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INTRODUCTION

We know that the cohomological methods, in particular sheaf theory, play an in-
creasing role not only in the theory of several complex variables ([5]), but also in
classical algebraic geometry (let me recall the recent works of Kodaira-Spencer
on the Riemann-Roch theorem). The algebraic character of these methods sug-
gested that it is possible to apply them also to abstract algebraic geometry; the
aim of this paper is to demonstrate that this is indeed the case.

The content of the particular chapters is as follows:

Chapter I is dedicated to general sheaf theory. It contains proofs of the
results of this theory needed for the two other chapters. Various algebraic
operations one might perform on sheaves are described in §1; we follow quite
exactly the exposition of Cartan ([2], [5]). In §2 we study coherent sheaves
of modules; these generalize analytic coherent sheaves (cf. [3], [5]), admitting
almost the same properties. §3 contains the definition of cohomology groups
of a space X with values in a sheaf .#. In subsequent applications, X is an
algebraic variety, equipped with the Zariski topology, so it is not topologically
separated E and the methods used by Leray [10] and Cartan [3] (basing on
" partitions of unity” or ”fine” sheaves) do not apply; so one is led to follow the
method of Cech and define the cohomology groups H?(X,.Z) by passing to the
limit with finer and finer open coverings. Another difficulty arising from the
non-separatedness of X regards the ”cohomology exact sequence” (cf. n°®
and : we could construct this exact sequence only for particular cases, yet
sufficient for the purposes we had in mind (cf. n°® and .

Chapter II starts with the definition of an algebraic variety, analogous to
that of Weil (J[I7], Chapter VII), but including the case of reducible varieties
(note that, contrary to Weil’s usage, we reserved the word wvariety only for
irreducible ones); we define the structure of an algebraic variety using the data
consisting of the topology (Zariski topology) and a sub-sheaf of the sheaf of
germs of functions (a sheaf of local rings). An algebraic coherent sheaf on an
algebraic variety V is simply a coherent sheaf of &y-modules, Oy being the
sheaf of local rings on V; we give various examples in §2. The results obtained
are in fact similar to related facts concerning Stein manifolds (cf. [3], [5]): if
Z is a coherent algebraic sheaf on an affine variety V, then H4(V, %) = 0 for
all ¢ > 0 and .%, is generated by H(V,.%) for all z € V. Moreover (§4), .
is determined by H(V,.%) considered as a module over the ring of coordinates
on V.

Chapter III, concerning projective varieties, contains the results which are
essential for this paper. We start with establishing a correspondence between
coherent algebraic sheaves .# on a projective space X = P.(K) and graded
S-modules satisfying the condition (TF) of n° (S denotes the polynomial

1i.e. Hausdorff



algebra Klto,...,t,]); this correspondence is bijective if one identifies two S-
modules whose homogeneous components differ only in low degrees (for precise
statements, see n°® and . In consequence, every question concerning
Z could be translated into a question concerning the associated S-module M.
This way we obtain a method allowing an algebraic determination of H?(X, %)
starting from M, which in particular lets us study the properties of H4(X, % (n))
for n going to 400 (for the definition of .7 (n), see n° [54)); the results obtained
are stated in n°® and In §4, we relate the groups H%(X,.%) to the func-
tors Ext% introduced by Cartan-Eilenberg [0]; this allows us, in §5, to study the
behavior of H9(X,.%# (n)) for n tending to —oo and give a homological character-
ization of varieties k times of the first kind. §6 exposes certain properties of the
Euler-Poincaré characteristic of a projective variety with values in a coherent
algebraic sheaf.

Moreover, we demonstrate how one can apply the general results of this
paper in diverse particular problems, and notably extend to the abstract case
the ”duality theorem” of [I5], thus a part of the results of Kodaira-Spencer
on the Riemann-Roch theorem; in these applications, the theorems of n° [66]
[75] and [76] play an essential role. We also show that, if the base field is the
field of complex numbers, the theory of coherent algebraic sheaves is essentially
identical to that of coherent analytic sheaves (cf. []).
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Chapter I

Sheaves



81. Operations on sheaves I

81 OPERATIONS ON SHEAVES

1 Definition of a sheaf

Let X be a topological space. A sheaf of abelian groups on X (or simply a
sheaf) consists of:

(a) A function x — F,, giving for all x € X an abelian group F.,,
(b) A topology on the set F, the sum of the sets F,.

If f is an element of .%,, we put 7(f) = x; we call the mapping of 7 the
projection of # onto X; the family in % X .# consisting of pairs (f, g) such that
7w(f) = 7(g) is denoted by F + Z.

Having stated the above definitions, we impose two axioms on the data (a)
and (b):

(I) For all f € F there exist open neighborhoods V' of f and U of w(f) such
that the restriction of m to V is a homeomorphism of V and U.

(In other words, 7 is a local homeomorphism).

(IT) The mapping f — —f is a continuous mapping from F to F, and the
mapping (f,qg) — f + g is a continuous mapping from F + F to F.

We shall see that, even when X is separated (which we do not assume), .% is
not necessarily separated, which is shown by the example of the sheaf of germs
of functions (cf. n° [3)).

Example of a sheaf. For G an abelian group, set .%, = G for all z € X;
the set % can be identified with the product X x G and, if it is equipped with
the product topology of the topology of X by the discrete topology on G, one
obtains a sheaf, called the constant sheaf isomorphic with G, often identified
with G.

2 Sections of a sheaf

Let .# be a sheaf on a space X, and let U be a subset of X. By a section of
& over U we mean a continuous mapping s : U — % for which 7 o s coincides
with the identity on U. We therefore have s(x) € .%, for all x € U. The set of
sections of .# over U is denoted by I'(U, .#); axiom (II) implies that I'(U, %) is
an abelian group. If U C V, and if s is a section over V, the restriction of s to U
is a section over U; hence we have a homomorphism pf; : I'(V, %) — (U, F).

If U is open in X, s(U) is open in .%, and if U runs over a base of the
topology of X, then s(U) runs over a base of the topology of Z; this is only
another wording of axiom (I).

Note also one more consequence of axiom (I): for all f € #,, there exists a
section s over an open neighborhood of z for which s(z) = f, and two sections
with this property coincide on an open neighborhood of x. In other words, .%,
is an inductive limit of T'(U, %) for U running over the filtering order of all open
neighborhoods of z.
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3 Construction of sheaves

Given for all open U C X an abelian group .#y and for all pairs of open
U C V a homomorphism ¢Y; : Fy — Fy, satisfying the transitivity condition
oy o ¢y = ¢y whenever U CV C W.

The collection (Fy, ¢};) allows us to define a sheaf .Z in the following way:

(a) Put %, =lim.Zy (inductive limit of the system of open neighborhoods
of x). If x belongs to an open subset U, we have a canonical morphism ¢! :
chU — ﬂ}

(b) Let t € Zyy and denote by [t, U] the set of ¢¥ (¢) for x running over U ;
we have [t,U] C % and we give .Z the topology generated by [t, U]. Moreover,
an element f € .%, has a base of neighborhoods consisting of the sets [t, U] for
€U and ¢Y(t) = f.

One verifies immediately that the data (a) and (b) satisfy the axioms (I) and
(II), in other words, that # is a sheaf. We say that this is the sheaf defined by
the system (Fu, o).

If f € Zy, the mapping = +— ¢Y(t) is a section of .# over U ; hence we have
a canonical morphism ¢ : Zy — T'(U, %).

Proposition 1. v : Fy — T'(U,.F) is injectivelﬂ if and only if the following
condition holds:

If an element t € Fy is such that there exists an open covering {U;} of U
with ¢ (t) = 0 for all i, then t = 0.

If t € %y satisfies the condition above, we have
oU(t) =Y ol (1) =0 ifzeU;,

which means that «(t) = 0. Conversely, suppose that «(t) = 0 with ¢t € Fy ;
since ¢U(t) = 0 for x € U, there exists an open neighborhood U(z) of x such
that qbg(w)(t) = 0, by the definition of an inductive limit. The sets U(x) form
therefore an open covering of U satisfying the condition stated above.

Proposition 2. Let U be an open subset of X, and let v : Fy — I(V,.F)
be injective for all open V. C U. Then v : Fy — (U, .F) is surjective (and
therefore bijective) if and only if the following condition is satisfied:

For all open coverings {U;} of U, and all systems {t;}, t; € Fy, such that
d’ginU (t;) = qﬁgijj () for all pairs (i, j), there exists at € Fy with ¢f (t) = t;
for all i.

The condition is necessary: every t; defines a section s; = ¢(t;) over U;, and

we have s; = s; over U; N Uj; so there exists a section s over U which coincides
with s; over U; for all ¢; if  : Fy — T'(U,.%) is surjective, there exists t € Fy

'Recall (cf. [0]) that a function f : E — E' is injective if f(e1) = f(e2) implies e1 = ez,
surjective if f(E) = E’, bijective when it is both injective and surjective. An injective (resp.
surjective, bijective) mapping is called an injection (resp. a surjection, a bijection).
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such that ¢(t) = s. If we put t; = ¢f (t), the section defined by t] over U; does
not differ from s;; since ¢(¢; — t;) = 0, which implies ¢; = ¢} for + was supposed
injective.

The condition is sufficient: if s is a section of % over U, there exists an
open covering {U;} of U and elements t; € Zy, such that ¢(¢;) coincides with
the restriction of s to U;; it follows that the elements ¢anUj (t;) and (/ﬁg:mUj (t;)
define the same section over U; NUj, so, by the assumption made on ¢, they are
equal. If t € .y satisfies ¢f (t) = t;, ¢(t) coincides with s over each U;, so also
over S, q.e.d.

Proposition 3. If .F is a sheaf of abelian groups on X, the sheaf defined
by the system (I'(U, F), p;) is canonically isomorphic with 7.

This is an immediate result of properties of sections stated in n°

Proposition 3 shows that every sheaf can be defined by an appropriate system
(Zu, o). We will see that different systems can define the same sheaf .7;
however, if we impose on (F7, ¢y;) the conditions of Propositions 1 and 2, we
shall have only one (up to isomorphism) possible system: the one given by
(D(U, 7),pY)).

Example. Let G be an abelian group and denote by %y the set of functions
on U with values in G; define ¢g . Fyv — Fy by restriction of such functions.
We thus obtain a system (%, ¢Y;), and hence a sheaf .7, called the sheaf of
germs of functions with values in G. One checks immediately that the system
(Zu, ¢f;) satisfies the conditions of Propositions 1 and 2; we thus can identify
sections of .# over an open U with the elements of Zy.

4 Glueing sheaves

Let . be a sheaf on X, and let U be a subset of X; the set 7=1(U) C .#, with
the topology induced from ., forms a sheaf over U, called a sheaf induced by
F on U, end denoted by .#(U) (or just .#, when it does not cause confusion).

We see that conversely, we can define a sheaf on X by means of sheaves on
open subsets covering X:

Proposition 4. Let 84 = {U,;};cr be an open covering of X and, for all
i €1, let F; be a sheaf over U;; for all pairs (i,7) let 0;; be an isomorphism
from F;(U; N U;) to F;(U; NUy); suppose that we have 6;; 0 0,5, = 0, at each
point of U; NU; N Uy, for all triples (i,7,k).

Then there exists a sheaf F and for all i an isomorphism n; from F(U;) to

Fi, such that 0;; = n; o nj_l at each point of U; NU;. Moreover, & and n; are
determined up to isomorphism by the preceding conditions.

The uniqueness of {.%,n;} is evident; for the proof of existence, we could
define .# as a quotient space of the sum of .%;, but we will rather use the methods
of n° [3} if U is an open subset of X, let % be the group whose elements are

10
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systems {si}rer with s, € T'(U N Uy, %) and s = O;(s;) on UNU; N Uy ;
if U C V, we define ¢}, in an obvious way. The sheaf defined by the system
(Zu, ¢Y;) is the sheaf .F we look for; moreover, if U € U;, the mapping sending
a system {sx} € Fy to the element s; € I'(U;,.%;) is an isomorphism from .Zy
to I'(U, .%;), because of the transitivity condition; we so obtain an isomorphism
n; + F(U;) — Z;, which obviously satisfies the stated condition.

We say that the sheaf .% is obtained by glueing the sheaves .%; by means of
the isomorphisms 0;;.

5 Extension and restriction of a sheaf

Let X be a topological space, Y its closed subspace and % a sheaf on X. We
say that .# is concentrated on Y, or that it is zero outside of Y if we have
Fp=0forallz e X -Y.

Proposition 5. If a sheaf & is concentrated on'Y , the homomorphism
P i T(X,Z) = (Y, Z(V))

18 bijective.

If a section of % over X is zero over Y, it is zero everywhere since %, = 0 if
x ¢ Y, which shows that ps is injective. Conversely, let s be a section of .#(Y)
over Y, and extend s onto X by putting s(z) = 0 for z ¢ Y ; the mapping
x +— s(x) is obviously continuous on X — Y ; on the other hand, if z € Y, there
exists a section s’ of .% over an open neighborhood U of x for which s'(x) = s(z);
since s is continuous on Y by assumption, there exists an open neighborhood V'
of z, contained in U and such that s'(y) = s(y) for all y € VNY; since %, =0
if y ¢ Y, we also have that s'(y) = s(y) for y € V — (VNY); hence s and s

coincide on V', which proves that s is continuous in a neighborhood of Y, so it is
continuous everywhere. This shows that ,0{5 is surjective, which ends the proof.

We shall now prove that the sheaf #(Y) determines the sheaf % uniquely:

Proposition 6. Let Y be a closed subspace of X, and let 4 be a sheaf on Y .
Put F, =9, ifx €Y, F,=0ifx ¢ Y, and let F be the sum of the sets F,.
Then Z admits a unique structure of a sheaf over X such that Z(Y)=9.

Let U be an open subset of X; if s is a section of 4 on U NY, extend s by
Oon U — (UNY); when s runs over I'(U NY,¥), we obtain this way a group
Zu of mappings from U to % . Proposition 5 then shows that if & is equipped
a structure of a sheaf such that .#(Y) = ¢, we have #y = I'(U,.#), which
proves the uniqueness of the structure in question. The existence is proved
using the methods of n° [3] applied to %y and the restriction homomorphisms

U — Fv.

We say that a sheaf .# is obtained by extension of the sheaf 4 by 0 outside
Y ; we denote this sheaf by 4%, or simply ¢ if it does not cause confusion.

11
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6 Sheaves of rings and sheaves of modules

The notion of a sheaf defined in n° [1] is that of a sheaf of abelian groups. It
is clear that there exist analogous definitions for all algebraic structures (we
could even define ”sheaves of rings”, where %, would not admit an algebraic
structure, and we only require axiom (I)). From now on, we will encounter
mainly sheaves of rings and sheaves of modules:

A sheaf of rings o7 is a sheaf of abelian groups &7, € X, where each 47,
has a structure of a ring such that the mapping (f,g) — f - g is a continuous
mapping from & + & to &/ (the notation being that of n°[1)). We shall always
assume that o7, has a unity element, varying continuously with x.

If o is a sheaf of rings satisfying the preceding condition, I'(U, &) is a ring
with unity, and p}; : T'(V, &) — I'(U, &) is a homomorphism of rings preserving
unity if U C V. Conversely, given rings o, with unity and homomorphisms
oy, : 9y — oy preserving unity and satisfying ¢y, o ¢¥ = ¢V, the sheaf o/
defined by the system (o7, ¢y;) is a sheaf of rings. For example, if G is a ring
with unity, the ring of germs of functions with values in G (defined in n° [3)) is
a sheaf of rings.

Let 7 be a sheaf of rings. A sheaf .% is called a sheaf of o/ -modules if every
F, carries a structure of a left unitaryEI ,-module, varying ”continuously”
with z, in the following sense: if o + .% is the subspace of &/ x .Z consisting
of the pairs (a, f) with 7(a) = 7(f), the mapping (a, f) — a - f is a continuous
mapping from & + .F to %.

If . is a sheaf of &/-modules, T'(U,.#) is a unitary module over I'(U, &).
Conversely, if & is defined by the system (4, ¢};) as above, and let .Z be a

sheaf defined by the system (%, 1y} ), where every .Zy is a unitary </ ,-module,
with ¢ (a - f) = ¢ (a) - ¥y (f); then . is a sheaf of &7/-modules.

Every sheaf of abelian groups can be considered a sheaf of Z-modules, Z
being the constant sheaf isomorphic to the ring of integers. This will allow us
to narrow our study to sheaves of modules from now on.

7 Subsheaf and quotient sheaf
Let <7 be a sheaf of rings, % a sheaf of &/-modules. For all x € X, let ¥, be a
subset of .%,. We say that 4 =¥, is a subsheaf of .Z# if:
() Y, is a sub-,-module of F, for allx € X,
(b) ¢ is an open subset of F.
Condition (b) can be also expressed as:

(b*) If x is a point of X, and if s is a section of F over a neighborhood of
x such that s(z) € 9, we have s(y) € 9, for all y close enough to x.

2i.e. with the unity acting as identity

12
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It is clear that, if these conditions are satisfied, ¢ is a sheaf of .7-modules.

Let 4 be a subsheaf of & and put 7, = Z,/¥9, for all x € X. Give
A = |JH, the quotient topology of F#; we see easily that we also obtain
a sheaf of &/-modules, called the quotient sheaf of .% by ¢, and denoted by
F 4. We can give another definition, using the methods of n° if U is an
open subset of X, set ¥y = I'(U,.#)/T(U,¥) and let ¢}, a homomorphism
obtained by passing to the quotient with p}; : T'(V,.#) — I'(U,.%); the sheaf
defined by the system (777, ¢y;) coincides with ¢

The second definition of % shows that, if s is a section of J# over a neigh-
borhood of x, there exists a section t of % over a neighborhood of x such that
the class of t(y) mod ¥, is equal to s(y) for all y close enough to z. Of course,
this does not hold globally in general: if U is an open subset of X we only have
an exact sequence

0-IU9% —-T(U %) —TU,.xX),

the homomorphism T'(U, %) — T'(U, J#') not being surjective in general (cf. n°

i),

8 Homomorphisms

Let « be a sheaf of rings, % and ¥ two sheaves of &/-modules. An -
homomorphism (or an &/-linear homomorphism, or simply a homomorphism)
from 7 to ¢ is given by, for all x € X, an «,-homomorphism ¢, : ., — %,
such that the mapping ¢ : .% — ¢ defined by the ¢, is continuous. This
condition can also be expressed by saying that, if s is a section of .% over U,
x — ¢ (s(x)) is a section of 4 over U (we denote this section by ¢(s), or ¢os).
For example, if ¢4 is a subsheaf of .#, the injection 4 — % and the projection
F — F /9 both are homomorphisms.

Proposition 7. Let ¢ be a homomorphisms from F to 9. For all x € X,
let Ny be the kernel of ¢, and let S, be the image of ¢p.. Then N =] ANy is
a subsheaf of F, & =] S, is a subsheaf of 4 and ¢ defines an isomorphism
of F| N and & .

Since ¢, is an 4,-homomorphism, .4, and %, are submodules of .% and
& respectively, and ¢, defines an isomorphism of .%, /A4, with Z,. If on the
other hand s is a local section of .%, such that s(z) € A5, we have ¢ os(x) =0,
hence ¢ o s(y) = 0 for y close enough to z, so s(y) € 4, which shows that
A is a subsheaf of .#. If ¢ is a local section of ¢, such that t(x) € .7, there
exists a local section s € %, such that ¢ o s(x) = t(z), hence ¢ o s = ¢ in the
neighborhood of x, showing that .# is a subsheaf of ¢, isomorphic with % /4.

The sheaf .4 is called the kernel of ¢ and denoted by Ker(¢); the sheaf .&
is called the image of ¢ and denoted by Im(¢); the sheaf ¥/.7 is called the
cokernel of ¢ and denoted by Coker(¢). A homomorphism ¢ is called injective,

13
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or one-to-one, if each ¢, is injective, or equivalently if Ker(¢) = 0; it is called
surjective if each ¢, is surjective, or equivalently if Coker(¢) = 0; it is called
bijective if it is both injective and surjective, and Proposition 7 shows that it
is an isomorphism of .# and ¢ and that ¢! is a homomorphism. All the
definitions related to homomorphisms of modules translate naturally to sheaves
of modules; for example, a sequence of homomorphisms is called ezact if the
image of each homomorphisms coincides with the kernel of the homomorphism
following it. If ¢ : # — & is a homomorphism, the sequences:

0 — Ker(¢) - Z# — Im(¢) — 0

0 — Im(¢) = 4 — Coker(¢) — 0
are exact.

If ¢ is a homomorphism from # to ¢, the mapping s — ¢ o s is a I'(U, o )-
homomorphism from I'(U, .%) to I'(U,¥). Conversely, if o, #, ¥ are defined by
the systems (7, ¢Y), (Fu,vy), (Yu,xy) as in n° @ and take for every open
U C X an ofy-homomorphism ¢y : Fy — 9y such that XE o¢y = ¢y o z/;g :
by passing to the inductive limit, the ¢y define a homomorphism ¢ : % — 9.

9 The direct sum of two sheaves

Let <7 be a sheaf of rings, .# and ¢ two sheaves of &/-modules; for all z € X,
form the module %, &%, the direct sum of %, and ¥x; an element of %, &Y,
is a pair (f,g) with f € %, and g € ¢,. Let 2 be the sum of the sets %, ® Y,
for x € X ; we can identify J# with the subset of .% x & consisting of the pairs
(f,9) with 7(f) = w(g). We give £ the topology induced from .# x ¢ and
verify immediately that % is a sheaf of @/-modules; we call this sheaf the direct
sum of & and ¢, and denote it by F @ ¥4. A section of F @ ¥ is of the form
x> (s(z),t(x)), where s and t are sections of .# and ¢ over U; in other words,
U, Z# & %) is isomorphic to the direct sum I'(U, .7 ) & T'(U,¥).

The definition of the direct sum extends by recurrence to a finite number of
&/-modules. In particular, a direct sum of p sheaves isomorphic to one sheaf #
is denoted by Z#P.

10 The tensor product of two sheaves

Let o/ be a sheaf of rings, % a sheaf right of &/-modules, & a sheaf of left
«/-modules. For all x € X we set 4, = %, ® ¥,, the tensor product being
taken over the ring <7, (cf. for example [6], Chapter II, §2); let % be the sum
of the sets 7.

Proposition 8. There exists a structure of a sheaf on J£ , unique with the
property that if s and t are sections of F and & over an open subset U, the
mapping © — s(x) @ t(x) € K, gives a section of H over U.

14
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The sheaf H thus defined is called the tensor product (over &) of F and
4, and denoted by F Q4 9 ; if the rings o, are commutative, it is a sheaf of
o/ -modules.

If 2 has a structure of a sheaf satisfying the above condition, and if f; and g;
are sections of .# and ¢ over an open U C X, the mapping z — > s;(x) ®@t;(x)
is a section of # on U. In fact, all h € J£, can be expressed in the form
h=> fi®qg, fi € Fx, gi € Y, therefore also the form " s;(x) ® t;(x), where
s; and t; are defined in an open neighborhood U of x; in result, every section of
 can be locally expressed in the preceding form, which shows the uniqueness
of the structure of a sheaf on 7.

Now we show the existence. We might assume that <, %, 4 are defined by
the systems (o, ¢)), (Fu,vY), (Yu,x};) as in n° @ Now set Hy = Py @Yy,
the tensor product being taken over .27, ; the homomorphisms wl‘f and XE define,
by passing to the tensor product, a homomorphism ng .y — Ky besides,
we have lim,cy Jy = limgcy Fy ® limgcy Yy = H,, the tensor product being
taken over o, (for the commutativity of the tensor product with inductive
limits, see for example [6], Chapter VI, Exercise 18). The sheaf defined by the
system (#77,7m;) can be identified with %", and ¢ is thus given a structure
of a sheaf obviously satisfying the imposed condition. Finally, if the <7, are
commutative, we can suppose that the o, are also commutative (it suffices to
take for o7y the ring I'(U, «)), so J#y is a @y-module, and J# is a sheaf of
o/ — modules.

