of a number �eld at a place. See [KKSK00, §6.2-§6.3].



(2) De�ne globbal �elds, local �elds, and recall the classi�cation of local �elds. See [KKSK00, §6.2].

(3) Discuss the relationship between Galois groups of number �elds and the Galois groups of their

completions (the ‘decomposition group’). See [KKSK00, §6.3] and more speci�cally [KKSK00,

Lemma 6.72].

(4) Let F be a p-adic �eld and GF := Gal(F/F ) its absolute Galois group. De�ne the inertia subgroup

IF ⊆ GF and wild inertia subgroup PF ⊆ IF of F . See [Clab].

(5) Discuss the structure ofGF /IF and IF /PF . Discuss the notion of an unrami�ed and tamely rami�ed

extension of F . De�ne a Frobenius element in GF .

(6) Discuss the classi�cation of unrami�ed extensions of a local �eld. See [Clab].

(7) Explain the de�nition of a Frobenius element in the Galois group of a number �eld and explain

Cebotarev density. See [KKSK00, Proposition 5.11] and [KKSK00, §6.3(a)] as well as [Len].

Additional references: [Lor07, §2 - §25], [Claa], [Mar77], [CF67], and [Neu13].

3. Galois representations (II)

(1) De�ne a Galois representation and, more generally, what a Galois module is (i.e. for a �eld F
and a topological ring R a Galois R-module is a topological R-module M with a homomorphism

GF −→ AutR (M) such that the induced action map GF × M −→ M is continuous). See [Wie,

De�nition 1.2.1].

(2) De�ne `-adic representations and Artin representations. See [Wie, De�nition 1.1.3].

(3) Give concrete examples of Galois representations: a concrete example of an Artin representation

(e.g. see [BK, Example 1.19]), the `-adic cyclotomic character of a �eld F (e.g. see [Bel, §2.3.1]),

the `-adic Tate module of an elliptic (e.g. see [Bel, §2.4] or [BK, Pg. 71]), and if you have the

time/the desire the example from [You, Appendix 2].

(4) Discuss the general formalism of étale cohomology as a Galois representation and discuss the

basic properties such a theory satis�es in the smooth proper case. See [Bel, §3.1].

(5) Explain why all Artin representations have �nite image. In fact, show that ifG is any real/complex

Lie group then any continuous homomorphism ρ : GF −→ G has �nite image . Sketch: since

G satis�es the “no small subgroups property” (see [Gun]) there exists a neighborhood U of the

identity e ∈ G such that U contains no non-trivial subgroups. Note that ρ−1(U ) is an open sub-

set of GF which, since GF has a neighborhood basis of the identity consisting of compact open

subgroups (since it’s pro�nite), there exists some compact open subgroup K ⊆ ρ−1(U ). Since

ρ(K) ⊆ U is a subgroup we deduce by construction that ρ(K) = {e} and thus K ⊆ ker ρ. But,

GF /K is �nite as desired.

(6) De�ne what it means for an Galois representation ρ : GF −→ GLn(K), where F is a p-adic local

�eld and K is an arbitrary topological �eld, to be (potentially) unrami�ed and (potentially) semi-

stable. See [FO, De�nition 1.22]—there they assume thatK = Q` but this is not necessary. Explain

Grothendieck’s `-adic monodromy theorem and sketch the proof. See [FO, Theorem 1.24].

(7) (OPTIONAL) If you have enough time explain the classi�cation of `-adic representations in terms

of Weil–Deligne representations as in [FO, Proposition 1.28].

Additional references: [Kre] and [Tay04].

4. Galois representations (III)

(1) De�ne what it means for a Galois representation ρ to be semi-simple and de�ne the semi-simpli�cation

ρss of ρ. See the discussion in [Kre, §1.1] and [Wie, §2.1].

(2) Discuss the Brauer–Nesbitt theorem (see [Wie, Theorem 2.4.6]) but since we are mostly interested

in `-adic representations discuss also the simpler version in this case (see [Wie, Proposition 2.4.3]).

(3) Let F be a number �eld and ρ : GF −→ GLn(K) be a Galois representation where K is a charac-

teristic 0 topological �eld. Assume that ρ is unrami�ed almost everywhere (i.e. that ρ | GFv is

unrami�ed for almost every �nite placev) and let S be the set of unrami�ed �nite places. Explain

why the subset {tr ρ(Frobv )}v ∈S ⊆ K determines uniquely the representation ρss. More explic-

itly, explain why if ρ ′ is a second representation such that for all but �nitely many �nite places v
of F one has that ρ and ρ ′ are both unrami�ed and tr(ρ(Frobv )) = tr(ρ ′(Frobv )) then ρss � (ρ ′)ss.
See [BK, Theorem 3.19].



(4) As an example of this idea, explain why there does not exist a Galois character χ : GQ −→ Q×
`

such that χ (Frobp ) = p for all p , 11 and χ (Frob11) = 1.