Now let ¢ be an &/-homomorphism from # to #' and let ¢ be an /-
homomorphism form ¢ to ¢’; in that case ¢, ®1, is a homomorphism (of abelian
groups in general — of o7 -modules, if 7, is commutative) and the definition of
F R4 9 shows that the collection of ¢, ® 1, is a homomorphism from ¥ ® ,, &
to ' @4 4'; this homomorphism is denoted by ¢ ® 1; if v is the identity, we
write ¢ instead of ¢ ® 1.

All of the usual properties of the tensor product of two modules translate to
the tensor product of two sheaves of modules. For example, all exact sequences:

F = F - F">0
give rise to an exact sequence:

F Ry Y > F Ry9 = F"R,y9— 0.

We have the canonical isomorphisms:
FRQy (N Ph)RF Ry NPT Qo b, FQRQuyAd~=F,
and (supposing that <7, are commutative, to simplify the notation):

F Ry Y ~Y Qg Fy, FRuy (YR )R (F Qg Y) Quy K.

15



81. Operations on sheaves I

11 The sheaf of germs of homomorphisms from one sheaf
to another

Let o/ be a sheaf of rings, % and ¢ two sheaves of &/-modules. If U is an open
subset of X, let £ be the group of homomorphisms from .# (U) to 4(U) (we
also write "homomorphism from % to ¢ over U” in place of ”homomorphism
from .7 (U) to 4(U)”). The operation of restricting a homomorphism defines
oy + Hv — Ky ; the sheaf defined by (1, ¢);) is called the sheaf of germs
of homomorphisms from Z to ¥ and denoted by Homy (#,¥). If <, are
commutative, Homg (% ,¥) is a sheaf of </-modules.

An element of Hom (% ,9), being a germ of a homomorphism from % to
¢ in a neighborhood of z, defines an «7,-homomorphism from .%, to ¥, ; hence
a canonical homomorphism

p:Homy (F#,9), — Homy, (Fy, Ys).

But, contrary to what happened with the operations studied up to now, the
homomorphism p is not a bijection in general ; we will give in n° [14] a sufficient
condition for that.

Ifg: 7" — F and v : 4 — 4’ are homomorphisms, we define in an obvious
way a homomorphism

Hom (¢,1) : Homy (F,9) — Homy (F',9").

Every exact sequence 0 -+ 4 — 4’ — 4" gives rise to an exact sequence:

0— Homd (g\,g) — Homd (ﬁ,g/) — Homd(ﬁ,gﬂ).

We also have the canonical isomorphisms: Homy (&, 9) ~ ¥,
Homgg(ﬁz,gl (&) gg) ~ Homd(ﬂ, gl) D Homd(f,%g)

Homy (71 @ %9, 9) =~ Homy (F1,9) ® Homy (F2,9).
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§2 COHERENT SHEAVES OF MODULES

In this paragraph, X denotes a topological space and &7 a sheaf of rings on X.
We suppose that all the rings o7, © € X are commutative and have a unity
element varying continuously with z. All sheaves considered until n° [I6] are
sheaves of &/-modules and all homomorphisms are .o7-homomorphisms.

12 Definitions

Let .# be a sheaf of o/-modules, and let s1,...,s, be sections of .% over an
open U C X. If we assign to any family f1,..., fp of elements of <7, the element
Szt fi-si(x) of F,, we obtain a homomorphism ¢ : &P — .#, defined over an
open subset U (being precise, ¢ is a homomorphism from &/?(U) to % (U), with
the notations from n° . The kernel Z(s1,...,sp) of the homomorphism ¢ is
a subsheaf of @7P, called the sheaf of relations between the s;; the image of ¢ is
a subsheaf of .# generated by s;. Conversely, any homomorphism ¢ : &P — .F#
defines the sections s, ..., s, by the formulas

s1(z) = ¢:(1,0,...,0), ..., sp(x)=¢(0,...,0,1).

Definition 1. A sheaf of o/ -modules F is said to be of finite type if it is
locally generated by a finite number of its sections.

In another words, for every point x € X, there exists an open neighborhood
U of z and a finite number of sections s1,...,s, of % over U such that every
element of .%#,, y € U is a linear combination, with coefficients in <7, of s;(y).
According to the preceding statements, it is another way of saying that the
restriction of .# to U is isomorphic to a quotient sheaf of o7/P.

Proposition 1. Let .F be a sheaf of finite type. If s1,...,s, are sections of
Z, defined over a meighborhood of a point x € X and generating .%,, then they
also generate F, for ally close enough to x.

Because % is of finite type, there is a finite number of sections of .# in a
neighborhood of x, say ti,...,t,, which generate .%, for y close enough to z.
Since s;j(x) generate .%#,, there exist sections f;; of &/ in a neighborhood of z

such that ¢;(z) = Z;i’l’ fij(x) - sj(x); it follows that, for y close enough to x,
we have:

B =3 fw) - 55w,
j=1

which implies that s;(y) generate .%,, q.e.d.

Definition 2. A sheaf of o/ -modules % is said to be coherent if:

(a) Z is of finite type,

(b) If s1,...,sp are sections of F over an open U C X, the sheaf of relations
between the s; is of finite type (over the open set U).

17
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We will observe the local character of definitions 1 and 2.

Proposition 2. Locally, every coherent sheaf is isomorphic to the cokernel
of a homomorphism ¢ : /9 — /P,

This is an immediate result of the definitions and the remarks preceding
definition 1.

Proposition 3. Any subsheaf of finite type of a coherent sheaf is coherent.

Indeed, if a sheaf .7 satisfies condition (b) of definition 2, then any subsheaf
of .F satisfies it also.

13 Main properties of coherent sheaves

Theorem 1. Let 0 — % %9 2 % 5 0 be an exact sequence of homomor-
phisms. If two of the sheaves F, 4, H are coherent, so is the third.

Suppose that & and £ are coherent. Locally, there exists a homomorphism
v : AP — 94; let S the kernel of 8 o ~; since J# is coherent, .# is a sheaf of
finite type (condition (b)); thus v(.#) is a sheaf of finite type, thus coherent by
Proposition 3; since « is an isomorphism from .Z to (%), it follows that % is
also coherent.

Suppose that .# and ¢ are coherent. Because ¢ is of finite type, £ is also of
finite type, so it remains to prove that # satisfies the condition (b) of definition
2. Let s1,...,5, be a finite number of sections of # in a neighborhood of a
point z € X. The question being local, we can assume that there exist sections
81,...,8, of 4 such that s; = 3(s}). Let n1,...,ny be a finite number of sections
of Z in a neighborhood of z, generating .%, for y close enough to . A family
f1,..., fp of elements of &7, belongs to Z(s1,. .., sp)y if and only if one can find
g1,---,9q € &, such that

i=p Jj=q
ZfZ 8= Zgj ~a(n;) iny.
i=1 j=1

Now the sheaf of relations between the s and the «(n;) is of finite type, because
@ is coherent. The sheaf Z(s1,...,s,), the image of the preceding by the
canonical projection from &/Pt9 to /P is thus of finite type, which shows that
& is coherent.

Suppose that .% and % are coherent. The question being local, we might
assume that % (resp. £") is generated by a finite number of sections n, ..., n,
(resp. $1,...,Sp); furthermore we might assume that there exist sections s} of ¢
such that s; = §(s}). It is clear that the sections s; and «(n;) generate ¢, which
proves that ¢ is a sheaf of finite type. Now let t1,...,%, be a finite number of
sections of ¢4 in a neighborhood of a point x; since J# is coherent, there exist
sections fj‘ or " (1 <i<r 1<j<s), defined in the neighborhood of z,
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which generate the sheaf of relations between the 3(t;). Put u; = ZEZ fJ’ -t
since Y i1 fi-B(t;) = 0, the u; are contained in (%) and, since .7 is coherent,
the sheaf of relations between the u; is generated, in a neighborhood of z, by
a finite number of sections, say g; (1 < j < s, 1 < k < t). I say that the
Z] 1gk f; generate the sheaf Z(ty,...,t,) in a neighborhood of z; indeed,
if Zi:l fi+t; = 0 on y, with f, € o7, we have EZZ fi - B(t;) = 0 and there
exist g; € o, with f; = Zj 19if;; noting that Y37 f; - t; = 0, one obtains
E;j g;-u; = 0, thus making the system g, a linear combination of the systems
gi and showing our assertion. It follows that ¢ satisfies condition (b), which
ends the proof.

Corollary. A direct sum of a finite family of coherent sheaves is coherent.

Theorem 2. Let ¢ be a homomorphism from a coherent sheaf .F to a
coherent sheaf 9. The kernel, the cokernel and the image of ¢ are also coherent
sheaves.

Because .Z is coherent, &(¢) is of finite type, thus coherent by Proposition
3. We apply Theorem 1 to the exact sequences

0 — Ker(¢) - # — Im(¢) — 0

0— Im(¢) > ¥4 — Coker(¢) — 0
seeing that Ker(¢) and Coker(¢) are also coherent.

Corollary Let F and 9 be two coherent subsheaves of a coherent sheaf .
The sheaves F + 94 and F NY are coherent.

For .7 + ¢, this follows from Proposition 3; and for . # N¥, this is the kernel
F = H|9G.

14 Operations on coherent sheaves

We have just seen that a direct sum of a finite number coherent sheaves is a
coherent sheaf. We will now show analogous results for the functors ® and Hom.

Proposition 4. If % and &4 are two coherent sheaves, F Q49 is a coherent
sheaf.

By Proposition 2, .Z is locally isomorphic to the cokernel of a homomorphism
¢ F1 — AP, thus T Qo 9 is locally isomorphic to the cokernel of ¢ :
IRy Y — AP Ry Y. But 1R Y and FP ® 4, 9 are isomorphic to 49 and
&P respectively, which are coherent (Corollary of Theorem 1). Thus .# ® ., ¢
is coherent (Theorem 2).

Proposition 5. Let .% and & be two sheaves, F being coherent. For all
x € X, the module Hom g (F,9), is isomorphic to Hom gy, (%, Y:).
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Precisely, we prove that the homomorphism
p:Homy (#,9), — Homy (F#,9),,

defined in n° is bijective. First of all, let ¢ : % — ¢ be a homomorphism
defined in a neighborhood of z, being zero in .%,; since .# is of finite type, we
conclude immediately that v is zero in a neighborhood of x, which proves that
p is injective. We will show that p is surjective, or in other words, that if ¢ is a
Ap-homomorphism from %, to ¥,, there exists a homomorphism ¢ : % — ¥,
defined in a neighborhood of = and such that ¥, = ¢. Let my, ..., m, be a finite
number of sections of .% in a neighborhood of x, generating .%, for all y close
enough to z, and let f;f (1 <i<p, 1<j<q)be sections of &P generating
Z(ma,...,mp) in a neighborhood of x. There exist local sections of ¢, say
ni,...,np, such that n;(z) = ¢(mi(x)). Put p;j = Y127 fi - ni, 1 < j < g; the
p; are local sections of ¢ being zero in x, so in every point of a neighborhood
U of z. It follows that for y € U, the formula ) f; - m;(y) = 0 with f; € <7,
implies 3 f; - n;(y) = 0; for any element m = >_ f; - m;(y) € #,, we thus can
put:

Yy(m) = ifi “ni(y) €Y.
i=1

The collection of 1y, y € U constitutes a homomorphism ¢ : F# — ¢, defined
over U and such that ¢, = ¢, which ends the proof.

Proposition 6. If % and &4 are two coherent sheaves, then Hom (% ,9)
s a coherent sheaf.

The question being local, we might assume, by Proposition 2, that we have
an exact sequence @9 — &P — % — (0. From the preceding Proposition it
follows that the sequence:

0 — Homy (#,9) — Homy (P, 9) — Hom (A1, 9)

is exact. Now the sheaf Hom (7P, %) is isomorphic to ¢?, thus is coherent, the
same for Hom, (&/9,%). Theorem 2 then shows that Hom,, (#,¥) is coherent.

15 Coherent sheaves of rings

A sheaf of rings &/ can be regarded as a sheaf of o/-modules; if this sheaf of
«7-modules is coherent, we say that <7 is a coherent sheaf of rings. Since <7 is
clearly of finite type, this means that < satisfies condition (b) of Proposition
2. In other words:

Definition 3. A sheaf o/ is a coherent sheaf of rings if the sheaf of relations
between a finite number of sections of </ over an open subset U is a sheaf of
finite type on U.
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Examples. (1) If X is a complex analytic variety, the sheaf of germs of
holomorphic functions on X is a coherent sheaf of rings, by a theorem of K. Oka
(cf. [3], statement XV, or [B], §5).

(2) If X is an algebraic variety, the sheaf of local rings of X is a coherent
sheaf of rings (cf. n° Proposition 1).

When & is a coherent sheaf of rings, we have the following results:

Proposition 7. For a sheaf of </ -modules, being coherent is equivalent to
being locally isomorphic to the cokernel of a homomorphism ¢ : /9 — /P,

The necessity part is Proposition 2; the sufficiency follows from the coherence
of &P and /7 and from Theorem 2.

Proposition 8. A subsheaf of o/ is coherent if and only if it is of finite
type.

This is a special case of Proposition 3.

Corollary. The sheaf of relations between a finite number of sections of a
coherent sheaf is coherent.

In fact, this sheaf is of finite type, from the definition of a coherent sheaf.

Proposition 9. Let F be a coherent sheaf of of -modules. For all x € X,
let S, be an ideal of <, consisting of those a € o7, for which a - f =0 for all
f € Z,. Then the Z, form a coherent sheaf of ideals (called the annihilator of

In fact, .#, is the kernel of the homomorphism &7, — Hom, (%,,%,); we
then apply Propositions 5 and 6 and Theorem 2.

More generally, the conductor % : 94 of a coherent sheaf ¢ into its coherent
subsheaf .Z is a coherent sheaf of ideals (being the annihilator of ¢/.%).

16 Change of ring

The notions of a sheaf of finite type, and of a coherent sheaf, are dependent on
the fixed sheaf of rings /. When we will consider multiple sheaves of rings,
we will say ”of finite type over &/, ”.o/-coherent” to point out that we mean
sheaves of .o/-modules.

Theorem 3. Let &/ be a coherent sheaf of rings, % a coherent sheaf of

ideals of of . Let F be a sheaf of o/ /.7 -modules. Then F is of /.7 -coherent if
and only if it is </ -coherent. In particular, <7 /.9 is a coherent sheaf of rings.

It is clear that ”of finite type over &/” is the same as ”of finite type over
of /.97, For the other part, if # is o/-coherent, and if s1,...,s, are sections
of % over an open U, the sheaf of relations between the s; with coefficients in
o/, is of finite type over «7. It follows immediately that the sheaf of relations
between the s; with coefficients in &7 /.7, is of finite type over &7 /.7, since it
is the image of the preceding by the canonical mapping &/ — (&7 /.#)P. Thus
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F is o | #-coherent. In particular, since &/ /. is of-coherent, it is also <7 /.7~
coherent, in other words, «7/.# is a coherent sheaf of rings. Conversely, if .#
is &/ | #-coherent, it is locally isomorphic to the cokernel of a homomorphism
¢ (/) I) — (/F)P and since &/ /.7 is of/-coherent, .F is coherent by
Theorem 2.

17 Extension and restriction of a coherent sheaf

Let Y be a closed subspace of a space X. If ¢ is a sheaf over Y, we denote by
¢X the a sheaf obtained by extending ¢ by 0 outside Y; it is a sheaf over X
(cf. n° . If of is a sheaf of rings over Y, &% is a sheaf of rings over X, and
if .Z is a sheaf of o/-modules, then .#¥ is a sheaf of &7X-modules.

Proposition 10. .Z is of finite type over < if and only if FX is of finite
type over o/ X.

Let U be an open subset of X, and let V = U NY. Any homomorphism
¢ : AP — F over V defines a homomorphism ¢~ : (&X)P — FX over U,
and conversely; so ¢ is surjective if and only if X is. The proposition follows
immediately from this.

We therefore show:
Proposition 11. .7 is o/ -coherent if and only if FX is o/ X -coherent.
Hence, by putting .% = &:

Corollary. 7 is a coherent sheaf of rings if and only if /X is a coherent
sheaf of rings.
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§3 COHOMOLOGY OF A SPACE WITH VALUES IN A
SHEAF

In this paragraph, X is a topological space, separated or not. By a covering of
X we will always mean an open covering.

18 Cochains of a covering

Let 81 = {U;}ier be a covering of X. If s = (ig,...,4,) is a finite sequence of
elements of I, we put
Us = Uio...ip = Uio n...N Uip
Let .% be a sheaf of abelian groups on the space X. If p is an integer
> 0, we call a p-cochain of {1 with values in % a function f assigning to every
s = (ig,...,ip) of p+ 1 elements of I a section f; = fi,. ., of F over Uj,. ;.
The p-cochains form an abelian group, denoted by CP(,.%#); it is the product
group [[T'(Us, &), the product being over all sequences s of p + 1 elements of
I. The family of C?(i, #), p=0,1,... is denoted by C(, %). A p-cochain is
also called a cochain of degree p.

A p-cochain is said to be alternating if:

(a) fig...i, = 0 whenever any two of the indices ig, ..., are equal,

(®) fivo...ivy = €0 fio...i, if 0 is a permutation of the set {0,...,p} (¢, denotes
the sign of o).

The alternating cochains form a subgroup C'?(4,.%) of the group CP (4, F);
the family of the C'P(4, %) is denoted by C’ (L, 7).

19 Simplicial operations

Let S(I) be the simplex with the set I as its set of vertices; an (ordered) simplex
of S(I) is a sequence s = (i, ..., ip) of elements of I; p is called the dimension
of s. Let K(I) = @,2, Kp(I) be the complex defined by S(I); by definition,
K,(I) is a free group with the set of simplexes of dimension p of S(I) as its
base.

If s is a simplex of S(I), we denote by |s| the set of vertices of s.

A mapping h : K,(I) — K,(I) is called a simplicial endomorphism if
(i) h is a homomorphism,
(ii) For any simplex s of dimension p of S(I) we have

h(s) = Zcﬁ/ .s', withe! €Z,
S/
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the sum being over all simplexes s’ of dimension ¢ such that |s'| C |s|.

Let h be a simplicial endomorphism, and let f € C(4, %) be a cochain of
degree ¢. For any simplex s of dimension p put:

Zc p3 (f),

p*" denoting the restriction homomorphism: Uy, #) — T'(Us, %), which
makes sense because |s’| C |s|. The mapping s — (*hf)s is a p-cochain, de-
noted by thf. The mapping f ~ thf is a homomorphism

th: CUU, F) — CP(U,.F),
and one verifies immediately the formulas:

"(hi + ho) ="hi +*ha, "(hiohs)="hyo'hy, '1=1.

Note. In practice, we often do not write the restriction homomorphism pﬁl.

20 Complexes of cochains

We apply the above to the simplicial endomorphism
0: Kpia(I) = Kp(I),
defined by the usual formula:

Jj=p+1

6(i0a"'ai1)+1): Z (_1)j(i05"'a%ja'"aip+1)7

j=0
the sign " meaning, as always, that the symbol below it should be omitted.

We thus obtain a homomorphism ‘@ : CP(U,.#) — CPT1(U,.#), which we
denote by d; from definition, we have that

j=p+1

(df)i0~~~ip+1 = Z (_1)jpj(fi0...%j...ip+1)7

§=0
where p; denotes the restriction homomorphism
Py - F(Uio...%j...ip+1’y) — F(Uio~~ip+1"gz)'

Since 0o d = 0, we have dod = 0. Thus we find that C'(,.#) is equipped with
a coboundary operator making it a complex. The ¢-th cohomology group of the
complex C'(4, F) will be denoted by H?(4,.%). We have:

Proposition 1. H'(U, ) =T'(X, 7).
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A 0-cochain is a system (f;);er with every f; being a section of .# over Us.
It is a cocycle if and only if it satisfies f; — f; = 0 over U; N Uy, or in other
words, if there is a section f of .# on X coinciding with f; on U; for all ¢ € I.
Hence the Proposition.

(Thus HO(4, ) is independent of i; of course this is not true for H9(, %)
in general).

We see immediately that df is alternating if f is alternating; in other words,
d preserves C'(4,.%) which forms a subcomplex of C(4,.%). The cohomology
groups of C’' (4, %) are denoted by H'I(4, F).

Proposition 2. The inclusion of C'(4, .F) in C(U,.F) induces an isomor-
phism of H1(M, F) and H1(U, F), for every ¢ > 0.

We equip the set I with a structure of a total order, and let h be a simplicial
endomorphism of K (I) defined in the following way:

h((ig,-..,iq)) = 0 if any two indices 7o, . .., i, are equal,

h((ig,...,1q)) = €5 (P00 - - . ixq) if all indices g, ..., i, are distinct and o is a
permutation of {0, ..., ¢} for which iso < ip1 < ... <ipq .

We verify right away that h commutes with 9 and that h(s) = s if dim(s) = 0;
in result (cf. [7], Chapter VI, §5) there exists a simplicial endomorphism £,
raising the dimension by one, such that 1 —h = 0ok + ko 0. Hence, by passing
to C'(4, F),

1-'h="'kod+do'k.

But we check immediately that th is a projection from C(4, %) onto C' (U, .F);
since the preceding formula shows that it is a homotopy operator, the Proposi-
tion is proved. (Compare with [7], Chapter VI, theorem 6.10).

Corollary. H1(U,.#) =0 for ¢ > dim(Ll).

By the definition of dim (), we have U, ;, = 0 for ¢ > dim(l), if the indices
io, - .., 14 are distinct; hence C"7(Y,.%) = 0, which shows that

H,.7) = H'9(Y, F) = 0.

21 Passing to a finer covering

A covering 4 = {U; };¢; is said to be finer than the covering U = {V;} ;¢ s if there
exists a mapping 7 : I — J such that U; C V,; for all i € I. If f € C1(0, %),
put

(Tf)io,»---,iq = pg(f‘rio-n"'iq)’

p(‘f denoting the restriction homomorphism defined by the inclusion of Uy,.. 4,
in Vi4..ri,- The mapping f ~ 7f is a homomorphism from C?(,.#) to
C1(4, F), defined for all ¢ > 0 and commuting with d, thus it defines homo-
morphisms

T HI(U, %) - HI(W F).
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Proposition 3. The homomorphisms 7 : H1(0,.F) — HI(W,.F) depend
only on 4 and U and not on the chosen mapping 7.

Let 7 and 7/ be two mappings from I to J such that U; C V,; and U; C Vo
: we have to show that 7% = 7/x.

Let f € CU,.F); set

h=qg—1

(Kf)ig..ig_r = Z (=)™ on(frig..rijrrin.trip_1)s

=
<)

where pp denotes the restriction homomorphism defined by the inclusion of
Uip...igey I Vaig rijrtip, gy -

We verify by direct computation (cf. [7], Chapter VI, §3) that we have
dkf +kdf =7'f —7f,

which ends the proof of the Proposition.

Thus, if 4 is finer than U, there exists for every integer ¢ > 0 a canonical ho-
momorphism from H%(Q0,.%#) to H1(4,.#). From now on, this homomorphism
will be denoted by o (L, ).

22 Cohomology groups of X with values in a sheaf .#

The relation 74 is finer than U” (which we denote henceforth by U < )
is a relation of a preordmﬂ between coverings of X; moreover, this relation
is ﬁlterecﬁ, since if 3l = {U;}ier and U = {V},es are two coverings, W =
{Ui NV} i j)erx is a covering finer than 4 and than .

We say that two coverings 4 and U are equivalent if we have 4 < U and
¥ < 4. Any covering i is equivalent to a covering Y’ whose set of indices is
a subset of PB(X); in fact, we can take for I the set of open subsets of X
belonging to the family . We can thus speak of the set of classes of coverings
with respect to this equivalence relation; this is an ordered filtered set. E|

If &t < U, we have defined at the end of the preceding n° a well defined
homomorphism o(4,0) : HI(V,F) — HI(, .F), defined for every integer
g > 0 and every sheaf % on X. It is clear that o(4,4l) is the identity and
that o(U, Q) o o(V, W) = (4, 2W) if U < Y < W. It follows that, if & is
equivalent to U, then o(4, ) and o(Y, L) are inverse isomorphisms; in other
words, H1(.#,4) depends only on the class of the covering 1.

Definition. We call the g-th cohomology group of X with values in a sheaf
Z, and denote by H4(X, %), the inductive limit of groups H4(4,.%), where 4

3
4

i.e. quasiorder
i.e. directed

5To the contrary, we cannot speak about the ”set” of coverings, because a covering is a
family whose set of indices is arbitrary.
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runs over the filtered ordering of classes of coverings of X, with respect to the
homomorphisms o (4L, ).

In other words, an element of H%(X,%) is just a pair (i, z) with = €
Hi(s,.#), and we identify two such pairs (i, ) and (U,y) whenever there
exists a 20 with 2 < U, W < Y and o(W, )(z) = (W, V)(y) in H1(W,.7).
Any covering 4 in X is thus associated a canonical homomorphism o(U) :
HIYU, F) - HI(X,F).

We will see that H%(X,.#) can also be defined by an inductive limit of
H1(s, .7 ) where 4l runs over a cofinal family of coverings. Thus, if X is quasi-
compact (resp. quasi-paracompact), we can consider only finite (resp. locally
finite) coverings.

When ¢ = 0, by Proposition 1 we have:
Proposition 4. H°(X, %) =T'(X,.%).

23 Homomorphisms of sheaves

Let ¢ be a homomorphism from a sheaf % to a sheaf &. If il is a covering of X,
we can assign to any f € CY(4, . F) an element ¢f € CI(4,%¥) defined by the
formula (¢f)s = ¢(fs). The mapping f — ¢ f is a homomorphism from C(, F)
to C(U,¥) commuting with the coboundary, thus it defines homomorphisms
o* : HI(W,.7) — H1(U,9). We have ¢* o o(U, V) = o(U,T) o p*, hence, by
passing to the limit, the homomorphisms

¢* : HI(X,.F) — HI(X,9).

When g = 0, ¢* coincides with the homomorphism from I'( X, %) to T'(X,¥)
induced in the natural way by ¢.

In general, the homomorphisms ¢* satisfy usual formal properties:
(+¢)" =¢"+¢", (goy)", 1"=1

In other words, for all ¢ > 0, H%(X,.%#) is a covariant additive functor of
% . Hence we gather that if .% is the direct sum of two sheaves ¢ and %, then
HY(X,.7) is the direct sum of H%(X,%) and H1(X,%,).

Suppose that .% is a sheaf of @/-modules. Any section of & on X defines
an endomorphism of .%, therefore of H4(X,.%). It follows that H1(X,.%) are
modules over the ring I'(X, 7).
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24 Exact sequence of sheaves: the general case

Let 0 = o7 % # 2 % — 0 be an exact sequence of sheaves. If il is a covering
of X, the sequence

0= CU, ) %S oW, B) 2 o, @)

is obviously exact, but the homomorphism g need not be surjective in general.
Denote by Cy(U, %) the image of this homomorphism; it is a subcomplex of
C(U,%) whose cohomology groups will be denoted by H{ (i, €). The exact
sequence of complexes:

0—CUL) = CWUAB) — Co(Uh,6) =0
giving rise to an exact sequence of cohomology:
.o HIL,B) — HIW,C) S HIT (YU, o) — HIY (U, B) — ...,

where the coboundary operator d is defined as usual.

Now let U = {U; }ier and U = {V;};cs be two coverings and let 7: I — J
be such that U; C V,; ; we thus have 4 < U. The commutative diagram:

0—— C(V, o) —— C(V,B) —— C(V,%)

P

0 —— C(, &) —— C(U, B) —— C(L, %)

shows that 7 maps Co (U, %) into Cy(L, €), thus defining the homomorphisms
™ HY(V,¢) — H{(U,€). Moreover, the homomorphisms 7* are independent
of the choice of the mapping 7: this follows from the fact that, if f € C{ (%D, %),
we have kf € C{ - (U, €), with the notations of the proof of Proposition 3. We
have thus obtained canonical homomorphisms o (U, V) : HJ (D, €) — H{ (WU, €);
we might then define HJ(X, %) as the inductive limit of the groups H{ (U, €).

Because an inductive limit of exact sequences is an exact sequence (cf. [7],
Chapter VIII, theorem 5.4), we obtain:

Proposition 5. The sequence
oo HYX, B) 2 HI(X,6) S HY (X, o) 2 HITYX, B) — ...

s exact.

(d denotes the homomorphism obtained by passing to the limit with the
homomorphisms d : H{(4,€) — HITH(U, &)).

To apply the preceding Proposition, it is convenient to compare the groups
H{(X,¢) and H1(X,%¢). The inclusion of Cy(U,€) in C(4, %) defines the
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homomorphisms H{ (U, €) — HI(4, € ), hence, by passing to the limit with &I,
the homomorphisms:
H{(X,€¢) — HY(X,?).

Proposition 6. The canonical homomorphism H{(X,€¢) — HY(X,€) is
bijective for ¢ = 0 and injective for ¢ = 1.

We will prove the following lemma:

Lemma 1. Let U = {V;}jes be a covering and let f = (f;) be an element
of C°(0,€). There exists a covering $h = {U;}ier and a mapping 7 : I — J
such that U; C Vy; and 7f € CJ(8L, F).

For any = € X, take a 7o € J such that = € V,,. Since f,, is a section of
€ over V.., there exists an open neighborhood U, of x, contained in V,, and
a section b, of #Z over U, such that 8(b;) = frs on U,. The {U,},cx form

a covering 4 of X, and the b, form a O-chain b of U with values in U; since
7f = B(b), we have that 7f € CJ (8, %).

We will now show that H} (X, %) — H' (X, %) is injective. An element of the
kernel of this mapping may be represented by a 1-cocycle z = (z;,,) € C((U,¥)
such that there exists an f = (f;) € C°(U,¥) with df = z; applying Lemma
1 to f yields a covering & such that 7f € C§(i, %), which shows that 7z is
cohomologous to 0 in Cy(4, €), thus its image in Hi(X,%) is 0. This shows
that HJ(X,€) — H°(X, %) is bijective.

Corollary 1. We have an exact sequence:

0— H'(X, o) - H"(X,%#) - H*(X,%) - H (X, o) - H'(X,#) - H'(X,%).

This is an immediate consequence of Propositions 5 and 6.

Corollary 2. If HY(X, o) =0, then T'(X,#) — I'(X,¥) is surjective.

25 Exact sequence of sheaves: the case of X paracompact

Recall that a space X is said to be paracompact if it is separated and if any
covering of X admits a locally finite finer covering. On paracompact spaces,
we can extend Proposition 6 for all values of ¢ (I do not know whether that
extension is possible for nonseparated spaces):

Proposition 7. If X is paracompact, the canonical homomorphism
H{(X,¢)— HI(X,?)

is bijective for all ¢ > 0.

This Proposition is an immediate consequence of the following lemma, anal-
ogous to Lemma 1:
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Lemma 2. Let U = {Vj}jcs be a covering, and let f = (fj,...5,) be an
element of C1(B,€). There exists a covering & = {U;}ic;r and a mapping
7: 1 — J such that U; C Vy; and 7f € CE(U,F).

Since X is paracompact, we might assume that 2 is locally finite. Then
there exists a covering {W;};cs such that W; C V}. For every x € X, choose
an open neighborhood U, of x such that

(a) If x € V; (resp. x € W;), then U, C Vj (resp. U, C W;),

(b) If U, N W; # 0, then U, C W},

(c) If 2 € Vj,..4,, there exists a section b of & over U, such that 3(b) = f;,...;,
over U,.

The condition (c) can be satisfied due to the definition of the quotient sheaf
and to the fact that = belongs to a finite number of sets Vj, ;. Having (c)
satisfied, it suffices to restrict U, appropriately to satisfy (a) and (b).

The family {U, },cx forms a covering il; for any « € X, choose 7a € J such
that © € W,,. We now check that 7f belongs to Cg (U, ¢), in other words, that
frao...r2, 18 the image by 3 of a section of Z over Uy, N...NUy,. If Uy, N...NU,,
is empty, this is obvious; if not, we have U,, NU,, # 0 for 0 < k < ¢, and since
U, C Usry,, we have Uy, N W,,, # (), which implies by (b) that U,, C Vrs,,
hence 29 € Vi4y...rz,; We then apply (c), seeing that there exists a section b of
P over Uy, such that B(b)y = fray...ra, 00 Uz, s0 also on Uy, N...NU,,, which
ends the proof.

Corollary. If X is paracompact, we have an exact sequence:
o HIX,B) D Hi(x,0) S B (X, o) & HITYX, B) s .

(the map d being defined as the composition of the inverse of the isomorphism
H{(X,¢) — HY(X,¥) with d : H{(X,¢) — HI™Y(X, &)).

The exact sequence mentioned above is called the ezact sequence of coho-
mology defined by a given exact sequence of sheaves 0 —» &/ — # — € — 0.
More generally, it exists whenever we can show that Hj(X,¢) — HY(X, %) is
bijective (we will see in n° [47|that this is the case when X is an algebraic variety
and when &7 is an algebraic coherent sheaf).

26 Cohomology of a closed subspace

Let % be a sheaf over a space X, and let Y be a subspace of Y. Let %#(Y) be
the sheaf induced by .% on Y, in the sense of n° {4 If 4 = {U;};cr is a covering
of X, the sets U/ =Y NU; form a covering Y’ of Y; if fio...iq 18 a section of &
over Uj, .. i, , the restriction of f;,. ;, to Ui’Omiq =Y NUi,..4, is asection of Z(Y).
The operation of restriction is a homomorphism p : C(4,.F) — C(W, . F(Y)),
commuting with d, thus defining p* : HY(U, #) — HI(W,F#(Y)). If 4 < U,
we have Y’ < ', and p* o o(U, V) = o (W, Y’) o p*; thus the homomorphisms
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p* define, by passing to the limit with {, homomorphisms p* : HY(X, %) —
HUY,Z(Y)).

Proposition 8. Assume that Y is closed in X and that & is zero outside
Y. Then p* : H(X, #) — HU(Y, #(Y)) is bijective for all ¢ > 0.

The Proposition is implied by the following facts:

(a) Any covering 20 = {W;};cr of Y is of the form &’ for some covering i of
X.

Indeed, it suffices to put U; = W; U (X —Y), since Y is closed in X.

(b) For any covering il of X, p : C(i,.F) — CW,.Z(Y)) is bijective.
Indeed, the result follows from Proposition 5 of n° @ applied to Uj,..;, and the
sheaf 7.

We can also express Proposition 8 in the following manner: If ¢ is a sheaf
on Y, and if ¥ is the sheaf obtained by extending ¢ by 0 outside Y, we have
HI(Y,9) = H1(X,94X) for all ¢ > 0; in other words, the identification of ¥
with 4% is compatible with passing to cohomology groups.
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§4 COMPARISON OF COHOMOLOGY GROUPS OF
DIFFERENT COVERINGS

In this paragraph, X denotes a topological space and .% is a sheaf on X. We pose
conditions on a covering il of X, under which we have H"(4,.%) = H"(X,.%)
for all n > 0.

27 Double complexes

A double complex (cf. [6], Chapter VI, §4) is a bigraded abelian group

K=K, p>0,q>0,

p,q

equipped with two endomorphisms d’ and d” satisfying the following properties:
— d’ maps KP4 to KPT19 and d” maps KP9 to KP:at!,
—dod =0,dod"+d"od =0,d"od” =0.

An element of KP? is said to be bihomogenous of bidegree (p,q), and of
total degree p + q. The endomorphism d = d’ + d” satisfies d o d = 0, and the
cohomology groups of K with respect to this coboundary operator are denoted
by H™(K), where n means the total degree.

We can treat d’ as a coboundary operator on K; since d’ is compatible with
the bigrading of K, we also obtain cohomology groups, denoted by H}"?(K); for
d", we have the groups HY}*(K).

We denote by K7, the subgroup of K 0.9 consisting of elements z such that
d'(z) = 0, and by Kj; the direct sum of K}, (¢ = 0,1,...). We have an
analogous definition of K; = @;o:(] K7. We note that

Kf, = HY(K) and K} = HEP(K),

K1 is a subcomplex of K, and the operator d coincides on Kj; with the
operator d”.

Proposition 1. If HP?(K) =0 forp > 0 and ¢ > 0, the inclusion K;; — K
defines a bijection from H™(K;;) to H"(K), for all n > 0.

(Cf. [], statement XVII-6, whose proof we shall repeat here).

By replacing K by K/Kj, we are led to prove that if H?"?(K) =0 forp >0
and ¢ > 0, then H"(K) =0 for all n > 0. Put

K, = @KW.

q>h

The groups K}, (h = 0,1,...) are subcomplexes embedded in K, and K}, /K}p 41 is
isomorphic to EB;O:O KPP equipped with the coboundary operator d’. We thus
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have H"(Kp/Kpy1) = th’”fh(K) = 0 for any n and h, therefore H"(K}) =
H"™(Kpy1). Since H"(Kp) = 0 if h > n, we deduce, by descending recursion on
h, that H™(K},) = 0 for all n and h, and since Kj is equal to K, the Proposition
follows.

28 The double complex defined by two coverings

Let 3t = {U; }ier and U = {V;};cs be two coverings of X. If s is a p-simplex of
S(I) and s’ a g-simplex of S(J), we denote by Us the intersection of U;, i € s
(cf. n° 7 the intersection of Vj, j € s’, by U, the covering of U, formed by
{UsNV;}jes and by Uy the covering of Vi formed by {Vy N U, }ier.

We define a double complex C'(,T; F) = P, , CP4(U,T; F) as follows:

CPa(,0; F) = [[T(Us N Vi, F), the product taken over all pairs (s, s’)
where s is a simplex of dimension p of S(I) and s is a simplex of dimension ¢

of S(J).

An element f € CP9(4,U; F) is thus a system (fs s ) of sections of .# on
Us NV or, with the notations of n° [I8] it is a system

Jioeoivgooia € TWUig.iy N Vg jur F)-

We can also identify CP9(4U,0;.%) with [],, CP (U, F); thus, for all s’, we
have a coboundary operator d : CP (U ,.# — CP(Uy,.F), giving a homomor-
phism

dy : CP (U, 0; F) — CPTHA(8U,0; F).

Making the definition of dg explicit, we obtain:

k=p+1

(A f)io.ipy1odoria = z O kg i o o)

k=0

pr. being the restriction homomorphism defined by the inclusion of

Uig..iy N Vig.jy 1 Uiy i i N Vioogy-

We define dy : CP9(8,0; F) — CP9TL(U, B; .F) the same way and we have

h=q+1

(A f)ig.ipdoins = D (D" 0Ly iy o)

h=0

It is clear that dg o dg = 0, dy o d¥ = dyg o dy, dyg o dy = 0. We thus
put d’ = dy, d’ = (—1)Pdy, equipping C'(i, ;%) with a structure of a double
complex. We now apply to K = C(,0;.%) the definitions from the preceding
n° ; the groups or complexes denoted in the general case by H"(K), HP(K),
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HPU(K), HA(K), K1, K17 will be denoted by H"(w,%;.7), HP (4L, ; F),
HY (U, 0;.7), Cr(U,0; Z) and Cr(U,0; F), respectively.

From the definitions of d’ and d”, we immediately obtain:
Proposition 2. HPY(U,0;.F) is isomorphic to [, H?(Uy, F), the prod-
uct being taken over all simplexes of dimension q of S(J). In particular,

O (,0;.7) = HP (U, 0; F)

is isomorphic to ], H(Uy, F) = CU(T, F).

We denote by /" the canonical isomorphism: C(U, %) — Crr(U4,0; F). If
(fjo...5,) is an element of C(7,.7), we thus have

(L//f)i()nj()‘ujq = Pig (ij“-jq)?

where p;, denotes the restriction homomorphism defined by the inclusion of

UiO mV]O]q m ‘/30-~~jq'

Obviously, a statement analogous to Proposition 2 holds for HY I (4, 0; %),
and we have an isomorphism ¢/ : C(4, F) — C(U,0; F).

29 Applications

Proposition 3. Assume that HP (Uy, F) = 0 for every s’ and all p > 0. Then
the homomorphism H™ (0, %) — H" (W, 0; F), defined by 1", is bijective for all
n > 0.

This is an immediate consequence of Propositions 1 and 2.
Before stating Proposition 4, we prove a lemma:

Lemma 1. Let 20 = {W;}icsr be a covering of a space Y and let F be a
sheaf on' Y. If there exists an i € I such that W; =Y, then HP (205, %) =0 for
allp > 0.

Let 20’ be a covering of Y consisting of a single open set Y; we obviously
have 20 < 2, and the assumption made on 20 means that 20’ < 20. In result
(n° we have HP (20, %) = HP(W',.#) =0 if p > 0.

Proposition 4. Suppose that the covering U is finer than the covering .
Then " : H"(0, %) — H™(U,0; F) is bijective for all n > 0. Moreover, the
homomorphism ' o=t : H*(8, F) — H" (0, .F) coincides with the homomor-

phism o (U, U) defined in n° [21]

We apply Lemma 1 to 20 = iy and Y = V, seeing that HP (s, .F) =0
for all p > 0, and then Proposition 3 shows that

' HY (U, F) — H(U,0; F)
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is bijective for all n > 0.

Let 7 : J — I be a mapping such that V; C U,;; for the proof of the second
part of the Proposition, we need to observe that if f is an n-cocycle of C(4,.%),
the cocycles «/(f) and /(7 f) are cohomologous in C'(i4,0; F).

For any integer p, 0 < p < n — 1, define g? € CP"~P~L(U,U;.#) by the
following formula

p — ) . .
gigu.ip,jo...jn,p,l - pp(fzouipTJo---Tjn—y)’

pp denoting the restriction defined by the inclusion of

Uip.iiy VWVigojn—pr 0 Uig iy rijo.mjn_ps -

We verify by a direct calculation (keeping in mind that f is a cocycle) that
we have

() = (T f) s d () = d (P, d (g = (1))

hence d(g° —g' +...+ (=1)""tg" 1) = /(7 f) — /(f), which shows that (7 f)
and /() are cohomologous.

Proposition 5. Suppose that U is finer than i and that H1(Us, F) = 0 for
all s and all ¢ > 0. Then the homomorphism o(0,4) : H™ (LU, F) — H" (0, F)
1s bijective for all m > 0.

If we apply Proposition 3, switching the roles of 4 and U, we see that ¢ :
H™(0,#) — H™(U,0; F) is bijective. The Proposition then follows directly
from Proposition 4.

Theorem 1. Let X be a topological space, U = {U; }icr a covering of X, F
a sheaf on X. Assume that there exists a family 0%, o € A of coverings of X
satisfying the following properties:

(a) For any covering W of X, there exists an o € A with U~ < 27,

(b) H1(V%,F) =0 for all a € A, all simplezes s € S(I) and every q > 0,
Then o) : H™(M, .F) — H™(X,.F) is bijective for all n > 0.

Since Y are arbitrarily fine, we can assume that they are finer than ${. In
this case, the homomorphism

o(P*, ) H* (W, 7)) — H" (0, F)
is bijective for all n > 0, by Proposition 5. Because U* are arbitrarily fine,
H™(X,.7) is the inductive limit of H™ (0%, .%), and the theorem follows.

Remarks. (1) It is probable that Theorem 1 remains valid when we replace
the condition (b) with the following weaker condition:
(b’) lim, H1(U¢, .#) = 0 for any simplex s of S(I) and any ¢ > 0.

(2) Theorem 1 is analogous to a theorem of Leray on acyclic coverings. Cf.
[10] and also [4], statement XVII-7.
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Algebraic Varieties
— Coherent Algebraic
Sheaves on Affine Varieties
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§1. Algebraic varieties Il

From now on, K denotes a commutative algebraically closed field of arbitrary
characteristic.

§1 ALGEBRAIC VARIETIES

30 Spaces satisfying condition (A)

Let X be a topological space. The condition (A) is the following:
(A) — Any decreasing sequence of closed subsets of X is stationary.

In other words, if we have F} D Fy D F3 D ..., F; being closed in X, there
exists an integer n such that F,, = F,, for m > n. Or:

(A) — The set of closed subsets of X, ordered by inclusion, satisfies the
minimality condition

Examples. Equip a set X with the topology where the closed subsets are
the finite subsets of X and the whole X; the condition (A) is then satisfied.
More generally, any algebraic variety, equipped with Zariski topology, satisfies

(A) (cf. n°[34).

Proposition 1. (a) If X satisfies the condition (A), then X is quasi-
compact,

(b) If X satisfies (A), any subspace of X satisfies it also.

(c) If X is a finite union of Y;, the Y; satisfying (A), then X also satisfies
(A).

If F; is a filtering decreasing set of closed subsets of X, and if X satisfies (A’),

then there exists an F; contained in all others; if (| F; = (), there is therefore an
i such that F; = (), which shows (a).

Let G1 D G2 D G3 D ... be a decreasing sequence of closed subsets of a
subspace Y of X; if X satisfies (A),ithere exists an n for which G,, = G, for
m > n, hence G, =Y NG,, =Y NG,, = G, which shows (b).

Let F} D Fy D F3 D ... be a decreasing sequence of closed subsets of a space
X satisfying (c); since all Y; satisfy (A), there exists for all ¢ an n; such that
F,NnY, = F, NY; for m > n;; if n = Sup(n;), we then have F,,, = F,, for
m > n, which shows (c).

A space X is said to be irreducible if it is not a union of two closed subspaces,
distinct from X itself; or equivalently, if any two non-empty open subsets have
a non-empty intersection. Any finite family of non-empty open subsets of X
then has a non-empty intersection, and any open subset of X is also irreducible.

Proposition 2. Any space X satisfying the condition (A) is a union of a
finite number of irreducible closed subsets Y;. If we suppose that that Y; is not
contained in'Y; for any pair (i,7), i # j, the set of Y; is uniquely determined by
X ; the Y; are then called the irreducible components of X .
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The existence of a decomposition X = [JY; follows immediately from (A).
If Z, is another such decomposition of X, we have Y; = JY; N Z;, and, since
Y; is irreducible, this implies of an index k such that Z; O Yj; interchanging
the roles of Y; and Zj., we conclude analogously that there exists an index 7’ for
which Yy D Z; thus Y; C Zy C Y, which by the assumption made on Y; leads
to ¢ =1" and Y; = Z}, hence the uniqueness of the decomposition.

Proposition 3. Let X be a topological space that is a finite union of non-
empty open subsets V;. Then X is irreducible if and only if all V; are irreducible
and V; N V; # 0 for all pairs (i, ).

The necessity of these conditions was noted above; we show that they are
sufficient. If X = YUZ, where Y and Z are closed, we have V; = (V;NY)U(V;N
Z), which shows that each V; is contained either in Y or in Z. Suppose that YV’
and Z are distinct from X; we can then find two indices ¢, j such that V; is not
contained in Y and V; is not contained in Z; according to our assumptions on
Y;, wethenhave V; C Zand V; CY. Set T = V; —V;NVj; T is closed in V; and
we have V; = T'U (Z NVj;); as Vj is irreducible, it follows that either T' =V},
which means that V; N V; =0, or ZNV; =V}, which means that V; C Z, and
in both cases this leads to a contradiction, q.e.d.

31 Locally closed subsets of an affine space

Let r be an integer > 0 and let X = K" be the affine space of dimension r
over the field K. We equip X with the Zariski topology; recall that a subset
of X is closed in this topology if it is the zero set of a family of polynomials
P> € K[Xy,...,X,]. Since the ring of polynomials is Noetherian, X satisfies
the condition (A) from the preceding n® . Moreover, one easily shows that X is
an irreducible space.

If & = (21,...,2,) is a point of X, we denote by &, the local ring of x; recall
that this is the subring of the field K(Xq,...,X,) consisting of those fractions
which can be put in the form:

R = P/Q, where P and @ are polynomials and Q(x) # 0.

Such a fraction is said to be regular in x; for all points € X for which
Q(z) # 0, the function z — P(z)/Q(x) is a continuous function with values in
K (K being given the Zariski topology) which can be identified with R, the field
K being infinite. The O, x € X thus form a subsheaf & of the sheaf .7 (X) of
germs of functions on X with values in K (cf. n° ; the sheaf & is a sheaf of
rings.