(5) De�ne the L-function of an Artin representation (see [BK, §3.2 Artin Representations], state

Artin’s theorem (see [BK, Theorem 3.11]) without proof, and state Artin’s conjecture (see [BK,

Conjecture 3.13]).

(6) Compute an example of the L-function of an Artin representation of a number �eld (e.g. see [BK,

Example 1.19]).

(7) De�ne the L-factors of an `-adic representation of a number �eld F at �nite places v of F not

dividing `. See [BK, Pg. 69].

(8) Describe the (�nite part of the) L-function of the tate module an elliptic curve E over Q, prove the

claim for places of good reduction, and sketch the proof at places of bad reduction. Explain the

relationship between L(V`(E)
∨, s) and ζ (E, s) where E is a minimal Weierstrass model of E over

Spec(Z). See [Kre, §1.4] and ask me about the second part.

Alternative references: [Tay04] and [Blo].

Modular curves

5. Elliptic curves (I)

(1) De�ne elliptic curves E of a general base scheme S and morphisms of elliptic curves. See [Hid12,

De�nition 2.2.1].

(2) Identify an elliptic curve E over S with Pic
0

E/S and thus provide E with a group structure. See

[Hid12, Theorem 2.2.1].

(3) Prove that the analyti�cation map E 7→ Ean provides an equivalence of categories:{
Elliptic curves

over C

}
−→

{
1-dimensional compact

complex Lie groups

}
and moreover that every 1-dimensional complex Lie group is of the form C/Λ where Λ ⊆ C is

a lattice. Sketch: the analyti�cation map is fully faithful by GAGA and the fact that the image

consists of 1-dimensional compact complex Lie groups is clear. Conversely, use Riemann’s ex-

istence theorem (i.e. that every compact Riemann surface is algebraizable) to deduce that your

1-dimensional compact complex Lie group G is of the form G = X an
for some X . Use GAGA to

deduce that X is a proper group variety. Deduce it must be an elliptic curve. For the statement

about lattices use the surjectivity of the exponential map exp : g −→ G together with the fact that

g is abelian (since it’s one-dimensional) to dedue thatG is a quotient of g � C. SinceG is compact

and ker exp is discrete (by the identity theorem from complex analysis) deduce that ker exp is

lattice.

NB: For this latter lattice claim one can also argue by the universal cover. It’s up to you.

(4) State that if E is an elliptic curve over a �eld k and n is an integer with gcd(n, char(k)) = 1 then

E[n] is a �nite étale group scheme of order n2 and, in fact, E[n]k sep � (Z/nZ)2. Prove this claim

when char(k) = 0. Sketch: show that it su�ces to show the claim over a �nitely generated

Q-subextension K of k . Embed K in to C to reduce the claim to k = C. Use part (3) of this talk.

(5) Explain the fact that if f : E −→ E ′ is a map of elliptic schemes over S which is non-constant

on �bers and f (0E) = 0E′ then f is a locally free group homomorphism. See [Hid12, Corollary

2.2.2], [Sta18, Tag039B], and use (4).

(6) Let E be an elliptic scheme over S . Show that Zariski locally on S the elliptic curve E can be put

in Weierstrass form. See [Hid12, §2.2.5].

Additional references: [KM85, Chapter 2], [Sai13], [Sai14], [EvdGB], [Cona], and [Mum74].

6. Elliptic curves (II)

(1) Let F be a p-adic local �eld. De�ne what it means for E to have (potentially) good reduction and

bad reduction. See [Sai13, De�nition 1.5] and [Sai13, Proposition 1.24] (note that one can replace

Z(p) in this proposition with OF ).



(2) State the Neron–Ogg–Shafarevich theorem and explain the proof of “good reduction =⇒ un-

rami�ed Tate module”. See [Gat].

(3) De�ne what it means for an elliptic curve over F to have additive/multiplicative reduction. See

[Sai13, De�nition 1.5] (note that one can replace Q in his de�nition with F ).

(4) De�ne a generalized elliptic scheme and discuss its relationship to multiplicative reduction. See

[Sai13, §1.5].

(5) Give an example of an elliptic curve with good reduction and one with multiplicative reduction

and one with neither.

(6) Show that for an elliptic curve E over a �eld k of characteristic p > 0 the group scheme E[p] is

never an étale group scheme. In fact, show that E[p]◦ is never trivial. See [Sai14, §8.1].

(7) De�ne what it means for an elliptic E over S , an Fp -scheme, to be ordinary/supersingular. See

[Sai14, §8.1].

(8) Explain the several equivalent conditions on what it means for an elliptic curve over a charac-

teristic p �eld to be supersingular/ordinary. See [Sai14, Proposition 8.2] and [Sai14, Proposition

8.5].

(9) Give examples of ordinary and supersingular elliptic curves. See [Sai14, Example 8.6].

(10) De�ne the L-function of an elliptic curve over a number �eld F . See [BK, §1.4.2].

(11) Discuss the example in [BK, Example 1.20].

Additional references: [Hid12] and [KM85, Chapter 2].