We will extend the above to locally closed subspaces of X (we call a subset
of a space X locally closed in X if it is an intersection of a open subset with a
closed subset of X). Let Y be such a subspace and let % (Y) be the sheaf of
germs of functions on Y with values in K; if x is a point of Y, the operation of
restriction defines a canonical homomorphism

ot F(X)y = F(V)a.
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The image of &, under £, is a subring of .#(Y'), which we denote by O, y;
the O,y form a subsheaf Oy of % (Y), which we call the sheaf of local rings
of Y. A section of Oy over an open subset V of Y is thus, by definition, a
function f : V — K which is equal, in the neighborhood of any point = € V,
to a restriction to V' of a rational function regular at z; such a function is said
to be regular on V; it is a continuous function if we equip V' with the induced
topology and K with the Zariski topology. The set of regular functions at all
points of V is a ring, the ring I'(V, Oy ); observe also that, if f € I'(V, ;) and
if f(z) #0 for all x € V, then 1/f also belongs to T'(V, Oy ).

We can characterize the sheaf &y in another way:

Proposition 4. Let U (resp. F) be a open (resp. closed) subspace of X and
let Y =UNF. Let I(F) be the ideal K[X;,...,X,| consisting of polynomials
vanishing on F. If x is a point of Y, the kernel of the surjection e, : Oy — Oy y
coincides with the ideal I(F) - O, of 0.

It is clear that each element of I(F') - &, belongs to the kernel of ¢,. Con-
versely, let R = P/Q be an element of the kernel, P and @) being two polynomials
with Q(x) # 0. By assumption, there exists an open neighborhood W of a such
that P(y) = 0 for all y € W N F; let F' be the complement of W, which is
closed in X; since x € F”, there exists, by the definition of the Zariski topology,
a polynomial P; vanishing on F’ and nonzero at x; the polynomial P-P; belongs
to I(F) and we can write R = P - P;/Q - Py, which shows that R € I(F) - 0.

Corollary. The ring Oy y is isomorphic to the localization of K[ X1, ..., X,]/I(F)
in the mazimal ideal defined by the point x.

This follows immediately from the construction of localization a quotient
ring (cf. for example [8], Chap. XV, §5, th. XI).

32 Regular functions

Let U (resp. V) be a locally closed subspace of K" (resp. K?®). A function
¢ : U — V is said to be regular on U (or simply regular) if:

¢ is continuous,

Ifz €U and f € Oy,),v then fogp € O, p.

Denote the coordinates of the point ¢(x) by ¢;(z), 1 <14 < s. We then have:

Proposition 5. A map ¢ : U — V is regular on U if and only if ¢; : U = K
are regular on U for all i, 1 <i<s.

As the coordinate functions are regular on V, the condition is necessary.
Conversely, suppose that we have ¢; € I'(U, Oy) for each i; if P(Xq,...,Xs)
is a polynomial, the function P(¢1, ..., ¢s) belongs to T'(U, Oy) since T'(U, Oy)
as a ring; it follows that it is a continuous function on U, thus its zero set is
closed, which shows the continuity of ¢. If we have x € U and f € Oy,),v, we
can write f locally in the form f = P/Q, where P and @ are polynomials and
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Q(é(x)) # 0. The function f o ¢ is then equal to Po¢/Q o ¢ in a neighborhood
of x; from what we gave seen, P o ¢ and @ o ¢ are regular in a neighborhood of
x. As Qog(x) # 0, it follows that f o ¢ is regular in a neighborhood of z, q.e.d.

A composition of two regular maps is regular. A bijection ¢ : U — V is
called a biregular isomorphism (or simply an isomorphism) if ¢ and ¢! are
regular; or equivalently, if ¢ is a homeomorphism of U to V which transforms
the sheaf Oy into the sheaf Oy .

33 Products

If r and 7’ are two nonnegative integers, we identify the affine space K ' with
the product K" x K™ . The Zariski topology on K+ s finer than the product
of the Zariski topologies on K" and K ™. it is even strictly finer if r and 7’
are positive. In result, if U and U’ are locally closed subspaces of K" and K Tl,
U x U’ is a locally closed subspace of K™ and the sheaf @y is well defined.

On the other hand, let W be a locally closed subspace of Kt, ¢ > 0 and
let ¢ : W — U and ¢' : W — U’ be two maps. As an immediate result of
Proposition 5 we have:

Proposition 6. A map x — (¢(z),d' (x)) is reqular from W to U x U’ if
and only if ¢ and ¢' are regular.

As any constant function is regular, the preceding Proposition shows that
any section x — (x,x(), x(, € U’ is a regular function from U to U x U’; on
the other hand, the projections U x U' — U and U x U’ — U’ are obviously
regular.

Let V and V' be locally closed subspaces of K* and K¢ and let Yv:U—=>V
and ¢/ : U’ — V'’ be two mappings. The preceding remarks, together with
Proposition 6, show that we then have (cf. [I], Chap. IV):

Proposition 7. A map  x ¢ : U x U’ — V x V' is regular if and only if
Y and 1)’ are regular.

Hence:

Corollary. A map ¥ x ' is a biregular isomorphism if and only if v and
' are biregular isomorphisms.

34 Definition of the structure of an algebraic variety

Definition. We call an algebraic variety over K (or simply an algebraic variety)
a set X equipped with:

1° a topology,

2° a subsheaf O, of the sheaf F(X) of germs of functions on X with values
mn K,
this data being subject to axioms (VAr) and (VArr) stated below.
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First note that if X and Y are equipped with two structures of the above
type, we have a notion of isomorphism of X and Y: it is a homeomorphism
of X to Y which transforms Ox to Ox. On the other hand, if X’ is an open
subset of X, we can equip X’ with the induced topology and the induced sheatf:
we have a notion of an induced structure on an open subset. That being said,
we can state the axiom (V Aj):

(VA;) — There exists a finite open covering U = {V;};cr of the space X
such that each V;, equipped with the structure induced from X, is isomorphic
to a locally closed subspace U; of an affine space, equipped with the sheaf Oy,

defined in n° [31]

To simplify the language, we call an prealgebraic variety a topological space
X together with a sheaf Ox satisfying the axiom (VAj;). An isomorphism
¢; + Vi — U, is called a chart of the open subset V;; the condition (VAj)
means that it is possible to cover X with finitely many open subsets possessing
charts. Proposition 1 from n° |30] shows that X satisfies condition (A), thus it
is quasi-compact and so are its subspaces.

The topology on X is called the ,,Zariski topology” and the sheaf Ox is
called the sheaf of local rings of X.

Proposition 8. Let X be a set covered by a finite family of subsets Xj,
Jj € J. Suppose that each X; is equipped with a structure of a prealgebraic
variety and that the following conditions are satisfied:

(a) X; N X; is open in X; for alli,j € J,

(b) the structures induced by X; and X; on X;NX; coincide for alli,j € J.
Then there exists a unique structure of a prealgebraic variety on X such that
X are open in X and such that the structure induced on each X; is the given
structure.

The existence and uniqueness of the topology on X and the sheaf Oy are
immediate; it remains to check that this topology and this sheaf satisfy (V Ay),
which follows from the fact that X; form a finite family and satisfy (V Ar).

Corollary. Let X and X' be two prealgebraic varieties. There exists a
structure of a prealgebraic variety on X x X' satisfying the following condition:
If¢: V> U and ¢’ : V' — U’ are charts (V being open in X and V' being
open in X'), then V-x V' is open in X x X' and ¢ x ¢/ : VxV' - UxU" is a
chart.

Cover X by a finite number of open V; having charts ¢; : V; — U; and
let (V/,U, ;) be an analogous system for X’. The set X x X' is covered by
Vi x VJ; equip each V; x V/ with the structure of a prealgebraic variety induced
from U; x U} by ¢i_1 X ¢;_1; the assumptions (a) and (b) of Proposition 8
are satisfied for this covering of X x X’ by the corollary of Proposition 7. We
obtain a structure of a prealgebraic variety on X x X’ which satisfies appropriate
conditions.
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We can apply the preceding corollary to the particular case X’ = X; so
X x X has a structure of a prealgebraic variety, and in particular a topology.
We can now state the axiom (VAyy):

(VArr) — The diagonal A of X x X is closed in X x X.

Suppose that X is a prealgebraic variety obtained by the ,,gluing” procedure
of Proposition 8; then the condition (VAyy) is satisfied if and only if X;; =
ANX, x X;is closed in X; x X;. Or X;; is the set of (z,z) for z € X; N X;.
Suppose that there exist charts ¢ : X; — U; and let T;; = ¢ x ¢;(X;;); Tjj is
the set of (¢;(x), ¢;(z)) for z running over X; N X;. The axiom (VAjr) takes
therefore the following form:

(VA};) — For each pair (i, ), T;j is closed in U; x Uj.

In this form we recognize Weil’s axiom (A) (cf. [16], p. 167), except that
WEeil considered only irreducible varieties.

Examples of algebraic varieties: Any locally closed subspace U of an affine
space, equipped with the induced topology and the sheaf &y defined in n° [31}is
an algebraic variety. Any projective variety is an algebraic variety (cf. n°® [51)).
Any algebraic fiber space (cf. [I7]) whose base and fiber are algebraic varieties
is an algebraic variety.

Remarks. (1) We observe an analogy between condition (V' Ary) and the
condition of separatedness imposed on topological, differential and analytic va-
rieties.

(2) Simple examples show that condition (V. A;y) is not a consequence of
condition (VAj).

35 Regular mappings, induced structures, products

Let X and Y be two algebraic varieties and let ¢ be a function from X to Y.
We say that ¢ is regular if:

(a) ¢ is continuous.

(b) If z € X and f € Oy,),y then fod € O, x.

As in n°[32] the composition of two regular functions is regular and a bijec-
tion ¢ : X — Y is an isomorphism if and only if ¢ and ¢! are regular functions.
Regular functions form a family of morphisms for the structure of an algebraic
variety in the sense of [I], Chap. IV.

Let X be an algebraic variety and let X’ be a locally closed subspace of X.
We equip X’ with the topology induced from X and the sheaf Ox induced by
Ox (to be precise, for all x € X’ we define 0, x- as the image of 0, x under the
canonical homomorphism .7 (X), — Z#(X’),). The axiom (V Ay) is satisfied:
if ¢; : V; — U, is a system of charts such that X = JV;, we set V/ = X' NV,
Ul = ¢;(V/) and ¢; : V/ — U/ is a system of charts such that X’ = JV/. The
axiom (V Ajy) is satisfied as well since the topology of X’ x X’ is induced from
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X x X (we could also use (VA};)). We define the structure of an algebraic
variety on X’ which is induced by that of X; we also say that X’ is a subvariety
of X (in Weil [I6], the term ,,subvariety” is reserved for what we call here an
irreducible closed subvariety). If ¢ denotes the inclusion of X’ in X, ¢ is a regular
mapping; moreover, if ¢ is a function from an algebraic variety Y to X’ then
¢:Y — X’ is regular if and only if o ¢ : Y — X is regular (which justifies the
term ,,induced structure”, cf. [I], loc. cit.).

If X and X’ are two algebraic varieties, X x X’ is an algebraic variety, called
the product variety; it suffices to check that the axiom (V' A};) is satisfied, in
other words, that if ¢; : V; — U; and ¢} : V/ — U] are systems of charts such that
X =V, and X" =JV/, then the set T;; x T}, is closed in U; x U; x U}, x V),
(with the notations of n° ; this follows immediately from the fact that Tj;
and T}, are closed in U; x U; and Uj, x UJ, respectively.

Propositions 6 and 7 are valid without change for arbitrary algebraic vari-
eties.

If 9 : X — Y is a regular mapping, the graph ® of ¢ is closed in X x Y,
because it is the inverse image of the diagonal Y XY by ¢ x 1 : X XY —
Y X Y; moreover, the mapping ¢ : X — ® defined by ¢ (z) = (x,é(z)) is
an isomorphism: indeed, v is a regular mapping, and so is ¢~! (since it is a
restriction of the projection X x Y — X).

36 The field of rational functions on an irreducible variety

We first show two lemmas of purely topological nature:

Lemma 1. Let X be a connected space, G an abelian group and ¢ a constant
sheaf on X isomorphic to G. The canonical mapping G — T'(X,¥9) is bijective.

An element of I'(X,¥) is just a continuous mapping from X to G equipped
with the discrete topology. Since X is connected, any such a mapping is con-
stant, hence the Lemma.

We call a sheaf .7 on a space X locally constant if any point x has an open
neighborhood U such that .#(U) is constant on U.

Lemma 2. Any locally constant sheaf on an irreducible space is constant.

Let .7 be a sheaf, X a space and set F' = I'(X,.%); it suffices to demonstrate
that the canonical homomorphism p, : F' — %, is bijective for all z € X,
because we would thus obtain an isomorphism of the constant sheaf isomorphic
to F' with the given sheaf .%.

If f € F, the set of points x € X such that f(xz) = 0 is open (by the
general properties of sheaves) and closed (because % is locally constant); since
an irreducible space is connected, this set is either () or X, which shows that p,
is injective.
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Now take m € %, and let s be a section of .# over a neighborhood U of z
such that s(xz) = m; cover X by nonempty open subsets U; such that % (U;)
is constant on Uj;; since X is irreducible, we have U N U; # 0; choose a point
x;UNU;; obviously there exists a section s; of # over U; such that s;(x;) = s(x;),
and since the sections s and s; coincide in z;, they coincide on whole U N Uj,
since U N U; is irreducible, hence connected; analogously s; and s; coincide on
U; N Uj, since they coincide on U NU; NU; # 0; thus the sections s; define a
unique section s of .# over X and we have p,(s) = m, which ends the proof.

Now let X be an irreducible algebraic variety. If U is a nonempty open
subset of X, set @y = T'(U, Ox); < is an integral domain: indeed, suppose
that we have f-g =0, f and g being regular functions from U to K; if F (resp.
G) denotes the set of x € U such that f(z) = 0 (resp. g(z) = 0), we have
U =FUG and F and G are closed in U, because f and g are continuous; since
U is irreducible, it follows that F' = U or G = U, which means exactly that f
or g is zero on U. We can therefore form the field of fractions of .7, which
we denote by J#y; if U C V, the homomorphism pg : oy — Sy is injective,
because U is dense in V', and we have a well defined isomorphism qb‘(j of &y to
75 the system of {7, ¢y, } defines a sheaf of fields #; then ¢, is canonically
isomorphic with the field of fractions of 0, x.

Proposition 9. For any irreducible algebraic variety X, the sheaf % defined
above is a constant sheaf.

By Lemma 2, it suffices to show the Proposition when X is a locally closed
subvariety of the affine space K"; let F be the closure of X in K" and let I(F) be
the ideal in K[X7, ..., X, ] of polynomials vanishing on F' (or equivalently on X).
If we set A= K[Xq,...,X,]/I(F), the ring A is an integral domain because X
is irreducible; let K (A) be the ring of fractions of A. By corollary of Proposition
4, we can identify &, x with the localization of A in the maximal ideal defined
by x; we thus obtain an isomorphism of the field K (A) with the field of fractions
of 0, x and it is easy to check that it defines an isomorphism of the constant
sheaf equal to K(A) with the sheaf J#, which shows the Proposition.

By Lemma 1, the sections of the sheaf .# form a field, isomorphic with JZ;
for all z € X, which we denote by K (X). We call it the field of rational functions
on X it is an extension of finite typeﬂ of the field K, whose transcendence degree
over K is the dimension of X (we extend this definition to reducible varieties
by imposing dim X = SupdimY; if X is a union of closed irreducible varieties
Y:). In general, we identify the field K(X) with the field J#,; since we have
Oy, x C Ky, we see that we can view 0, x as a subring of K(X) (it is the ring
of specialization of the point z in K(X) in the sense of Weil, [16], p. 77). If U
is an open subset of X, I'(U, Ox) is the intersection in K (X) of the rings 0, x
for & running over U.

If Y is a subvariety of X, we have dimY < dim X; if furthermore Y is closed
and does not contain any irreducible component of X, we have dimY < dim X,

L i.e. finitely generated
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as shown by reducing to the case of subvarieties of K" (cf. for example [§],
Chap. X, §5, th. II).
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§2 COHERENT ALGEBRAIC SHEAVES

37 The sheaf of local rings on an algebraic variety

Return to the notations of n® BIF let X = K" and let & be the sheaf of local
rings of X. We have:

Lemma 1. The sheaf O is a coherent sheaf of rings, in the sense of n° [15

Let z € X, let U be an open neighborhood of x and let fi,..., f, be sections
of & over U, i.e. rational functions regular at each point of U; we must show
that the sheaf of relations between fi,..., f, is a sheaf of finite type over &.
Possibly replacing U by a smaller neighborhood, we can assume that f; can be
written in the form f; = P;/Q where P; and @ are polynomials and @) does
not vanish on U. Let now y € U and g; € 0, such that > :_ g; f; is zero in a
neighborhood of y; we can again write g; in the form ¢g; = R;/S where R; and
S are polynomials and S does not vanish in y. The relationship ,,> .} g; fi = 0
in a neighborhood of y” is equivalent to the relationship ,72221 R;P;, = 0 in
a neighborhood of y”, i.e. equivalent to Y ;_y R;P; = 0. As the module of
relations between the polynomials P; is a module of finite type (because the
ring of polynomials is Noetherian), it follows that the sheaf of relations between
fi is of finite type.

Let now V be a closed subvariety of X = K"; for any z € X let _#,(V) be
the ideal of &, consisting of elements f € &, whose restriction to V is zero in
a neighborhood of « (we thus have 7,(V)= 0, if x ¢ V). The #,(V) form a
subsheaf # (V') of the sheaf &.

Lemma 2. The sheaf # (V) is a coherent sheaf of O-modules.

Let I(V) be the ideal of K[X7, ..., X,] consisting of polynomials P vanishing
on V. By Proposition 4 from n° I (V) isequal to I(V) - O, for all z € V
and this formula remains valid for x ¢ V as shown immediately. The ideal I(V)
being generated by a finite number of elements, it follows that the sheaf # (V)
is of finite type, thus coherent by Lemma 1 and Proposition 8 from n°

We shall now extend Lemma 1 to arbitrary algebraic varieties:

Proposition 1. If V is an algebraic variety, the sheaf Oy is a coherent
sheaf of rings on V.

The question being local, we can suppose that V is a closed subvariety of
the affine space K”. By Lemma 2, the sheaf # (V') is a coherent sheaf of ideals,
thus the sheaf &/ _# (V) is a coherent sheaf of rings on X, by Theorem 3 from
n° This sheaf of rings is zero outside V' and its restriction to V is just Oy
(n° ; thus the sheaf Oy is a coherent sheaf of rings on V' (n° corollary of
Proposition 11).

Remark. It is clear that Proposition is valid more generally for any preal-
gebraic variety.
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38 Coherent algebraic sheaves

If V is an algebraic variety whose sheaf of local rings is &y, we call an algebraic
sheaf on V any sheaf of y—modules, in the sense of n° [6} if .# and ¥ are
two algebraic sheaves, we say that ¢ : . ¥ — ¢ is an algebraic homomorphism
(or simply a homomorphism) if it is a &y—homomorphism; recall that this is
equivalent to saying that ¢, : #, — ¥, is O, y-linear and that ¢ transforms
local sections of % into local sections of ¥.

If % is an algebraic sheaf on V', the cohomology groups H4(V,.%#) are mod-
ules over I'(V, Oy ), cf. n° in particular, they are vector spaces over K.

An algebraic sheaf .# over V is said to be coherent if it is a coherent sheaf
of Oy—modules, in the sense of n° by Proposition 7 of n° and Proposi-
tion 1 above, these sheaves are characterized by the property of being locally
isomorphic to the cokernel of an algebraic homomorphism ¢ : &Y, — 0%,

We shall give some examples of coherent algebraic sheaves (we will see more
of them later, cf. in particular n°® .

39 Sheaf of ideals defined by a closed subvariety

Let W be a closed subvariety of an algebraic variety V. For any = € V, let
(W) be the ideal of 0,y consisting of elements f whose restriction to W
is zero in a neighborhood of z; let # (W) be the subsheaf of 0y formed by
F=(W). We have the following Proposition, generalizing Lemma 2:

Proposition 2. The sheaf # (W) is a coherent algebraic sheaf.

The question being local, we can suppose that V' (thus also W) is a closed
subvariety of the affine space K”. It follows from Lemma 2, applied to W, that
the sheaf of ideals defined by W in K" is of finite type; this shows that _# (W),
which is its image under the canonical homomorphism & — Oy, is also of finite
type, thus is coherent by Proposition 8 of n° and Proposition 1 of n°

Let Ow be the sheaf of local rings of W and let &}, be the sheaf on V/
obtained by extending Oy by 0 outside W (cf. n° ; this sheaf is canonically
isomorphic to &y /_# (W), in other words, we have an exact sequence:

0— F(W)— Oy — O} — 0.

Let then . be an algebraic sheaf on W and let .#" be the sheaf obtained by
extending . by 0 outside W; we can consider .#" as a sheaf of &},—modules,
thus also as a sheaf of €y -modules whose annihilator contains _# (W). We
have:

Proposition 3. If.Z is a coherent algebraic sheaf on W, FV is a coherent
algebraic sheaf on' V. Conversely, if 4 is an coherent algebraic sheaf on V whose
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annthilator contains # (W), the restriction of 4 to W is a coherent algebraic
sheaf on W.

If .Z is a coherent algebraic sheaf on W, .#V is a coherent sheaf of &~

modules (n° Proposition 11), thus a coherent sheaf of &y—modules (n°
Theorem 3). Conversely, if 4 is a coherent algebraic sheaf on V' whose
annihilator contains ¢ (W), ¢ can be considered as a sheaf of Oy /_# (W)~
modules, and is a coherent sheaf (n° Theorem 3); the restriction of ¥ to W
is then a coherent sheaf of &y —modules (n° Proposition 11).

So, any coherent algebraic sheaf on W can by identified with an algebraic
coherent sheaf on V' (and this identification does not change cohomology groups,
by Proposition 8 of n° . In particular, any coherent algebraic sheaf on an
affine (resp. projective) variety can be considered as a coherent algebraic sheaf
on an affine (resp. projective) space; we will frequently use this possibility later.

Remark. Let ¢ be a coherent algebraic sheaf on V' which is zero outside
W; the annihilator of & does not necessarily contain # (W) (in other words, ¢
not always can be considered as an coherent algebraic sheaf on W); all we can
say is that it contains a power of #(W).

40 Sheaves of fractional ideals

Let V' be an irreducible algebraic variety and let K (V) denote the constant
sheaf of rational functions on V' (cf. n°|36); K (V) is an algebraic sheaf which
is not coherent if dim V' > 0. An algebraic subsheaf # of K(V') can be called a
,,sheaf of fractional ideals” since each .%, is a fractional ideal of 0, v .

Proposition 4. An algebraic subsheaf F of K(V) is coherent if and only
if it is of finite type.

The necessity is trivial. To prove the sufficiency, it suffices to prove that
K (V) satisfies condition (b) of definition 2 from n° (12| in other that if f1,..., f,
are rational functions, the sheaf Z(f1,..., fp) is of finite type. If = is a point of
V', we can find functions g; and h such that f; = g;/h, g; and h being regular
in a neighborhood U of # and h being nonzero on U; the sheaf Z(f1,..., fp)
is then equal to the sheaf %Z(g1,...,9p), which is of finite type, since Oy is a
coherent sheaf of rings.

41 Sheaf associated to the total space of a vector bundle

Let E be an algebraic fiber space with a vector space of dimension r as a fiber
and an algebraic variety V as a base; by definition, the typical fiber of F is a
vector space K" and the structure group is the linear group GL(r, K) acting on
K" in the usual way (for the definition of an algebraic fiber space, cf. [I7]; see
also [I5], n° 4 for analytic vector bundles).
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If U is an open subset of V', let . (E)y denote the set of regular sections of F
on U; if V D U, we have the restriction homomorphism ¢Y; : .7 (E)y — % (E)y
; thus a sheaf Z(F), called the sheaf of germs of sections of E. Since F is a
vector bundle, each . (E)y is a I'(U, Oy )-module and it follows that .7 (FE) is
an algebraic sheaf on V. If we identify locally E with V' x K", we have:

Proposition 5. The sheaf #(E) is locally isomorphic to 0%, ; in particular,
it is a coherent algebraic sheaf.

Conversely, it is easily seen that any algebraic sheaf .% on V, locally iso-
morphic to O7F,, is isomorphic to a sheaf .#(E) where E is determined up to
isomorphism (cf. [I5] for the analytic case).

If V' is a variety without singularities, we can take for E the vector bundle
of p-covectors tangent to V' (p being a nonnegative integer); let 2 be the sheaf
corresponding to .(E); an element of QP x € V is just a differential form of
degree p on V, regular in z. If we set h?? = dimyg H4(V,QP), we know that
in the classical case (and if V' is projective), h?9 is equal to the dimension of
harmonic forms of type (p, ¢) (theorem of Dolbeaultﬂ and, if B,, denotes the n-th
Betti number of V', we have B, = > Lg=n PP%. In the general case, we could
take the above formula for the definition of the Betti numbers of a nonsingular
projective variety (we will see in n° 66| that h?'? are finite). It is convenient to
study their properties, in particular to see if they coincide with those involved
in the Weil conjectures for varieties over finite ﬁeldﬂ We only mention that
they satisfy the ,,Poincaré duality” B, = Bo;,_, when V is an irreducible of
dimension m.

The cohomology groups H?(V,.#(E)) are also involved in other issues, in-
cluding the Riemann-Roch, as well as in the classification of algebraic fiber
spaces with base V and the affine group x +— ax + b as the structural group (cf.
[17], §4, where the case when dimV =1 is studied).

2P. Dolbeault. Sur la cohomologie des variétés analytiques complezes. C. R. Paris, 246,
1953, p. 175-177.
3Bulletin Amer. Math. Soc., 55, 1949, p.507
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§3 COHERENT ALGEBRAIC SHEAVES ON AFFINE
VARIETIES

42 Affine varieties

An algebraic variety V is said to be affine if it is isomorphic to a closed subvariety
of an affine space. The product of two affine varieties is an affine variety; any
closed subvariety of an affine variety is an affine variety.

An open subset U of an algebraic variety V is said to be affine if, equipped
with the structure of an algebraic variety induced from X, it is an affine variety.

Proposition 1. Let U and V be two open subsets of an algebraic variety
X. IfU and V are affine, UNYV is affine.

Let A be the diagonal of X x X; by n° the mapping = — (z,) is a
biregular isomorphism from X onto A; thus the restriction of this map to UNV
is a biregular isomorphism of U NV onto ANU x V. Since U and V are affine
varieties, U x V' is also an affine variety; on the other hand, A is closed in X x X
by the axiom (VAyy), thus ANU x V is closed in U x V, hence affine, g.e.d.

(It is easily seen that this Proposition is false for prealgebraic varieties; the
axiom (V Ayy) plays an essential role).

Let us now introduce a notation which will be used thorough the rest of
this paragraph: if V' is an algebraic variety and f is a regular function on V,
we denote by V; the open subset of V' consisting of all points € V' for which

f(@) #0.

Proposition 2. IfV is an affine algebraic variety and f is a reqular function
on V, the open subset V; is affine.

Let W be the subset of V' x K consisting of pairs (x, \) such that A- f(z) = 1;
it is clear that W is closed in V x K, thus it is an affine variety. For all (z, \) € W
set w(xz, A\) = x; the mapping 7 is a regular mapping from W to V. Conversely,
for all x € Vy, set w(z) = (x,1/f(x)); the mapping w : V; — W is regular and
we have Tow =1, wom =1, thus V¢ and W are isomorphic, g.e.d.

Proposition 3. Let V be a closed subvariety of K", F be a closed subset of
Vand let U =V — F. The open subsets Vp form a base for the topology of U
when P runs over the set of polynomials vanishing on F'.

Let U’ =V — F’ be an open subset of U and let z inU’; we must show that
there exists a P for which Vp C U’ and z € Vp; in other words, P has to be
zero on F’ and nonzero in z; the existence of such a polynomial follows simply
from the definition of the topology of K.

Theorem 1. The open affine subsets of an algebraic variety X form an
open base for the topology of X .
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The question being local, we can assume that X is a locally closed sub-
space of an affine space K"; in this case, the theorem follows immediately from
Propositions 2 and 3.

Corollary. The coverings of X consisting of open affine subsets are arbi-
trarily fine.

We note that if 84 = {U;}ier is such a covering, the U;
affine subsets, by Proposition 1.

0..ip, are also open

43 Some preliminary properties of irreducible varieties

Let V be a closed subvariety of K" and let I(V') be the ideal of K[X1,...,X,]
consisting of polynomials vanishing on V'; let A be the quotient ring K[X7, ..., X,.|/I(V);
we have a canonical homomorphism

L A—)F(V, ﬁv)

that is injective by the definition of I(V).
Proposition 4. If V is irreducible, . : A — T'(V, Oy) is bijective.

(In fact, this holds for any closed subvariety of K", as will be shown in the
next n° ).

Let K (V) be the field of fractions of A; by n°[36] we can identify @, y with
the localization of A in the maximal ideal m,, consisting of polynomials vanishing
in z, and we have I'(V,0y) = A = [\, oy O v (all O,y being considered as
subrings of K(V')). But all maximal ideals of A are m,, since K is algebraically
closed (Hilbert’s theorem of zeros); it follows immediately (cf. [§], Chap. XV,
§5, th. X) that A = ﬂa:eV ﬁgg’\/ = F(V, ﬁv), q.e.d.

Proposition 5. Let X be an irreducible algebraic variety, Q a regular func-
tion on X and P a regular function on Xg. Then, for n sufficiently large, the
rational function Q™ P is regular on the whole of X.

By quasi-compactness of X, the question is local; by Theorem 1, we can thus
suppose that X is a closed subvariety of K”. The above Proposition shows that
then @ is an element of A = K[X7,...,X,]/(I(X)). The assumption made on
P means that for any point x € Xg we can write P = P, /Q, with P, and Q,
in A and Q. (x) # 0; if a denotes the ideal of A generated by all @, the variety
of zeros of a is contained in the variety of zeros of @; by Hilbert’s theorem of
zeros, this leads to Q™ € a for n sufficiently large, hence Q™ = > R,Q. and
Q"P =) R,P, with R, € A, which shows that Q™ P is regular on X.

(We could also use the fact that X is affine if X is and apply Proposition
4 to XQ).

Proposition 6. Let X be an irreducible algebraic variety, @ a regular func-
tion on X, F a coherent algebraic sheaf on X and s a section of F over X
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whose restriction to X¢q 1is zero. Then for n sufficiently large the section Q™s
is zero on the whole of X.

The question being again local, we can assume:

(a) that X is a closed subvariety of K",

(b) that .Z is isomorphic to a cokernel of a homomorphism ¢ : 0% — 0%,
(c) that s is the image of a section o of 0%.

(Indeed, all the above conditions are satisfied locally).

Set A=T(X,0x) = K[Xy,...,X,;]/I(X). The section o can be identified
with a system of ¢ elements of A. Let on the other hand

t1 = ¢(1,0,...,0),...,t, = ¢(0,...,0,1);

the ¢;, 1 < i < p are sections of 0% over X, thus can be identified with systems
of ¢ elements of A. The assumption made on s means that for all z € Xg we
have o(x) € $(0} i), that is, o can be written in the form o = Y777 f; - t; with
fi € Oy x; or, by clearing denominators, that there exist Q, € A, Q,(x) # 0 for
which Q, -0 =>"_" R; - t; with R; € A. The reasoning used above shows then
that, for n sufficiently large, @™ belongs to the ideal generated by (., hence
Q"o(x) € p(OF ) for all z € X, which means that Q"s is zero on the whole of
X.

44 Vanishing of certain cohomology groups

Proposition 7. Let X be an irreducible algebraic variety, Q; a finite family
of regular functions on X that do not vanish simultaneously and 4 the open
covering of X consisting of Xq, = U;. If & is a coherent algebraic subsheaf of
0%, we have H1(4, . F) =0 for all ¢ > 0.

Possibly replacing 4l by an equivalent covering, we can assume that none of
the functions @; vanishes identically, in other words that we have U; # ) for all
i.

Let f = (fi...i,) be a g-cocycle of U with values in .. Each f;,. ;, is
a section of .# over Uj,.. ;,, thus can be identified with a system of p regular
functions on Uy, 4,; applying Proposition 5 to @ = Q;, . .. Q;, we see that, for n
sufficiently large, g,...., = (Qi, - - - Qi,)" fio...i, 15 a system of p regular functions
on X. Choose an integer n for which this holds for all systems iy, ..., %4, which
is possible because there is a finite number of such systems. Consider the image
of gi,...i;, in the coherent sheaf 0% |.F; this is a section vanishing on Usp...ig5
then applying Proposition 6 we see that for m sufficiently large, the product of
this section with (Q;, ... Q;,)™ is zero on the whole of X. Setting N =m +n,
we see that we have constructed sections hy,..;, of Z over X which coincide
with (QZO [N Qiq)Nfig..,iq on Uio...iq‘

As the Q¥ do not vanish simultaneously, there exist functions

R; € F(X, ﬁx)
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such that Y R;QYN = 1. Then for any system i, ...,i,_1 set

Kig..iig_y = ZRihiig...iqfl/(Qio Qi )Y,

which makes sense because Q;, ... Q;,_, is nonzero on U, ;,_,-

We have thus defined a cochain k € C971(4, F). I claim that f = dk, which
will show the Proposition.

We must check that (dk);,...;i, = fi,...i,; it suffices to show that these two
sections coincide on U = (| U;, since they will coincide everywhere, because they
are systems of p rational functions on X and U # 0. Now over U, we can write

Kig..iq_1 = ZRi QY fiig..iys
;

hence _
i=q

(dk)ig...i, = Y (—1)% Z R;-QN - Fiig.i;.iq

Jj=0

and taking into account that f is a cocycle,

(dk)io...iq = ZRi : QlN : fio...iq = fio...iqa g.e.d.

Corollary 1. HY(X,.%) =0 for g > 0.

Indeed, Proposition 3 shows that coverings of the type used in Proposition
7 are arbitrarily fine.

Corollary 2. The homomorphism T'(X, 0% ) — T(X, 0% | F) is surjective.

This follows from Corollary 1 above and from Corollary 2 to Proposition 6
from n° 241

Corollary 3. Let V be a closed subvariety of K™ and let
A=K[Xy,..., X, ]/I(V).

Then the homomorphism v : A — I'(V, Oy) is bijective.

We apply Corollary 2 above to X = K", p =1, # = _#(V), the sheaf of
ideals defined by V'; we obtain that every element of I'(V, &) is the restriction
of a section of & on X, that is, a polynomial, by Proposition 4 applied to X.
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45 Sections of a coherent algebraic sheaf on an affine va-
riety

Theorem 2. Let & be a coherent algebraic sheaf on an affine variety X. For
every © € X, the Oy x -module %, is generated by elements of I'(X, 7).

Since X is affine, it can be embedded as a closed subvariety of an affine space
K"; by extending the sheaf % by 0 outside X, we obtain a coherent algebraic
sheaf on K" (cf. n° and we are led to prove the theorem for the new sheaf.
In other words, we can suppose that X = K.

By the definition of a coherent sheaf, there exists a covering of X consisting
of open subsets on which % is isomorphic with a quotient of the sheaf OP.
Applying Proposition 3, we see that there exists a finite number of polynomials
Q; that do not vanish simultaneously and such that on every U; = X, there
exists a surjective homomorphism ¢; : 0P¢ — %; we can furthermore assume
that none of the polynomials is identically zero.

The point z belongs to one U;, say Up; it is clear that .%, is generated by
sections of .Z over Uy; as @ is invertible in &, it suffices to prove the following
lemma:

Lemma 1. If s¢ is a section of F over Uy, there exists an integer N and a
section s of F over X such that s = QY - so over Up.

By Proposition 2, U; N Uy is an affine variety, obviously irreducible; by ap-
plying Corollary 2 of Proposition 7 to this variety and to ¢; : OPi — F, we
see that there exists a section og; of &P on U; N Uy such that ¢;(cg;) = sp on
U; NUy; as U; N Uy is the set of points of U; in which Qg does not vanish, we
can apply Proposition 5 to X = U;, @ = @y and we see that there exists, for n
sufficiently large, a section o; of &P over U; which coincides with Qf - oo; over
U; N Uy; by setting s; = ¢;(0;), we obtain a section of & over U; that coincides
with Qf - so over U; N Up. The sections s} and s; coincide on U; N U; N Up;
applying Proposition 6 to s, — 59, we see that for m sufficiently large we have
Q' (s; — ) = 0 on the whole of U; N U;. The Q' - s; then define a unique
section s of Z over X, and we have s = Q)™ sy on Uy, which shows the lemma
and completes the proof of Theorem 2.

Corollary 1. The sheaf F is isomorphic to a quotient sheaf of the sheaf
o%.

Because %, is an 0, x—module of finite type, it follows from the above
theorem that there exists a finite number of sections of .% generating .%,; by
Proposition 1 of n° these sections generate %, for y sufficiently close to x.
The space X being quasi-compact, we conclude that there exists a finite number
of sections s1, ..., sy, of F generating %, for all x € X, which means that .# is
isomorphic to a quotient sheaf of the sheaf 0% .
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Corollary 2. Let o = % By & be an ezact sequence of coherent algebraic

sheaf on an affine variety X. The sequence I'(X, /) % T'(X, B) LN I(X,¥) is
also ezxact.

We can suppose, as in the proof of Theorem 2, that X is an affine space
K7, thus is irreducible. Set ¢ = ¥(a) = Ker(8); everything reduces to seeing
that o : I'(X, &) — I'(X, #) is surjective. Now, by Corollary 1, we can find
a surjective homomorphism ¢ : 0% — & and, by Corollary 2 to Proposition
7, a0¢: I(X,0%) — I'(X, _#) is surjective; this is a fortiori the same for
a:I'X, o) - T(X, 7), qed.

46 Cohomology groups of an affine variety with values in
a coherent algebraic sheaf

Theorem 3. Let X be an affine variety, Q; a finite family of regular functions
on X that do not vanish simultaneously and let i1 be the open covering of X
consisting of Xq, = U;. If & is a coherent algebraic sheaf on X, we have
Hi(, F) =0 for all ¢ > 0.

Assume first that X is irreducible. By Corollary 1 to Theorem 2, we can
find an exact sequence

0—>%— 0% - F —0.

The sequence of complexes: 0 — C(U, Z) — C(U, O%) — C(U, F) — 0is ezact;
indeed, this reduces to saying that every section of .% over Ui,...i, is the image
of a section of 0% over Uiy...i,» which follows from Corollary 2 to Proposition 7
applied to the irreducible variety Uig...iy- This exact sequence gives birth to an
exact sequence of cohomology:

o= HYW, 0%) — HY (U, F) — HTTHL%) — ...,

and as HI(, 0% ) = HITH (U, Z) = 0 for ¢ > 0 by Proposition 7, we conclude
that HI(3(,.F) = 0.

We proceed now to the general case. We can embed X as a closed subvariety
of an affine space K”; by Corollary 3 to Proposition 7, the functions @; are
induced by polynomials P;; let on the other hand R; be a finite system of
generators of the ideal I(X). The functions P;, R; do not vanish simultaneously
on K", thus define an open covering i’ of K”; let .%’ be the sheaf obtained by
extending % by 0 outside X; applying what we have proven to the space K",
the functions P;, R; and the sheaf .7’ we see that HI(U',.#") = 0 for ¢ > 0.
As we can immediately verify that the complex C'(U',.%#”) is isomorphic to the
complex C'(8, %), it follows that HI(4,.7) = 0, q.e.d.

Corollary 1. If X is an affine variety and F a coherent algebraic sheaf on
X, we have H1(X, %) =0 for all ¢ > 0.
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Indeed, the coverings used in the above theorem are arbitrarily fine.

Corollary 2. Let 0 > o — B — € — 0 be an exact sequence of sheaves
on an affine variety X . If the sheaf </ is coherent algebraic, the homomorphism
I'X,) = I'(X,¥) is surjective.

This follows from Corollary 1, by setting ¢ = 1.

47 Coverings of algebraic varieties by open affine subsets

Proposition 8. Let X be an affine variety and let 4 = {U;};er be a finite
covering of X by open affine subsets. If F is a coherent algebraic sheaf on X,
we have HI(4, F) =0 for all ¢ > 0.

By Proposition 3, there exist regular functions P; on X such that the cov-
ering U = {Xp,} is finer than 4. For every (ig,...,i,), the covering U, . ;,
induced by U on Uy, ;, is defined by restrictions of P; to Uj,. 4,5 as Uy, is
an affine variety by Proposition 1, we can apply Theorem 3 to it and conclude
that H9(U;,...i,,.-#) = 0 for all ¢ > 0. Applying then Proposition 5 of n°
we see that

HYU, F)=HID,F),
and, as H9(%0, #) = 0 for ¢ > 0 by Theorem 3, the Proposition is proven.

Theorem 4. Let X be an algebraic variety, F a coherent algebraic sheaf
on X and 4 = {U;};er a finite covering of X by open affine subsets. The
homomorphism o(W) : H™(U, .F) — H"(X,.F) is bijective for all n > 0.

Consider the family 28“ of all finite coverings of X by open affine subsets.
By the corollary of Theorem 1, these coverings are arbitrarily fine. On the other
hand, for every system (i, . .., p) the covering U5 i, induced by U on Uj,. .,
is a covering by open affine subsets, by Proposition 1; by Proposition 8, we thus
have H?(7; ; ,.#) = 0 for ¢ > 0. The conditions (a) and (b) of Theorem 1,

n° 29 are satisfied and the theorem follows.

Theorem 5. Let X be an algebraic variety and 34 = {U; }icr a finite cov-
ering of X by open affine subsets. Let 0 — of — B — € — 0 be an ezact
sequence of sheaves on X, the sheaf o/ being coherent algebraic. The canonical
homomorphism H{ (4, €) — H1(,€) (cf. n° is bijective for all ¢ > 0.

It obviously suffices to prove that Cy(L,€) = C(U,¥), that is, that every
section of ¢ over Uy, .. ;, is the image of a section of % over U; which follows
from Corollary 2 of Theorem 3.

Corollary 1. Let X be an algebraic variety and let 0 - o — B — € — 0
be an exact sequence of sheaves on X, the sheaf o being coherent algebraic. The
canonical homomorphism H{(X,€) — HY(X,€) is bijective for all ¢ > 0.

This is an immediate consequence of Theorems 1 and 5.

0---0g>?

Corollary 2. We have an exact sequence:

coo— HY(X,B) - H(X,¢) - H™ (X, o) — HI™Y (X, B) — ...
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§4 CORRESPONDENCE BETWEEN MODULES OF
FINITE TYPE AND COHERENT ALGEBRAIC
SHEAVES

48 Sheaf associated to a module

Let V be an affine variety, € the sheaf of local rings of V; the ring A = T'(V, 0),
which will be called the ring of coordinates of V, is an algebra over K which
has no nilpotent elements but 0. If V' is embedded as a closed subvariety of
an affine space K", we know (cf. n° that A is identified with the quotient
algebra of K[Xq,...,X,] by the ideal of polynomials vanishing on V; it follows
that the algebra A is generated by a finite number of elements.

Conversely, we verify easily that if A is a commutative K—algebra without
nilpotent elements (other that 0) and is generated by a finite number of elements,
there exists an affine variety V' such that A is isomorphic to I'(V, €); moreover,
V is determined up to isomorphism by this property (we can identify V' with
the set of characters of A equipped with the usual topology).

Let M be an A-module; M defines a constant sheaf on V' which we denote
again by M; the same way A defines a constant sheaf, and the sheaf M can
be considered as a sheaf of A-modules. Define &/(M) = & ® 4 M, the sheaf
O being also considered as a sheaf of A—modules; it is clear that o/ (M) is an
algebraic sheaf on V. Moreover, if ¢ : M — M’ is an A-homomorphism, we
have a homomorphism &7 (¢) = 1®¢ : & (M) — &/ (M'); in other words, <7 (M)
is a covariant functor of the module M.

Proposition 1. The functor o/ (M) is exact.

Let M — M’ — M" be an exact sequence of A-modules. We must observe
that the sequence & (M) — o (M') — o/ (M") is exact, in other words, that
for all x € V' the sequence:

ﬁx@)AM%ﬁm@AMI*)ﬁx@AM”

is exact.

Now 0, is nothing else that the localization Ag of A, S being the set of
those f € A for which f(z) # 0 (for the definition of localization, cf. [§], [12] or
[13]). Proposition 1 is thus a particular case of the following result:

Lemma 1. Let A be a ring, S a multiplicative system in A not containing
0, Ag the localization of A in S. If M — M' — M" is an exact sequence of
A-modules, the sequence Ag @4 M — Ag @4 M' — Ag @4 M" is exact.

Denote by Mg the set of fractions m/s with m € M, s € S, two fractions m/s
and m//s’ being identified if there exists an s” € S such that s”(s"-m—s-m') = 0;
it is easily seen that Mg is an Ag—module and that the mapping

a/s@m+— a-m/s
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is an isomorphism from Ag ®4 A onto Mg; we are thus led to prove that the
sequence
Mg — Mg — Mg

is exact, which is obvious.
Proposition 2. &/ (M) = 0 implies M = 0.

Let m be an element of M; if &/ (M) =0, we have 1@ m =01in 0, @4 M
for all z € V. By the discussion above, 1 ® m = 0 is equivalent to existence of
an element s € A, s(x) # 0 such that s - m = 0; the annihilator of m in M is
not contained in any maximal ideal of A, which implies that it is equal to A, so
m = 0.

Proposition 3. If M is an A-module of finite type, o/ (M) is a coherent
algebraic sheaf on V.

Because M is of finite type and since A is Noetherian, M is isomorphic to
the cokernel of a homomorphism ¢ : A7 — AP and &/ (M) is isomorphic to the
cokernel of @7 (¢) : /(A7) — o/ (AP). As &/ (AP) = OP and &/ (A?) = 01, it
follows that 7 (M) is coherent.

49 Module associated to an algebraic sheaf

Let % be an algebraic sheaf on V and let I'(.%#) = T'(V, #); since # is a sheaf
of O—modules, T'(#) is equipped with a natural structure of an A-module.
Any algebraic homomorphism ¢ : # — ¢ defines an A-homomorphism I'(¢) :
I'(.#) = I'(¢). If we have an exact sequence of algebraic sheaves ¥ — ¥ — ¢,

the sequence
NF)—=>T(¥9) - T(X)

is exact (n° [45)); applying this to an exact sequence 0P — % — 0 we see that
I'(.#) is an A-module of finite type if .% is coherent.

The functors &/ (M) and T'(.#) are ,,inverse” to each other:

Theorem 1. (a) If M is an A-module of finite type, I'(<Z (M)) is canoni-
cally isomorphic to M.

(b) If F is a coherent algebraic sheaf on V, o (T'(F)) is canonically iso-
morphic to F.

First let us show (a). Every element m € M defines a section a(m) of
&/ (M) by the formula: a(m)(z) =1®m € 0, ®4 M; hence a homomorphism
a: M —T(o/(M)). When M is a free module of finite type, « is bijective (it
suffices to see this when M = A, in which case it is obvious); if M is an arbitrary
module of finite type, there exists an exact sequence L' — L® — M — 0 where
L° and L! are free of finite type; the sequence 7 (L) — o/ (L°) — &/ (M) — 0
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is exact, thus also the sequence I'(«/ (L)) — I'(«/(L°)) — T'(«Z(M)) — 0. The

commutative diagram:

Lt L° M

W R

I(e/ (L) —— T(#(L?)) —— [(#/ (M) —

S O
Q

shows then that « : M — I'(«7(M)) is bijective, which shows (a).

Let now .# be an algebraic coherent sheaf on V. If we associate to every
s € I'(Z) an element s(x) € .Z#(X), we obtain an A-homomorphism: I'(#) —
Z, which extends to an &,—homomorphism 3, : 0, ® 4 ['(¥) — Z#,; we easily
verify that the 3, form a homomorphism of sheaves 5 : & (I'(%)) — #. When
F = 0P, the homomorphism /3 is bijective; it follows by the same reasoning as
above that (3 is bijective for every coherent algebraic sheaf .%, which shows (b).

Remarks. (1) We could also deduce (b) from (a); cf. n° proof of
Proposition 6.

(2) We will see in Chapter III how the above correspondence should be
modified when one studies coherent sheaves on the projective space.