7. Modular curves (I)

(1) De�ne what a coarse and �ne moduli space is.See [Sai13, De�nition 2.7]. See also [Hid12, §2.3.2]

or [Ols16, Chapter 11] for coarse moduli spaces.

(2) Give examples of a coarse moduli space and a �ne moduli space. For example, explain why A1

k is

the coarse moduli space for the functor of isomorphism classes of elliptic curves overk (See [Sai14,

Lemma 8.30] and the subsequent question). Also, explain why the moduli space of Weierstrass

forms has a �ne moduli space (see [Hid12, §2.2.6] and [Ber13, §4.1.2]).

(3) De�ne the modular curves Y0(N ), Y1(N ), and Y (N ). See [Sai13, §2.2-§2.3] (note that Saito only

discusses Y (N ) and Y1(N ) using the symbolM for the functors that the Y?(N ) (perhaps coarsely)

represent). See also [Conb, §9]. Additionally see [Hid12, §2.6]/[Hid12, §2.9.4] (where he uses the

symbols E instead of Y ) and [DS05, Chapter 7]. You should only work here over Z[ 1N ] to not

worry about more sophisticated notions of level structures.

(4) De�ne the compacti�ed modular curves X (N ), X0(N ), and X1(N ). See [Sai13, De�nition 2.8]

and [Sai13, De�nition 2.20] (note he uses M to denote the functors associated to these modular

curves). See also [DS05, Chapter 7].

Additional references: [KM85, Chapter 3], [KM85, Chapter 8], [Conb], and [Loe].

8. Modular curves (II)

(1) De�ne the notion of a modular form of level Γ0(N ) with Q-coe�cients. See [Sai13, De�nition

2.12(2)].

(2) Given the example of the ∆-form. See [Del71, Introduction].

(3) De�ne the Hecke operators on the system of modular curvesX0(N ) and explain what the induced

action on the space of modular forms are. See [Sai13, §2.6].

(4) Explain the q-expansion of a modular form. See [Sai13, §2.7].

(5) Explain what a normalized Hecke eigencuspform is (see [Sai13, De�nition 2.42](3)—note that he

calls such things primary forms).
(6) De�ne a modular form/normalized Hecke eigencuspform of level Γ0(N ) with coe�cients in K a

�eld of characteristic 0. See [Sai13, De�nition 2.42].

(7) De�ne the L-function of a normalized Hecke eigencuspform. See [Sai13, Equation (2.47)].

(8) Explain the strong multiplicity one property for modular forms. See [Sai13, Theorem 2.49] as

well as [BD, Theorem 5.13]

(9) Explain the relationship between ‘arithmetic modular forms’ (as de�ned above) and ‘analytic

modular forms’. See [Sai13, §2.11].



Additional references: [DS05] and [Ste].

9. Modular curves (III)

(1) Discuss the notion of a cyclic group scheme over Z. See [Sai14, §8.2] and particularly [Sai14,

De�nition 8.13]. See also [KM85, §1.4].

(2) De�ne the notion of a section of exact order N . See [Sai14, De�nition 8.20]. See [KM85, §1.4] and

[KM85, §1.8].

(3) De�ne the Y (N ), Y1(N ), and Y0(N ) over Z. See [Sai14, §8.4-8.5] and [Sai14, §8.8]. See also [KM85,

Chapter 3]

(4) Discuss extensions of these ideas to compacti�ed modular curves. See [Sai14, §8.9]. See also

[KM85, Chapter 8].

Additional references: [Hid12].

Modular curves (IV)

(1) De�ne the curves Y0,∗(N ), Y1,∗(N ), and Y1,0(N ). See [Sai14, De�nition 8.35][Sai14, De�nition

8.75].

(2) De�ne the compacti�cations of these curves. See [Sai14, §8.9].

(3) Explain the result [Sai14, Theorem 8.32] and prove it. Be sure to draw many pictures.

(4) Explain the result [Sai14, Proposition 8.73] and prove it. Be sure to draw many pictures.

Additional references: [DS05, Chapter 8].

Deligne’s construction

10. Deligne’s construction (I)

(1) Discuss Hecke algebras both over a �eld and integrally. See [Sai13, §2.10] and [Sai14, §9.1].

(2) State rigorously Deligne’s result. See [Sai14, Theorem 9.13] and [Sai14, Corollary 9.14].

(3) Explain Deligne’s result in terms of partial L-functions.

(4) Explain the proof of Deligne’s theorem. See [Sai14, Theorem 9.16] and its proof.

Additional references: [Del71] and [DS05, §9.5].

11. Deligne’s construction (II)

(1) State the Ramanujan conjecture and discuss its signi�cance. See [Gow] and [Del71].

(2) Explain the proof of the Ramanujan conjecture. See [Del71, §5.1].

(3) Discuss Deligne’s construction as part of the greater Modularity Conjecture and discuss the result

of Wiles et al. See [DS05, §9.6].

(4) Discuss the construction of Deligne and the result of Wiles in the larger context of the Langlands

program. See [Kna97] and discuss with Alex.
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