50 Projective modules and vector bundles

Recall ([6], Chap. I, th. 2.2) that an A-module is called projective if it is a
direct summand of a free A-module.

Proposition 4. Let M be an A—module of finite type. Then M is projective
if and only if the Oy—module O, ® 4 M is free for every x € V.

If M is projective, O, ® 4 M is O,—projective, thus &,—free since 0, is a
local ring (cf. [6], Chap. VIII, th. 6.17).

Conversely, if all 0, ® 4 M are free, we have
dim(M) = Supdim,ev (0, @4 M) =0 (cf.[6],Chap.VII, Exer.11),

from which it follows that M is projective ([6], Chap. VI, §2).

Note that if . is a coherent algebraic sheaf on V' and if .%, is isomorphic to
0P, F is isomorphic to OP in a neighborhood of z; if this property is satisfied
in every z € V, the sheaf % is thus locally isomorphic to the sheaf &P, the
integer p being constant on every connected component of V. Applying this to
the sheaf o/ (M), we obtain:

Corollary. Let F be a coherent algebraic sheaf on a connected affine variety
V. The three following properties are equivalent:
(i) T(%) is a projective A-module,
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(ii) F is locally isomorphic to OP,
(11i) F is isomorphic to the sheaf of germs of sections of a vector bundle
with base V.

In other words, the mapping E — I'(.Z(E) (E denoting a vector bundle)
gives a bijective correspondence between classes of vector bundles and classes
of projective A-modules of finite type; in this correspondence, a trivial bundle
corresponds to a free module and conversely.

Note that when V' = K" (in which case A = K[Xy,...,X,]), we do not
know if there exist projective A—modules that are not free, or equivalently, if
there exist algebraic vector bundles with base K" that are not trivial.
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§1. Projective varieties I

§1 PROJECTIVE VARIETIES

51 Notations

(The notations introduced below will be used without reference during the whole
chapter).

Let r be an integer > 0 and let Y = K"*! — {0}; the multiplicative group
K* of nonzero elements of K acts on Y by the formula

)\(/lo, .. 'HU‘T') = (/\H07 B A.u“T‘)

Two points y and y’ will be called equivalent if there exists A € K* such that
y' = Ay; the quotient space of Y by this equivalence relation will be denoted
by P.(K) or simply X; it is the projective space of dimension r over K; the
canonical projection of Y onto X will be denoted 7.

Let I = {0,1,...,r}; for every ¢ € I, we denote by ¢; the i-th coordinate
function on K"t defined by the formula:

ti(po, - - -y fr) = s

We denote by V; the open subset of K"! consisting of points whose t; is
# 0 and by U; the image of V; by ; the {U;} form a covering { of X. If i € [
and j € I, the function t;/t; is regular on V; and invariant for K*, thus defines
a function on U; which we denote also by t;/t;; for fixed ¢, the functions t;/t;,
j # 1 define a bijection ¢; : U; — K".

We equip K"1 with the structure of an algebraic variety and Y the induced
structure. Likewise, we equip X with the quotient topology from Y: a closed
subset of X is thus the image by 7 of a closed cone in K"*!'. If U is open
in X, we define Ay = I'(7~}(U), Oy); this is the sheaf of regular functions
on 7= 1(U). Let AY; be the subring of Ay consisting of elements invariant for
K* (that is, homogeneous functions of degree 0). When V O U, we have a
restriction homomorphism ¢p; : AY — AP, and the system (A, ¢y;) defines a
sheaf €x which can be considered as a subsheaf of the sheaf .# (X) of germs of
functions on X. Such a function f, defined in a neighborhood of x belongs to
O x if and only if it coincides locally with a function of the form P/Q where
P and @ are homogeneous polynomials of the same degree in tg,...,t, with
Q(y) # 0 for y € 7~ !(z) (which we write for brevity as Q(z) # 0).

Proposition 1. The projective space X = P.(K), equipped with the topology
and sheaf above, is an algebraic variety.

The U;, i € I are open in X and we verify immediately that the bijections
¢; : U; — K" defined above are biregular isomorphisms, which shows that the
axiom (V' Ay) is satisfied. To show that (V Ayy) is also satisfied, we must observe
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that the subset of K" x K" consisting of all pairs (¢;(x), ¥;(z)) where 2 € U;NU;
is closed, which does not pose difficulties.

In what follows, X will be always equipped with the structure of an algebraic
variety just defined; the sheaf x will be simply denoted &. An algebraic variety
V' is called projective if it is isomorphic to a closed subvariety of a projective
space. The study of coherent algebraic sheaves on projective varieties can be
reduced to the study of coherent algebraic sheaves on P,.(K), cf. n°

52 Cohomology of subvarieties of the projective space

Let us apply Theorem 4 from n° 47| to the covering ${ = {U; };¢s defined in the
preceding n° : it is possible since each U; is isomorphic to K". We thus obtain:

Proposition 2. If .Z is a coherent algebraic sheaf on X = P.(K), the
homomorphism o(Y) : H™(U, F) — H™" (X, F) is bijective for all n # 0.

Since 4 consists of  + 1 open subsets, we have (cf. n° corollary to
Proposition 2):

Corollary. H"(X,#) =0 forn >r.
This result can be generalized in the following way:

Proposition 3. Let V' be an algebraic variety, isomorphic to a locally closed
subvariety of the projective space X. Let F be an algebraic coherent sheaf on
V and let W be the subvariety of V' such that F is zero outside W. We then
have H"(V, #) =0 for n > dim W.

In particular, taking W = V| we see that we have:
Corollary. H*(V,#) =0 forn > dimV.

Identify V' with a locally closed subvariety of X = P,.(K); there exists an
open subset U of X such that V is closed in U. We can clearly assume that
W is closed in V, so that W is closed in U. Let F' = X — U. Before proving
Proposition 3, we establish two lemmas:

Lemma 1. Let k = dim W; there exists k + 1 homogeneous polynomials
P;(to,- .-, t.) of degrees > 0, vanishing on F and not vanishing simultaneously
on W.

(By abuse of language, we say that a homogeneous polynomial P vanishes
in a point x of P,.(K) if it vanishes on 7= 1(x)).

We proceed by induction on k, the case when k = —1 being trivial. Choose
a point on each irreducible component of W and let P; be a homogeneous poly-
nomial vanishing on F', of degree > 0 and nonvanishing in each of these points
(the existence of P; follows from the fact that F' is closed, given the definition of
the topology of P,.(K)). Let W’ be a subvariety of W consisting of points € W
such that P;(z) = 0; by the construction of Py, no irreducible component of W
is contained in W’ and it follows (cf. n° that dim W’ < k. Applying the
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induction assumption to W', we see that there exist k homogeneous polynomials

P, ..., Py vanishing on F' and nonvanishing simultaneously on W’'; it is clear
that the polynomials P, ..., Px41 satisfy appropriate conditions.
Lemma 2. Let P(tg,...,t.) be a homogeneous polynomial of degree n > 0.

The set Xp of all points x € X such that P(xz) # 0 is an open affine subset of
X.

If we assign to every point y = (uo, ..., ) € Y the point of the space K~
having for coordinates all monomials p(™ ... u", mo+...+m, = n, we obtain,
by passing to quotient, a mapping ¢, : X — Py_1(K). It is classical, and also
easy to verify, that ¢,, is a biregular isomorphism of X onto a closed subvariety
of PN=1(K) (,,Veronese variety”); now ¢, transforms the open subset Xp onto
the locus of points of ¢, (X) not lying on a certain hyperplane of Pn_1(X); as
the complement of any hyperplane is isomorphic to an affine space, we conclude
that X p is isomorphic to a closed subvariety of an affine space.

We shall now prove Proposition 3. Extend the sheaf .# by 0 on U — V;
we obtain a coherent algebraic sheaf on U which we also denote by .%, and
we know (cf. n° that H™(U,.#) = H™(V,%#). Let on the other hand
Py, ..., Py11 be homogeneous polynomials satisfying the conditions of Lemma
1; let Pxio,..., P, be homogeneous polynomials of degrees > 0, vanishing on
W U F and not vanishing simultaneously in any point of U — W (to obtain such
polynomials, it suffices to take a system of homogeneous coordinates of the ideal
defined by W U F in Kltg,...,t.]). For every i, 1 < i < h, let V; be the set of
points & € X such that P;(x) # 0; we have V; C U and the assumptions made
above show that U = {V;} is an open covering of U; moreover, Lemma 2 shows
that V; are open affine subsets, so H"(U,.%) = H"(U, %) = H"(V,.%) for all
n > 0. On the other hand, if n > k and if the indices iy, ...,1, are distinct,
one of the indices is > k + 1 and Vj,.;, does not meet W; we conclude that
the group of alternating cochains C'" (0, .%) is zero if n > k, which shows that
H"™(U,.7) = 0, by Proposition 2 of n°

53 Cohomology of irreducible algebraic curves

If V is an irreducible algebraic variety of dimension 1, the closed subsets of V'
distinct from V are finite subsets. If F is a finite subset of V' and = a point of
F, we set VP = (V — F) U {z}; the V.I', x € F form a finite open covering G
of V.

Lemma 3. The coverings G¥ of the above type are arbitrarily fine.

Let $4 = {U; };er be an open covering of V', which we may assume to be finite
since V is quasi-compact. We can likewise assume that U; # 0 for all ¢ € I.
If we set I; =V — U, Fj is also finite, and so is F' = (J,c; Fi. We will show
that 2% < 4, which proves the lemma. Let & € F; there exists an i € I such
that « ¢ F;, since the U; cover V; we have then F — {x} D F;, because F' D Fj,

which means that V,I' C U; and shows that 0% < $L.
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Lemma 4. Let .F be a sheaf on' V and F a finite subset of V.. We have
H"(0",.7)=0
form > 2.

Set W =V — F; it is clear that VI‘ZO. . .DVIIZ =W if xg,...,x, are distinct
and if n > 1. If we put G = T'(W,.%), it follows that the alternating complex
C'(0F, F) is isomorphic, in dimensions > 1, to C'(S(F),G), S(F) denoting
the simplex with F' for the set of vertices. It follows that

H™(0F . #) = H"(S(F),G) = 0 for n > 2,
the cohomology of a simplex being trivial.

Lemmas 3 and 4 obviously imply:

Proposition 4. IfV is an irreducible algebraic curve and % is an arbitrary
sheaf in V, we have H*(V,.%) =0 for n > 2.

Remark. I do not know whether an analogous result is true for varieties of
arbitrary dimension.
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§2 GRADED MODULES AND COHERENT ALGEBRAIC
SHEAVES ON THE PROJECTIVE SPACE

54 The operation .#(n)

Let .# be an algebraic sheaf on X = P.(K). Let .%; = .%(U;) be the restriction
of & to U; (cf. n° ; if n is an arbitrary integer, let 6;;(n) be the isomorphism
of Z;(U;NUj;) with #;(U;NUj) defined by multiplication by the function ¢ /¢}';
this makes sense, since ¢;/t; is a regular function on U; N U; with values in K*.
We have §;;(n) o 6;5(n) = 0;(n) at every point of U; N U; N Uy; we can thus
apply Proposition 4 of n° 4| and obtain an algebraic sheaf denoted by .#(n),
defined by gluing the sheaves #; = % (U;) using the isomorphisms 6;;(n).

We have the canonical isomorphisms: .#(0) =~ %, % (n)(m) = % (n + m).
Moreover, .7 (n) is locally isomorphic to %, thus coherent if .7 is; it also follows
that every exact sequence .# — %' — .Z" of algebraic sheaves gives birth to
exact sequences % (n) — F#'(n) — F"(n) for all n € Z.

We can apply the above procedure to the sheaf .# = & and so obtain the
sheaves 0(n), n € Z. We will give another description of these sheaves: if U is
open in X, let A% be the subset of Ay = I'(7~!(U), Oy) consisting of regular
functions of degree n (that is, satisfying the identity f(Ay) = A" f(y) for A € K*
and y € 7~ 1(U)); the A} are AY,~modules, thus give birth to an algebraic sheaf,
which we denote by ¢’(n). An element of 6’(n),, © € X can be this identified
with a rational function P/Q, P and @ being homogeneous polynomials such
that Q(x) # 0 and deg P — deg Q = n.

Proposition 1. The sheaves O(n) and 0'(n) are canonically isomorphic.

By definition, a section of &'(n) over an open U C X is a system (f;) of
sections of & over U NU; with f; = (t}/t) - f; on UNU; N Uj; the f; can
be identified with regular functions, homogeneous of degree 0 over 7r_1(U) N
7T_1(Ui); set g; = t* - f;; we then have g; = g; at every point of 771 (U) N

YU;) nm=1(U;), thus the g; are the restrictions of a unique regular function
on 7 YU), homogeneous of degree n. Conversely, such a function g defines a
system (f;) by setting f; = g/t?". The mapping (f;) — g is thus an isomorphism
of €(n) with &’ (n).

Henceforth, we will often identify &(n) with &”’(n) by means of the above
isomorphism. We observe that a section of &'(n) over X is just a regular
function on Y, homogeneous of degree n. If we assume that r > 1, such a
function is identically zero for n < 0 and it is a homogeneous polynomial of
degree n for n > 0.

Proposition 2. For every algebraic sheaf %, the sheaves F(n) and F Q¢
O(n) are canonically isomorphic.
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Since @(n) is obtained from the &; by gluing with respect to 0;;(n), F®0(n)
is obtained from .%; ® 0; by gluing with respect to the isomorphisms 1® 6;;(n);
identifying .#; ® 0; with %,; we recover the definition of Z(n).

Henceforth, we will also identify . (n) with .# ® &'(n).

55 Sections of .7 (n)

Let us first show a lemma on algebraic varieties, that is quite analogous to
Lemma 1 of n° @Gt

Lemma 1. Let V be an affine variety, Q a regular function on V and Vg
the set of all points © € V such that Q(x) # 0. Let F be a coherent algebraic
sheaf on V' and let s be a section of % over V. Then, for n sufficiently large,
there exists a section s’ of F over the whole V' such that s’ = Q™s over Vg.

Embedding V in an affine space and extending .# by 0 outside V', we are
brought to the case where V is an affine space, thus is irreducible. By Corollary 1
to Theorem 2 from n° there exists a surjective homomorphism ¢ : 0}, — Z;
by Proposition 2 of n° Vi is an open affine subset and thus there exists (n°
Corollary 2 to Proposition 7) a section o of &%, over Vi such that ¢(o) = s. We
can identify o with a system of p regular functions on Vi; applying Proposition
5 of n° [43| to each of these functions, we see that there exists a section o’ of 07,
over V such that o’ = Q"o on Vg, provided that n is sufficiently large. Setting
s' = ¢(0’), we obtain a section of .# over V such that s’ = Q™s on Vj.

Theorem 1. Let .# be a coherent algebraic sheaf on X = P.(K). There
exists an integer n(F) such that for alln > n(F) and allx € X, the 0, —module
F(n)y is generated by elements of T'(X, .7 (n)).

By the definition of .#(n), a section s of .%#(n) over X is a system (s;) of
sections of .Z over U; satisfying the compatibility conditions:

si = (t]/t]") -85 on Ui N Uj;

we say that s; is the i-th component of s.

On the other hand, since U; is isomorphic to K", there exists a finite number
of sections s¢ of .# over U; which generate .#, for all x € U; (n° Corollary 1
to Theorem 2); if for a certain integer n we can find sections s of .%(n) whose
i-th component is s¢, it is clear that I'(X, .%# (n)) generates .% (n), for all z € U;.
Theorem 1 is thus proven if we prove the following Lemma:

Lemma 2. Let s; be a section of F over U;. For all n sufficiently large,
there exists a section s of . (n) whose i-th component is equal to s;.

Apply Lemma 1 to the affine variety V' = Uj, the function @ = t;/t; and the
section s; restricted to U; N Uj; this is legal, because ti/tj is a regular function
on U; whose zero set is equal to U; — U; NU;. We conclude that there exists an

integer p and a section s} of # over U; such that s = (] /) - s; on U; N Uy;
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for j = i, we have s, = s;, which allows us to write the preceding formula in the
form s = (£ /t}) - si.

The s’ being defined for every index j (with the same exponent p), consider
s’ —(ti/tf)-s%; it is a section of .# over U;NU}, whose restriction to U;NU;NUy, is
zero; by applying Proposition 6 of n° [43| we see that for every sufficiently large
integer ¢ we have (t{/t7)(s} — (t./t%) - s}) = 0 on U; N Uy; if we then put
sj = (t]/t]) - s} and n = p + ¢, the above formula is written s; = (t;/t}) - sx
and the system s = (s;) is a section of % (n) whose i-th component is equal to
si, q.e.d.

Corollary. Every coherent algebraic sheaf # on X = P.(K) is isomorphic
to a quotient sheaf of a sheaf O(n)P, n and p being suitable integers.

By the above theorem, there exists an integer n such that #(—n), is gen-
erated by I'(X, #(—n)) for every x € X; by the quasi-compactness of X, this
is equivalent to saying that .%# (—n) is isomorphic to a quotient sheaf of a sheaf
0P, p being an appropriate integer > 0. It follows then that .7 =~ .#(—n)(n) is
isomorphic to a quotient sheaf of &'(n)? ~ OP(n).

56 Graded modules

Let S = Kto, . .., t.] be the algebra of polynomials in ¢, . . . , t,.; for every integer
n > 0, let S, be the linear subspace of .S consisting by homogeneous polynomials
of degree n; for n < 0, we set S, = 0. The algebra S is a direct sum of S,
n € Z and we have S, - Sy C Sp44; in other words, S is a graded algebra.

Recall that an S—module M is said to be graded if there is given a decompo-
sition of M into a direct sum: M = @, ., M,,, M,, being subgroups of M such
that S, - M, C M,+, for every couple (p, q) of integers. An element of M,, is said
to be homogeneous of degree n; a submodule N of M is said to be homogeneous
if it is a direct sum of N N M,,, in which case it is a graded S—module. If M
and M’ are two graded S—modules, an S—homomorphism

oM — M

is said to be homogeneous of degree s if ¢p(M,) C M, for every n € Z. A
homogeneous S—homomorphism of degree 0 is simply called a homomorphism.

If M is a graded S—module and n an integer, we denote by M (n) the graded
S—module:
M(n) = @5 M(n), with M(n), = My,
pEL
We thus have M (n) = M as S—modules, but a homogeneous element of degree
p of M(n) is homogeneous of degree n + p in M; in other words, M (n) is made
from M by lowering degrees by n units.

We denote by ¥ the class of graded S—modules M such that M,, = 0 for n
sufficiently large. If A — B — C is an exact sequence of homomorphisms of
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graded S—modules, the relations A € €, C € ¥ clearly imply B € €; in other
words, € is a class in the sense of [14], Chap. 1. Generally, we use the terminol-
ogy introduced in the aforementioned article; in particular, a homomorphism
¢ : A — B is called €-injective (resp. €-surjective) if Ker(¢) € € (resp. if
Coker(¢) € €) and €-bijective if it is both %-injective and %-surjective.

A graded S—module M is said to be of finite type if it is generated by a finite
number of elements; we say that M satisfies the condition (TF) if there exists
an integer p such that the submodule ®n2p M, of M is of finite type; it is the
same to say that M is F-isomorphic to a module of finite type. The modules
satisfying (TF) form a class containing %.

A graded S—-module L is called free (resp. free of finite type) if it admits a
base (resp. a finite base) consisting of homogeneous elements, in other words
if it is isomorphic to a direct sum (resp. to a finite direct sum) of the modules

57 The algebraic sheaf associated to a graded S-module

If U is a nonempty subset of X, we denote by S(U) the subset of S = K[tg, ..., ]
consisting of homogeneous polynomials ) such that Q(x) # 0 for allz € U; S(U)
is a multiplicatively closed subset of S, not containing 0. For U = X, we write

S(x) instead of S({z}).

Let M be a graded S—module. We denote by My the set of fractions m/Q
with m € M, @Q € S(U), m and @ being homogeneous of the same degree; we
identify two fractions m/Q and m’/Q’ if there exists Q" € S(U) such that

Q"(Q -m—Q -m')=0;

it is clear that we have defined an equivalence relation between the pairs (m, Q).
For U = z, we write M, instead of My,y.

Applying this to M = S, we see that Sy is the ring of rational functions P/Q,
P and @ being homogeneous polynomials of the same degree and Q € S(U); if
M is an arbitrary graded S—module, we can equip My with a structure of an
Sy—module by imposing:

m/Q+m'/Q = (Q'm+ Qm')/QQ’
(P/Q) - (m/Q') = Pm/QQ".
If U C V, we have S(V)) C S(U), hence the canonical homomorphisms
oy : My — My;

the system (My, (bg), where U and V run over nonempty open subsets of X,
define thus a sheaf which we denote by o/ (M); we verify immediately that

lsy My = ..
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that is, that &/ (M), = M,. In particular, we have &7 (S) = € and as the My
are Sy—modules, it follows that <7 (M) is a sheaf of &7 (S)—modules, that is, an
algebraic sheaf on X. Any homomorphism ¢ : M — M’ defines in a natural
way the Sy-linear homomorphisms ¢y : My — M{;, thus a homomorphism of
sheaves &7 (¢) : o/ (M) — o/ (M'), which we frequently denote ¢. We clearly
have

A(o+¢)=d(9)+d(¢), (1) =1, d(poy)=(p)od ()

The operation 7 (M) is thus a covariant additive functor defined on the category
of graded S—modules and with values in the category of algebraic sheaves on X.

(The above definitions are quite analogous to these of §4, from Chap. II; it
should be noted however that Sy is not the localization of S in S(U), but only
its homogeneous component of degree 0.)

58 First properties of the functor </ (M)

Proposition 3. The functor o (M) is an exact functor.

Let M % M’ 25 M' be an exact sequence of graded S—modules and show

that the sequence M, < M/ LN M is also exact. Let m’/Q € M, be an
element of the kernel of 8; by the definition of M)/, there exist R € S(z) such
that RB(m’) = 0; but then there exists m € M such that a(m) = Rm’ and we
have a(m/RQ) =m'/Q, q.e.d.

(Compare with n°® Lemma 1.)

Proposition 4. If M is a graded S—module and if n is an integer, o/ (M (n))
is canonically isomorphic to o/ (M)(n).

Leti € I,z € Uyand m/Q € M(n),, withm € M(n),, Q € S(z), deg@ = p.
Put:

Nia(m/Q) =m/t}Q € My,

which is valid because m € M, 1, and t7Q € S(z). We immediately see that
Niw : M(n)y — M, is bijective for all z € U; and defines an isomorphism 7; of
o (M(n)) to & (M) over U;. Moreover, we have 7; o nj_l = 6;;(n) over U; NU,.
By the definition of the operation .% (n) and Proposition 4 of n° {4l this shows
that &7 (M (n)) is isomorphic to &7 (M)(n).

Corollary. o7 (S(n)) is canonically isomorphic to O(n).

Indeed, it has been said that <7 (.S) was isomorphic to &.

(It is also clear that <7 (S(n)) is isomorphic to &’ (n), because €’ (n), consists
precisely of the rational functions P/Q such that deg P — deg@ = n and Q €
S(x).)

Proposition 5. Let M be a graded S—module satisfying the condition (TF).

The algebraic sheaf o/ (M) is also a coherent sheaf. Moreover of (M) = 0 if and
only if M € €.
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If M € €, for all m € M and x € X there exists Q € S(z) such that
Qm = 0; it suffices to take @ of a sufficiently large degree; we thus have M, = 0,
hence &/ (M) = 0. Let now M be a graded S—-module satisfying the condition
(TF); there exists a homogeneous submodule N of M, of finite type and such
that M/N € €; applying the above together with Proposition 3, we see that
A (N) — o (M) is bijective and it thus suffices to prove that &/ (V) is coherent.
Since N is of finite type, there exists an exact sequence L' — L° = N — 0
where L? and L' are free modules of finite type. By Proposition 3, the sequence
(LY — o/ (L°) — &/ (N) — 0 is exact. But, by the corollary to Proposition
4, .o/ (L°) and &/ (L") are isomorphic to finite direct sums of the sheaves €'(n;)
and are thus coherent. It follows that <7 (NN) is coherent.

Let finally M be a graded S—module satisfying (TF) and such that &7 (M) =
0; by the above considerations, we can suppose that M is of finite type. If m is
a homogeneous element of M, let a,, be the annihilator of m, that is, the set of
all polynomials @) € S such that @ -m = 0; it is clear that a,, is a homogeneous
ideal. Moreover, the assumption M, = 0 for all x € X implies that the variety
of zeros of a,, in K™™' is reduced to {0}; Hilbert’s theorem of zeros shows
that every homogeneous polynomial of sufficiently large degree belongs to a,,.
Applying this to the finite system of generators of M, we conclude immediately
M, = 0 for p sufliciently large, which completes the proof.

By combining Propositions 3 and 5 we obtain:

Proposition 6. Let M and M’ be two graded S—-modules satisfying the
condition (TF) and let ¢ : M — M’ be a homomorphism of M to M'. Then

is injective (resp. surjective, bijective) if and only if ¢ is €-injective (resp.

€ -surjective, € -bijective).

59 The graded S—module associated to an algebraic sheaf
Let . be an algebraic sheaf on X and set:

I(F) =T (F),, with T(F), =T(X,F(n)).
nez

The group I'(.#) is a graded group; we shall equip it with a structure of an
S-module. Let s € I'(X, % (q)) and let P € Sp,; we can identify P with a section
of O(p) (cf. n°[54)), thus P®s is a section of O(p)®.F (q) = Z (q)(p) = F (p+q),
using the homomorphisms from n° we have then defined a section of Z (p+q)
which we denote by P - s instead of P ® s. The mapping (P,s) — P - s equips
I'(%) with a structure of an S—module that is compatible with the grading.
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In order to compare the functors o/ (M) and T'(%) we define two canonical
homomorphisms:

a:M—->T(F (M) and gB:A(T(F)) — ZF.

Definition of a. Let M be a graded S—module and let m € M, be a
homogeneous element of M of degree 0. The element m/1 is a well-defined
element of M, that varies continuously with = € X; thus m defines a section
a(m) of & (M). If now m is homogeneous of degree n, m is homogeneous of
degree 0 in M (n), thus defines a section a(m) of &/(M(n)) = &/ (M)(n) (ct.
Proposition 4). This is the definition of o : M — I'(«(M)) and it is immediate
that it is a homomorphism.

Definition of 5. Let # be an algebraic sheaf on X and let s/Q be an
element of I'(%), with s € I'(X, #(n)), Q € S, and Q(z) # 0. The function
1/@Q is homogeneous of degree —n and regular in x, hence a section of &(—n) in
a neighborhood of z; it follows that 1/Q ® s is a section of O(—n) ® .7 (n) = F
in a neighborhood of z, thus defines an element of .%, which we denote by
B=(s/Q), because it depends only on s/@Q. We can also define 8, by using the
components s; of s: if v € Uy, B(s/Q) = (t7/Q) - s;(x). The collection of the
homomorphisms 3, defines a homomorphism 5 : & (I'(%)) — Z.

The homomorphisms « and 3 are related by the following Propositions,
which are shown by direct computation:

Proposition 7. Let M be a graded S—-module. The composition of the
homomorphisms o (M) — o (L(/(M))) — /(M) is the identity.

(The first homomorphism is defined by a : M — I'(«/(M)) and the second
is 8, applied to & = &/ (M).)

Proposition 8. Let . be an algebraic sheaf on X. The composition of the
homomorphisms I'(F#) — T'(F (I'(F))) = T'(F) is the identity.

(The first homomorphism is «, applied to M = I'(.%), while the second one
is defined by 8 : & (T'(F)) — Z.)

We will show in n° [65] that 3 : o7 (D(F)) — Z is bijective if .Z is coherent
and that a: M — I'(&/(M)) is €-bijective if M satisfies the condition (TF).

60 The case of coherent algebraic sheaves

Let us show a preliminary result:

Proposition 9. Let £ be an algebraic sheaf on X, a direct sum of a finite
number of the sheaves O (n;). ThenT'(F) satisfies (TF) and 8 : o (T'(ZL)) — £
18 bijective.

It comes down immediately .£ = €(n), then to £ = €. In this case, we
know that I'(€(p)) = S, for p > 0, thus we have S C I'(0), the quotient
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belonging to €. It follows first that I'(&0) satisfies (TF), then that &/ (T'(0)) =
o (S) =0, qed.

(We observe that we have I'(¢) = S if » > 1; on the other hand, if r = 0,
I'(0) is not even an S-module of finite type.)

Theorem 2. For every coherent algebraic sheaf ¥ on X there exists a
graded S—-module M, satisfying (TF), such that o/ (M) is isomorphic to Z.

By the corollary to Theorem 1, there exists an exact sequence of algebraic
sheaves:
LG T 0,

where Z! and .Z° satisfy the assumptions of the above Proposition. Let M be
the cokernel of the homomorphism I'(¢) : T'(£!) — I'(£Y); by Proposition 9,
M satisfies the condition (TF). Applying the functor < to the exact sequence:

gL -1(£°% - M —0,
we obtain an exact sequence:

A (T(LY)) = o (T(L°)) = o/ (M) — 0.

Consider the following commutative diagram:

ALY —— (L) —— /(M) —— 0
P
1 £ F 0

By Proposition 9, the two vertical homomorphisms are bijective. It follows
that /(M) is isomorphic to %, qg.e.d.
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§3 COHOMOLOGY OF THE PROJECTIVE SPACE WITH
VALUES IN A COHERENT ALGEBRAIC SHEAF

61 The complexes Cy(M) and C(M)

We preserve the notations of n®® and In particular, I will denote the
interval {0,1,...,r} and S will denote the graded algebra Klto,...,t,].

Let M be a graded S—module, k and ¢ two integers > 0; we shall define a
group C(M): an element of C{(M) is a mapping

(io,...,’iq) Hm<20%q>

which associates to every sequence (ig,...,iq) of ¢ + 1 elements of I a homo-
geneous element of degree k(g + 1) of M, depending in an alternating way on
i0,...,1q. In particular, we have m(iy...44) = 0 if two of the indices 4o, ..., 1,
are equal. We define addition in C}(M) in the obvious way. the same with
multiplication by an element A € K, and C}(M) is a vector space over K.

If m is an element of C{ (M), we define dm € C¢*' (M) by the formula:

Jj=q+1

(dm)io...ige1) = Y (=1)tF ~mlig...i;.. ig1).
j=0

We verify by a direct calculation that dod = 0; thus, the direct sum Cy (M) =
gzg CH(M), equipped with the coboundary operator d, is a complex, whose
g-th cohomology group is denoted by H}(M).

(We note, after [I1], another interpretation of the elements of C{{(M): intro-
duce 7 + 1 differential symbols dxy, . . ., dz, and associate to every m € C{ (M)
a ,,differential form” of degree q + 1:

Wy, = Z mig ... ig)dxi, A ... Adx;,.
i0<...<iq

If we put ap = Zzzg thdz;, we see that we have:

Wdm = Qi N\ W,

in other words, the coboundary operation is transformed into the exterior mul-
tiplication by the form ay).

If h is an integer > k, let p} : C}(M) — C}(M) be the homomorphism
defined by the formula:

pZ(m) <ZO Ce Zq> = (tio e tl'q)hikmﬁo . Zq>
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We have pZOd:dOpZ and thOpi :pﬁﬁ if k < h <1. We can thus define a
complex C'(M), the inductive limit of the system (Cy (M), p) for k — +oc0. The
cohomology groups of this complex are denoted H?(M). Because cohomology
commutes with inductive limits (cf. [6], Chap. V, Prop. 9.3*), we have:

HY(M) = lim HI(M).

k—o0

Every homomorphism ¢ : M — M’ defines a homomorphism
qf) : Ck(M) — Ck<MI>

by the formula: ¢(m)(ig...iq) = ¢(m(io...4iq)), hence, by passing to the limit,
¢ : C(M) — C(M’); moreover, these homomorphisms commute with boundary
and thus define the homomorphisms

¢ Hqp(M) = Hqe(M') and ¢ : HY(M) — HI(M').

If we have an exact sequence 0 — M — M’ — M" — 0, we have an exact
sequence of complexes 0 = Ci(M) — Cx(M') — Cx(M") — 0, hence an exact
sequence of cohomology:

CCHY M) = H(M") — HIPY (M) — HIPY (M) — ..

The same results for C(M) and H4(M).

Remark. We shall see later (cf. n° that we can express H{ (M) in terms
of Ext¥.

62 Calculation of H/(M) for certain modules M

Let M be a graded S—module and m € M a homogeneous element of degree
0. The system of (¥ - m) is a 0-cocycle of Cx(M), which we denote by a*(m)
and identify with its cohomology class. We so obtain a K-linear homomorphism
af i My — HY(M); as ol = pltoo® if h > k, the of define by passing to the
limit a homomorphism o : My — HO(M).

Let us introduce two more notations:

If (Py, ..., P,) are elements of S, we denote by (P, ..., Py,)M the submodule
of M consisting of the elements Ezig P, - m; with m; € M, if the P; are
homogeneous, this submodule is homogeneous.

If P is an element of S and N a submodule of M, we denote by N : P the
submodule of M consisting of the elements m € M such that P-m € N; we
clearly have N : P D N; if N and P are homogeneous, so is N : P.

Having specified these notations, we have:
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Proposition 1. Let M be a graded S—module and k an integer > 0. Assume
that for all i € I we have:

k k k k k
(th ot Mt =kt M.

Then:
(a) o* : My — HY(M) is bijective (if r > 1),
(b) HY(M) =0 for0 < g <r.

(For i = 0, the assumption means that t§ - m = 0 implies m = 0.)

This Proposition is a special case of a result of de Rham [11] (the de Rham’s
result being also valid even if we do not assume that the m(ig .. .4,) are homo-
geneous). See also [6], Chap. VIII, 94 for a particular case, sufficient for our
purposes.

We now apply Proposition 1 to the graded S—module S(n):

Proposition 2. Let k be an integer > 0, n an arbitrary integer. Then:

(a) o : S, — HY(S(n)) is bijective (if r > 1),

(b) HY(S(n)) =0 for0< g <r,

(c) Hj(S(n)) admits a base (over K ) consisting of the cohomology classes
of the monomials t5° ...t~ with 0 < c; < k and Y'—4 i = k(r + 1) 4 n.

It is clear that the S—module S(n) satisfies the assumptions of Proposition
1, which shows (a) and (b). On the other hand, for every graded S—module M,

we have H] (M) = Mk(rﬂ)/(t’g, <o o, t¥YM},.; now the monomials
o0ty > O,Zai =k(r+1)+n,
i=0

form a basis of S(n)k(41) and those for which at least a; is > &k form a basis
of (tf,...,t*)S(n)k,; hence (c).

It is convenient to write the exponents «; in the form «; = k — §;. The
conditions of (c) are then written:

=7

0< pB; <k and Zﬁi:—n.

i=0
The second condition, together with 8; > 0, implies 8; < —n — r; if thus
k > —n —r, the condition §; < k is a consequence of the preceding two. Hence:

Corollary 1. For k > —n—r, H;(S(n)) admits a basis formed of the coho-
mology classes of monomials (tg .. .t,.)k/tg" c B with B; > 0 and Yo B =
-n.

We also have:
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Corollary 2. If h > k > —n — r, the homomorphism
P HL(S(n)) = H{(S(n))

1s bijective for all g > 0.

For g # r, this follows from the assertions (a) and (b) of Proposition 2. For
q = r, this follows from Corollary 1, given that p? transforms

(to...t,)F/tho . P into (to...t,)"/tho .. ¢Pr.

Corollary 3. The homomorphism « : S, — H°(S(n)) is bijective if r > 1
or if n > 0. We have H1(S(n)) = 0 for 0 < ¢ < r and H"(S(n)) is a vector
space of dimension (_7;_1) over K.

The assertion pertaining to « follows from Proposition 2, (a), in the case
when r > 1; it is clear if » = 0 and n > 0. The rest of the Corollary is an
obvious consequence of Corollaries 1 and 2 (seeing that the binomial coefficient
(%) is zero for a < r).

63 General properties of HY(M)

Proposition 3. Let M be a graded S—module satisfying the condition (TF).
Then:

(a) There exists an integer k(M) such that plt - HI(M) — HJ(M) is bijec-
tive for h > k > k(M) and every q.

(b) H1(M) is a vector space of finite dimension over K for all ¢ > 0.

(c) There exists an integer n(M) such that for n > n(M), o : M, —
HO(M (n)) is bijective and that H1(M (n)) is zero for all ¢ > 0.

This is immediately reduced to the case when M is of finite type. We say
that M is of dimension < s (s being an integer > 0) if there exists an exact
sequence:

0L Lt ... 5L M—o,

where L° are free graded S-modules of finite type. By the Hilbert syzygy
theorem (cf. [6], Chap. VIII, th. 6.5), this dimension is always < r + 1.

We prove the Proposition by induction on the dimension of M. If it is 0, M is
free of finite type, i.e. a direct sum of modules S(n;) and the Proposition follows
from Corollaries 2 and 3 and Proposition 2. Assume that M is of dimension < s
and let N be the kernel of L° — M. The graded S-module N is of dimension
< s —1 and we have an exact sequence:

03 N—=IL— M—0.
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By the induction assumption, the Proposition is true for N and L°. Applying
the five lemma ([7], Chap. I, Lemme 4.3) to the commutative diagram:

H{(N) —— H{(L") —— H}(M) —— H{"(N) —— H["(L°)

where h > k > Sup(k(N), k(L°), we show (a), thus also (b), because the H{ (M)
are of finite dimension over K. On the other hand, the exact sequence

H(L%(n)) — H(M(n)) — H™'(N(n))

shows that HY(M(n)) = 0 for n > Sup(n(L°),n(N)). Finally, consider the
commutative diagram:

N, L, M,

]

—— H(N(n)) —— H°(L°(n)) —— H°(M(n)) —— H'(

O — O

(n));

for n > n(N), we have H*(N(n)) = 0; we deduce that a : M,, — H°(M(n)) is
bijective for n > Sup(n(L°),n(NN)), which completes the proof of the Proposi-
tion.

64 Comparison of the groups HY(M) and HY(X, o/ (M))

Let M be a graded S-module and let o/ (M) be the algebraic sheaf on X =
P,.(K) defined by M by the procedure of n° We will now compare C'(M) with
C' (U, o/ (M)), the complex of alternating cochains of the covering U = {U,; }ier
with values in the sheaf o7 (M).

Let m € C{(M) and let (io, ..., iq) be a sequence of ¢+ 1 elements of I. The
polynomial (¢;, ... tiq)’c belongs obviously to S(Us,...;,), with the notations of n°
It follows that m(ig...44)/(t;, - ..tiq)k belongs to My, where U = Uy,
thus defines a section of .7 (M) over Uj,...;,. When (i, ..., i) varies, the system
consisting of this sections is an alternating cochain of $ with values in o/ (M),
which we denote by ¢ (m). We immediately see that ¢, commutes with d and
that tp = ¢ 0 pZ if h > k. By passing to the inductive limit, the ¢; thus define
a homomorphism ¢ : C(M) — C' (Y, &7 (M)), commuting with d.

Proposition 4. If M satisfies the condition (TF), . : C(M) — C' (U, &/ (M))
1s bijective.
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If M € €, we have M,, = 0 for n > ng, so Cx(M) = 0 for k > ng and
C(M) = 0. As every S—module satisfying (TF) is €-isomorphic to a module of
finite type, this shows that we can restrict ourselves to the case when M is of
finite type. We can then find an exact sequence L' — L% — M — 0, where L'
and L° are free of finite type. By Propositions 3 and 5 from n° the sequence

(LY = o (L°) — o/ (M) = 0

is an exact sequence of coherent algebraic sheaves; as the Uiy...i, are affine open
subsets, the sequence

C'(4, .o/ (L)) — C'(U, &/ (L) — C' (4,27 (M)) = 0

is exact (cf. n° Corollary 2 to Theorem 2). The commutative diagram

C(LY) ————— C(L°) —————— O(M) ———— 0

| | P

C'(U, o (LY)) —— C' (U, (L)) —— C'(U, o/ (M)) —— 0

then shows that if the Proposition is true for the module L' and L°, so it is
for M. We are thus reduced to the special case of a free module of finite type,
then, by the decomposition into direct summands, to the case when M = S(n).

In this case, we have &/ (S(n)) = 0(n); a section f;,.;, of O(n) over Uy, ;,
is, by the sole definition of this sheaf, a regular function on V;, N...NV; and

homogeneous of degree n. As V;; N... NV, as the set of points of K™t! where
the function ¢;, ...t;, is # 0, there exists an integer k such that

fiooiy = Plio.. i)/ (tiy - - - ti,)F,

P(ig...iq) being a homogeneous polynomial of degree n + k(g + 1), that is, of
degree k(¢+1) in S(n). Thus, every alternating cochain f € C’(4l, &'(n)) defines
a system P(ig...1,) that is an element of C(S(n)); hence a homomorphism

v (Y, O(n) — C(S(n)).

As we verify immediately that tov = 1 and v o = 1, it follows that ¢ is
bijective, which completes the proof.

Corollary. ¢ defines an isomorphism of H1(M) with H1(X, o/ (M)) for all
qg=>0.

Indeed, we know that H'Y(U, o/ (M)) = H1(U, o/ (M)) (n° |20, Proposition 2)
and that H1(U, o7 (M)) = HI(X, </ (M)) (n° Proposition 2, which applies
because o7 (M) is coherent).

Remark. It is easy to see that ¢ : C(M) — C'(U, &/ (M)) is injective even
if M does not satisfy the condition (TF).
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65 Applications

Proposition 5. If M is a graded S—module satisfying the condition (TF), the
homomorphism o« : M — I'(«/(M)), defined in n° is € -bijective.

We must observe that « : M,, — I'(X, 27 (M (n))) is bijective for n sufficiently
large. Then, by Proposition 4, T'(X, </ (M(n))) is identified with H°(M (n));
the Proposition follows thus from Proposition 3, (c), given the fact that the
homomorphism « is transformed by the above identification to a homomorphism
defined at the beginning of n° also denoted by a.

Proposition 6. Let .7 be a coherent algebraic sheaf on X. The graded S-
module T'(F) satisfies the condition (TF) and the homomorphism 8 : o (T'(F)) —
F defined in n° [59 is bijective.

By Theorem 2 of n° we can assume that # = &/(M), where M is a
module satisfying (TF). By the above Proposition, a : M — T'(«/(M)) is -
bijective; as M satisfies (TF), it follows that I'(«/ (M)) satisfies it also. Applying
Proposition 6 from n° we see that «a : @/ (M) — o (T'(</(M))) is bijective.
Since the composition o7 (M) % o (T'(a/(M))) LN o/ (M) is the identity (n°
Proposition 7), it follows that § is bijective, q.e.d.

Proposition 7. Let F be a coherent algebraic sheaf on X. The groups
HY(X,F) are vector spaces of finite dimension over K for all ¢ > 0 and we
have HY(X, Z(n)) =0 for ¢ > 0 and n sufficiently large.

We can assume, as above, that # = &/ (M) where M is a module satisfying
(TF). The Proposition then follows from Proposition 3 and the corollary to
Proposition 4.

Proposition 8. We have H4(X,0(n)) =0 for 0 < g <r and H" (X, O(n))

18 a vector space of dimension (_Z_l) over K, admitting a base consisting of
the cohomology classes of the alternating cocycles of U

i=r

forow =100 40 with ;>0 and Y Bi=—n.
=0

We have 0(n) = &/(S(n)), hence H1(X, 0'(n)) = H4(S(n)), by the corollary
to Proposition 4; the Proposition follows immediately from this and from the
corollaries of Proposition 2.

We note that in particular H" (X, &(—r — 1)) is a vector space of dimension
1 over K, with a base consisting of the cohomology class of the cocycle fo1. ,» =
1ty .. .ty
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66 Coherent algebraic sheaves on projective varieties

Let V be a closed subvariety of the projective space X = P.(K) and let %
be a coherent algebraic sheaf on V. By extending .% by 0 outside V, we ob-
tain a coherent algebraic sheaf on X (cf. n°[39) denoted .#X; we know that
HY(X,7X) = HI(V,.F). The results of the preceding n° thus apply to the
groups H4(V, #). We obtain immediately (given n° [52)):

Theorem 1. The groups HY(V,.F#) are vector spaces of finite dimension
over K, zero for ¢ > dimV.

In particular, for ¢ = 0 we have:
Corollary. T'(V, %) is a vector space of finite dimension over K.

(It is natural to conjecture whether the above theorem holds for all complete
varieties, in the sense of Weil [16].)

Let U/ = U; NV; the U/ form an open covering ' of V. If % is an algebraic
sheaf on V, let 7; = F (U]) and let 6;;(n) be the isomorphism of .7;(U; N U})
to .Z;(U; NU;) defined by multiplication by (¢;/t;)". We denote by .7 (n) the
sheaf obtained by gluing the .%; with respect to 6;;(n). The operation .Z(n)
has the same properties as the operation defined in n° and generalizes it; in
particular, .%(n) is canonically isomorphic to .# ® Oy (n).

We have #X(n) = #(n)X. Applying then Theorem 1 of n° together
with Proposition 7 from n° we obtain:

Theorem 2. Let .F be a coherent algebraic sheaf on V. There exists an
integer m(.F) such that we have, for all n > m(F):

(a) For all x € V, the O,y -module F(n), is generated by the elements of
TV, #(n),

(b) H1(V,.%(n)) =0 for all ¢ > 0.

Remark. It is essential to observe that the sheaf % (n) does not depend
solely on . and n, but also on the embedding of V' into the projective space X.
More precisely, let P be the principal bundle 7=1(V) with the structural group
K*; with n an integer, we make K™* act on K by the formula:

Np)—=A""u if Ae K* and pe K.

Let E™ = P x g+ K be the fiber space associated to P and the fiber K, equipped
with the above action; let . (E™) be the sheaf of germs of sections of E™ (cf. n°
41). Taking into account the fact that ¢;/t; form a system of transition maps
of P, we verify immediately that .”(E™) is canonically isomorphic to &y (n)).
The formula % (n) = F ® Oy (n) = # @ & (E"™) shows then that the operation
F — % (n) depends only on the class of the principal bundle P defined by the
embedding V — X . In particular, if V is normal, % (n) depends only on the class
of linear equivalence of hyperplane sections of V' in the considered embedding
(cf. [I70).
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67 A supplement

If M is a graded S-module satisfying (TF), we denote by M? the graded S
module I'(«7(M)). We have seen in n° [65|that o : M — M? is €-bijective. We
shall now give conditions for a to be bijective.

Proposition 9. « : M — M?" is bijective if and only if the following
conditions are satisfied:

(i) If m € M is such that t;-m =0 for all i € I, then m = 0,

(11) If elements m; € M, homogeneous of the same degree, satisfy t; - m; =
t;-mj =0 for every couple (i,j), there exists an m € M such that m; = t; - m.

Let us show that the conditions (i) and (ii) are satisfied by M?, which will
prove the necessity. For (i), we can assume that m is homogeneous, that is, it is
a section of &/ (M (n)); in this case, the condition ¢;-m = 0 implies that m is zero
on U;, and since this occurs for all i € I, we have m = 0. For (ii), let n be the
degree of m;; we thus have m; € I'(«/ (M (n))); as 1/t; is a section of &(—1) over
Ui, m;/t; is a section of @/ (M (n — 1)) over U; and the condition ¢; - m; —t; - m;
shows that these various sections are the restrictions of a unique section m of
o/ (M(n—1)) over X; it remains to compare the sections ¢; -m and m;; to show
that they coincide on Uj, it suffices to observe that ¢;(¢; - m —m;) = 0 on Uj,
which follows from the formula t; - m; = ¢; - m; and the definition of m.

We will now show that (i) implies that « is injective. For n sufficiently large,
we know that o : M,, — M is bijective and we can thus proceed by descending
induction on n. If a(m) = 0 with m € M,,, we have t;a(m) = a(t; -m) = 0 and
the induction assumption, applicable since t; - m € M, 41, shows that m = 0.
Finally, let us show that (i) and (ii) imply that « is surjective. We can, as
before, proceed by descending induction on n. If m’ € ME, the induction
assumption shows that there exist m; € M, 11 such that a(m;) = t; - m'; we
have a(t;-m; —t;-m;) = 0, hence t;-m; —t;-m; = 0, because « is injective. The
condition (ii) then implies that there exists an m € M, such that t; - m = m;;
we have t;(m’ — a(m)) = 0, which shows that m’ = a(m) and completes the
proof.

Remarks. (1) The proof shows that the condition (i) is sufficient and
necessary for « to be injective.

(2) We can express (i) and (ii) as: the homomorphism o' : M,, — HY(M(n))
is bijective for all n € Z. Besides, Proposition 4 shows that we can identify M®
with the S—module @, ., H°(M(n)) and it would be easy to provide a purely
algebraic proof of Proposition 9 (without using the sheaf o7 (M)).
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§4 RELATIONS WITH THE FUNCTORS Ext{

68 The functors Ext{

We keep the notations of n° (6] If M and N are two graded S-modules, we de-
note by Homg (M, N),, the group of homogeneous S-homomorphisms of degree
n from M to N, and by Homg(M, N) the graded group €, ., Homg(M, N),;
it is a graded S-module; when M is of finite type it coincides with the S-module
of all S-homomorphisms from M to N.

The derived functors (cf. [6], Chapter V) of the functor Homg(M, N) are
the functors Ext% (M, N), ¢ =0,1,.... Let us briefly recall their definition: E|

One chooses a ,,resolution” of M, that is, an exact sequence:
R A Y /L N e W7 =)

where the L9 are free graded S-modules and the maps are homomorphisms
(that is, as usual, homogeneous S-homomorphisms of degree 0). If we set
C9 = Homg(L?, N), the homomorphism LTt — L9 defines by transposition
a homomorphism d : C¢ — C91! satisfying d o d = 0; therefore C' = @q>0 C1
is endowed with a structure of a complex, and the g-th cohomology group of
C is just, by definition, equal to Ext% (M, N); one shows that it does not de-
pend on the chosen resolution. As the C'? are graded S-modules and since
d: C1 — C! is homogeneous of degree 0, the Ext%(M,N) are S-modules
graded by the subspaces Ext% (M, N),); the Ext% (M, N) are the cohomology
groups of the complex formed by the Homg (L%, N),,), i.e., are the derived func-
tors of the functor Homg (M, N),,).

Recall the main properties of Ext:

Ext%(M, N) = Homg(M, N); Ext%(M, N) =0 for ¢ > r + 1 if M is of finite
type (due to the Hilbert syzygy theorem, cf. [6], Chapter VIII, theorem 6.5);
Ext{(M,N) is an S-module of finite type if M and N are both of finite type
(because we can choose a resolution with the LY of finite type); for all n € Z we
have the canonical isomorphisms:

Ext{(M(n), N) = Ext{ (M, N(—n)) ~ Ext{ (M, N)(—n).
The exact sequences:
0N—->N —->N"-0 and 0—-M —>M — M'—0

give rise to exact sequences:

... — Ext%(M, N) — Ext% (M, N') — Ext% (M, N") — Ext4™ (M, N) — ...
.= ExtL(M",N) — Ext{(M', M) — Ext%(M,N) — Extqs_l(M”,N) — ...

IWhen M is not of finite type, the Ext%(M, N) defined above can differ from the
Ext% (M, N) defined in [6]: it is due to the fact that Homg(M, N) does not have the same

meaning in both cases. However, all the proofs of [6] are valid without change in the case
considered here: this is seen either directly or by applying Appendix of [6].
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69 Interpretation of H/(M) in terms of Ext{,

Let M be a graded S-module and let k be an integer > 0. Set:

Bi(M) = D H}(M(n),
nez

with the notations of n°

We thus obtain a graded group, isomorphic with the g-th cohomology group
of the complex €, ., Cx(M(n)); this complex can be given a structure of an
S-module, compatible with the grading by setting

(P-m)io--ig) = P-mlig---ig), if P € S, and mlig---ig) € CI(M(n));

as the coboundary operator is a homogeneous S-homomorphism of degree 0, it
follows that the B{(M) are themselves graded S-modules.
We put
q — 1 q _ q
Bi(M) = lim Bj(M) P HI(M(n)).

nez
The BY(M) are graded S-modules. For ¢ = 0 we have

B (M) = D H(M(n)),

nez

and we recognize the module denoted by M? in n° (when M satisfies the
condition (TF)). For each n € Z, we have defined in n° a linear map « :
M, — H°(M(n)); we verify immediately that the sum of these maps defines a
homomorphism, which we denote also by «, from M to B°(M).

Proposition 1. Let k be an integer > 0 and let Jy be the ideal (tf, ..., t*) of
S. For every graded S-module M , the graded S-modules B{(M) and Ext%(Jy, M)
are isomorphic.

Let LY, ¢ =0,...,7 be the free graded S-module with a base consisting of
the elements e(ig - --i4), 0 <ig < i1 <...< iy <r of degree k(g + 1); we define
an operator d : LZH — L and an operator ¢ : LY — Ji by the formulas:

J=q+1

d(elip---igi1)) = Z (—1)%2. celio- g igr1),

e(eld)) = th.

Lemma 1. The sequence of homomorphisms:

0L S L . LS Ty —0

18 an eract sequence.
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For k = 1, this result is well known (cf. [6], Chapter VIII, §4); the general
case is shown in the same way (or reduced to it); we can also use the theorem
shown in [I1].

Proposition 1 follows immediately from the Lemma, if we observe that the
complex formed by the Homg(L{, M) and the transposition of d is just the

complex P, ., Cr(M(n)).
Corollary 1. H!(M) is isomorphic to Ext&(Ji, M)o.

Indeed, these groups are the degree 0 components of the graded groups
Bl (M) and Ext$(Ji, M).

Corollary 2. HY(M) is isomorphic to limy_, o ExtE(Jg, M)o.

We easily see that the homomorphism pf : H}(M) — H}l(M) from n° 61| is
transformed by the isomorphism from Corollary 1 to a homomorphism from

EthS(Jk, M)g to EXt%(Jh,M)O

induced by the inclusion J, — Ji; hence the Corollary 2.

Remark. Let M be a graded S-module of finite type; M defines (cf. n°
a coherent algebraic sheaf .#’ on K"t thus on Y = K"*! — {0} and we can
verify that H4(Y,.%#') is isomorphic to BZ(M).

70 Definition of the functors 79(M)

Let us first define the notion of a dual module to a graded S-module. Let M
be a graded S-module; for all n € Z, M, is a vector space over K, whose dual
vector space we denote by (M,)". Set

M =@M, with M= (M_,).
nez

We give M* the structure of an S-module compatible with the grading; for all
P € Sp, the mapping m — P -m is a K-linear map from M_,_, to M_,, so
defines by transposition a K-linear map from (M_,) = M, to (M_,—,) =
M, ; this defines the structure of an S-module on M*. We could also define
M* as Homg(M, K), denoting by K the S-graded module S/(to,...,t.).

The graded S-module M* is called the module dual to M; we have M** = M
if every M, is of finite dimension over K, which holds if M = I'(%#), # being a
coherent algebraic sheaf on X, or if M is of finite type. Every homomorphism
¢ : M — N defines by transposition a homomorphism from N* to M*. If the
sequence M — N — P is exact, so is the sequence P* — N* — M™; in other
words, M* is a contravariant and exact functor of the module M. When I is a
homogeneous ideal of S, the dual of S/I is exactly the ,,inverse system” of I, in
the sense of Macaulay (cf. [9], n°[25).
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Let now M be a graded S-module and ¢ an integer > 0. In the preceding
n° , we have defined the graded S-module BY(M); the module dual to BY(M)
will be denoted by T?(M). We thus have, by definition:

(M) = P TUM),, with TUM), = (H'(M(-n))).
nez

Every homomorphism ¢ : M — N defines a homomorphism from B?(M)
to BZ(N), thus a homomorphism from T%(N) to T?(M); thus the T?(M) are
contravariant functors of M (we shall see in n° [72|that they can expressed very
simply in terms of Extg). Every exact sequence:

0O—-M-—=N-—=P—=0
gives rise to an exact sequence:
..BYM) — B%N) — BY(P) — B (M) — ...,
thus, by transposition, an exact sequence:

LTI M) — TYP) — TYN) = TYM) — ...

The homomorphism « : M — B°(M) defines by transposition a homomor-
phism o* : TO9(M) — M*.

Since BY(M) = 0 for ¢ > r, we have T9(M) = 0 for ¢ > r.

71 Determination of 77" (M).

(In this n° , and in the following, we assume that we have r > 1; the case r =0
leads to somehow different, and trivial, statements).

We denote by Q the graded S-module S(—r — 1); this is a free module, with
a base consisting of an element of degree r + 1. We have seen in n° that
H"™(Q2) = H(Q) for k sufficiently large, and that H}(£2) admits a base over K
consisting of a single element (ty...t,.)*/to...t.; the image in H" () of this
element will be denoted by &; € is thus a basis of H"(2).

We will now define a scalar product (h, ¢) between elements h € B"(M)_,,
and ¢ € Homg (M, Q),,, M being an arbitrary graded S-module. The element ¢
can be identified with an element of Homg (M (—n),Q)o, that is, with a homo-
morphism from M (—n) to €; it thus defines, by passing to cohomology groups,
a homomorphism from H"(M(—n)) = B"(M)_,, to H"(2), which we also de-
note by ¢. The image of h under this homomorphism is thus a scalar multiple
of £, and we define (h, ¢) by the formula:
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For every ¢ € Homg(M, ), the function h — (h,¢) is a linear form on
B"(M)_p, thus can be identified with an element v(¢) of the dual of B"(M)_,,
which is T"(M),,. We have thus defined a homogeneous mapping of degree 0

v :Homg(M,Q) — T" (M),

and the formula (P - h, ¢) = (h, P - ¢) shows that v is an S-homomorphism.
Proposition 2. The homomorphism v : Homg (M, Q) — T7 (M) is bijective.
We shall first prove the Proposition when M is a free module. If M is a

direct sum of homogeneous submodules M, we have:

Homg(M,Q), = [ [ Homs(M*,Q),, and T7"(M), = [[T"(M®),..

So, if the proposition holds for the M, it holds for M, and this reduces the case
of free modules to the particular case of a free module with a single generator,
that is, to the case when M = S(m). We can identify Homg(M, ), with
Homg(S,S(n — m — r — 1))g, that is, with the vector space of homogeneous
polynomials of degree n — m — r — 1. Thus Homg (M, Q),, has for a base the
family of monomials ¢J°...¢)" with v, > 0 and >.\_(v; =n—m—r—1. On
the other hand, we have seen in n° [62| that H} (S(m — n)) has for a base (if
k is large enough) the family of monomials (¢ . ..tT)}“/tg0 P with B; > 0
and ZZS B; = n—m. By setting Bi = v, + 1, we can write these monomials
in the form (¢o .. .tT)k_l/tg‘/’ cotr withyl >0and Y —ovi=n—m—r—1.
Comparing the definition of (h, ¢), we observe that the scalar product

(to. .t =L/t 0 430 40r)

is always zero, unless 7; = v, for all 4, in which case it is equal to 1. This means

that v transforms the basis of t]° . .. )" to the dual basis of (to ...t )*1/tJ0 ...t/
thus is bijective, which shows the Proposition in the case when M is free.

Let us now pass to the general case. We choose an exact sequence
L' -1 = M-—=0

where L° and L! are free. Consider the following commutative diagram
0 —— Homg(M, Q) —— Homg(L° Q) —— Homg(L!,Q)
0— T (M) ——— T7(L%) —— T(LY).

The first row of this diagram is an exact sequence, by the general properties of
the functor Homg; the second is also exact, because it is dual to the sequence

B"(L') — B"(L°) — B"(M) — 0,
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which is exact by the cohomology exact sequence of B? and the fact that
BT (M) = 0 for any M. On the other hand, the two vertical homomorphisms

v:Homg(L°, Q) — T"(L°) and v:Homg(L', Q) — T7(L")
are bijective, as we have just seen. It follows that
v :Homg(M,Q) = T" (M)

is also bijective, which completes the proof.

72 Determination of 79(M).

We shall now prove the following theorem, which generalizes Proposition 2:

Theorem 1. Let M be a graded S-module. For q # r, the graded S-
modules T"~9(M) and Ext% (M, Q) are isomorphic. Moreover, we have an ezact
sequence:

0 — Extl(M, Q) — T°(M) 25 M* — Ext;M (M, Q) — 0.

We will use the axiomatic characterization of derived functors given in [6],
Chap. III, §5. For this, we first define new functors E9(M) in the following
manner:

For ¢ £ r,r+1, EYM)=T""9(M),
For g =, E" (M) = Ker(a™),
Forg=7r+1, E™(M) = Coker(a*).

The E4(M) are additive functors of M, enjoying the following properties:
(i) E°(M) is isomorphic to Homg (M, Q).
This follows from Proposition 2.
(ii) If L is free, E1(L) =0 for g > 0.
It suffices to verify this for L = S(n), in which case it follows from n°
(iii) To every exact sequence 0 — M — N — P — 0 there is associated a
sequence of coboundary operators d? : E1(M) — E1(P) and the sequence:

. EU(P) - EY(N) —» EY(M) L5 BHY(p) -

15 exact.
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The definition of d? is obvious if ¢ # r» — 1,r: this is the homomorphism from
Tr=9(M) to T"~971(P) defined in n° For ¢ = r—1 or r, we use the following
commutative diagram:

T (M) —— T%(P) —— T°(N) —— T°(M) —— 0

0 P

This diagram shows immediately that the image of T (M) is contained in
the kernel of a* : TO(P) — P*, which is just E"(P). This defines d"~! :
E™T"Y(M) — E"(P).

To define d” : Ker(T°(M) — M*) — Coker(T°(P) — P*), we use the
process from [6], Chap. III, Lemma 3.3: if x € Ker(T°(M) — M*), there exists
y € P* and z € T°(N) such that x is the image of z and that y and z have the
same image in N*; we then set d"(z) = y.

The exactness of the sequence
... — E9(P) = E9(N) — EY(M) 25 B+ (P) — ...
follows from the exactness of the sequence
L TTYP) = T YN) = T U(M) =TT (P) — ...

and from [6], loc. cit.
(iv) The isomorphism from (i) and the operators d? from (i) are ,,natural”
This follows immediately from the definitions.

As the properties (i) to (iv) characterize the derived functors of the functor
Homg(M, ), we have E9(M) ~ Ext{(M,Q), which proves the Theorem.

Corollary 1. If M satisfies (TF), H1(M) is isomorphic to the vector space
dual to Exty (M, Q) for all ¢ > 1.

In fact, we know that H%4(M) is a vector space of finite dimension, whose
dual is isomorphic to Ext ?(M, Q).

Corollary 2. If M satisfies (TF), the TY(M) are graded S-modules of finite
type for ¢ > 1, and T°(M) satisfies (TF).

We can replace M by a module of finite type without changing the BY(M),
thus T7(M). The Exty ?(M, Q) are then S-modules of finite type, and we have
M* € €, hence the Corollary.
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§5 APPLICATIONS TO COHERENT ALGEBRAIC
SHEAVES

73 Relations between functors Ext} and Extgm

Let M and N be two graded S-modules. If z is a point of X = P,.(K), we
have defined in n° [57|the 0,-modules M, and N,; we will find relation between
Exty, (M, N,) and graded S-module Ext% (M, N).

Proposition 1. Suppose that M is of finite type. Then:

(a) The sheaf o (Homg(M, N)) is isomorphic to the sheaf Homg (o (M), o7 (N)).
(b) For allz € X, the Oy-module Ext% (M, N), is isomorphic to the O-module
Exty (M, Ny).

First define a homomorphism ¢, : Homg(M,N), — Homg, (M, N;). An
element of first module is a fraction ¢/P, with ¢ € Homg(M, N),,, P € S(z),
P is homogeneous of degree n; if m/P’ is an element of M,, ¢(m)/PP’ is an
element of N, which does not depend on ¢/P and m/P’, and the function
m/P" — ¢(m)/PP’ is a homomorphism ¢, (p/P) : M, — N,; this defines .
After Proposition 5 of n° Home, (M, N;) can be identified with:

Homg (o (M),  (N))a;
this identification transforms ¢, into:
Ly : ' (Homg(M,N)), = Homeg(o (M), o/ (N)),,
and we easily verify that the family of ¢, is a homomorphism

t: 9/ (Homg(M,N)) — Homg (o (M), o/ (N)).

When M is a free module of finite type, ¢, is a bijection. Indeed, it suffices
to regard M = S(n), for which it is obvious.

If now M is any graded S-module of finite type, choose a resolution of M:
e LT 5 L 5 LY M0

where L9 are free of finite type, and consider a complex C formed by Homg(L?, N).
The cohomology groups of C are Ext{ (M, N); or else if we denote by B? and
Z1 the submodules of C'? formed respectively by the coboundaries and cocycles,
we have the exact sequences:

0— 27— C?— BT 50
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and
0 — B?— Z9 — ExtL(M,N) — 0.

As the functor o/ (M) is exact, the sequences
0—Z%— 04— BItt -0
and
0— Bl - Z! — Ext{(M,N)s — 0
are also exact.

But after preceding consideration C? is isomorphic to Homg, (L2, N,); the
Ext{ (M, N), are isomorphic to cohomology groups of a complex formed by the
Homg, (L%, N,) and, because the LY are clearly O,-free, we get back the defi-
nition of Ext?ﬁz (Mg, N.), which shows (b). For ¢ = 0 preceding considerations
show that ¢, is bijection, so ¢ is an isomorphism, so (a) holds.

74 Vanishing of cohomology groups H(X,.%(—n)) for n —
+00

Theorem 1. Let % be a coherent algebraic sheaf on X and let ¢ be an integer
> 0. The following conditions are equivalent:

(a) HY(X,%#(—n)) =0 forn large enough.

(b) Exty !(Fy, Op) =0 forallz € X,

After Theorem 2 of n° we can suppose that .# = o/ (M), where M is a
graded S-module of finite type, and by the n° [64 H?(X, #(—n)) is isomorphic
to H1(M(—n)) = B?(m)_y, so condition (a) is equivalent to

TYM), =0

for n large enough, that is to say T%(M) € €. After Theorem 1 of n° [72| and
the fact that M™* € € as M is of finite type, this last condition is equivalent to
Exty Y(M,Q) € ¢; as Exty ‘(M,Q) is a S-module of finite type,

Extl 9(M,Q) € ¢

is equivalent to Exty ?(M,Q), = 0 for all z € X, by Proposition 5 of n°
Finally the Proposition 1 shows that Extg ?(M,Q), = Ext, (M., ;) and as
M, is isomorphism to .%, and €, is isomorphic to &(—r — 1),, so to €, this
completes the proof.

For announcing Theorem 2, we will need the notion of dimension of an O,-
module. Recall ([6], Chap VI) that €,-module of finite type P is of dimension
< p if there is an exact sequence of &-modules:

0= L,—>Lp1—..—Lo—P—0,
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where each L, is free (this definition is equivalent to [6], because all projective
Oz-modules of finite type are free (cf [6], Chap VIII, Th. 6.1.").

All &,-modules of finite type are of dimension < r, by Hilbert’s syzygy
theorem. (cf. [6], Chap VIII, Th. 6.2’).

Lemma 1. Let P be an O,-module of finite type and let p be an integer > 0.
The following two conditions are equivalent:

(i) P is of dimension < p.

(ii) Extyg (P,0z) =0 for allm > p.

It is clear that (i) implies (ii). We will show that (ii) implies (i) by induction
decreasing on p. For p > r the lemma is trivial, because (i) is always true. Now
pass from p + 1 to p; let N be any &,-module of finite type. We can find an
exact sequence 0 - R — L — N — 0, where L is free of finite type (because
O, is Noetherian). The exact sequence:

ExtM (P, L) — Ext' (P, N) — Ext}; (P, R)

shows that Ext%tl(P, N) = 0, so we have Ext%tQ(P, L) = 0 by condition (ii),
and Ext%f(P, R) =0 as dim P < p+ 1 by the induction hypothesis. As this
property characterizes the modules of finite dimension < p, the lemma is proved.

By combining Lemma with Theorem 1 we obtain:

Theorem 2. Let % be a coherent algebraic sheaf on X, and let p be an
integer > 0. The following two conditions are equivalent:

(i) HY(X,.Z#(—n)) =0 for all n large enough and 0 < q < p.

(ii) For all z € X the Oy-module %, is of dimension <1 — p.

75 Nonsingular varieties

The following results play essential role in extension of the ’duality theorem’
[15] to an arbitrary case.

Theorem 3. Let V be a nonsingular subvariety of projective space P,.(K).
Suppose that all irreducible components of V' have the same dimension p. Let
F be a coherent algebraic sheaf on V', such that for all x € V, F, is a free
module over Oy . Then we have H1(V, #(—n)) = 0 for all n large enough and
0<qg<p.

After Theorem 2, it remains to show that &, y considered as &;-module is of
dimension < r —p. Denote by g, (V') the kernel of the canonical homomorphism
€ : Oy — O, y; since the point z is simple over V, we know (cf. [I§], th 1)
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that this ideal is generated by r — p elements fi,..., fr—p, and the theorem of
Cohen-Macaulay (cf. [13], p. 53, prop 2) shows that we have

(fi,, fic1) s fi=(fr,on fic1) for 1<i<r—p.

Denote by L, a free &,-module which admits a base of elements e < 4;...34 >
corresponding to sequence (i1, ...,44) such that

1<ii<ly<..<ig<r—p;

for ¢ = 0, take Ly = 0, and define:

q ~
Z fz’J 7,1,..."...Zlq>

j=1
d(e(i)) = fi
After [6], Chap. VIII, prop 4.3, the sequence

d d d Y
0= Li—p = Lp_p1— .. Lyg Opy —0

is exact, which shows that dimg, (0, v) <r — p, QED.
Corollary. We have H1(V, Oy (—n)) = 0 for n large enough and 0 < ¢ < p.

Remark. The above proof applies more generally whenever the ideal g, (V)
admits a system of r — p generators, that is, if the variety V is a local complete
intersection at all points.

76 Normal Varieties

Lemma 2. Let M be a O, module of finite type and let f be a moninvertible
element of O, such that the relation fm = 0 impliesm = 0 if m € M. Then the
dimension of the O,-module M/fM is equal to the dimension of M increased
by one.

By assumption, we have an exact sequence 0 — M = M — M/fM — 0,
where « is multiplication by f. If N is a ;-module of finite type, we have an
exact sequence:

.= Ext? (M, N) % Ext? (M,N) — Ext&™ (M/fM,N) — ExtZ (M, N) — ...

Denote by p the dimension of M. By taking ¢ = p + 1 in the preceding
exact sequence, we see that Ext? +2(M /fM,N) = 0, which (by [6], Chap. VI,
2) implies that dim(M/fM) < p+ 1. On the other hand, since dim M = p we
can choose N such that Extp (M N) # 0; by taking ¢ = p in the above exact
sequence, we see that
Ext?(M/fM,N) can be identified with cokernel of

Exty, (M,N) = Exty, (M,N)’
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as the last homomorphism is nothing else that multiplication by f and that f
isn’t invertible in the local ring @,. If follows from [6], Chap. VIII, prop. 5.1’
that this cokernel is # 0, which shows that dim M/fM > p+1 and finishes the
proof.

We will now show a result, that is related with ’the Enriques-Severi lemma’
of Zariski [19]:

Theorem 4. Let V' be an irreducible, normal subvariety of dimension > 2,
of projective space P.(K). Let F be a coherent algebraic sheaf on V', such that
for allz € V, Z, is a free module over O,y . Then we have H (V, Z(—n)) =0
for n large enough.

After Theorem 2, it remains to show that &, v, considered as &;-module is
of dimension < r — 2. First choose an element f € &, such that f(z) =0 and
that the image of f in & v is not zero; this is possible because dim V' > 0. As
V is irreducible, O, v is an integral ring (domain), and we can apply Lemma 2
to the pair (0, f); we then have:

dim 0,y = dim ﬁﬁV/(f) -1, with (f)= JOzv.

As 0, v is an integrally closed ring, all prime ideals p® of the principal ideal
(f) are minimal (cf. [I2] p.136, or [9], n° |37, and none of them is equal to the
maximal ideal m of &, v (if not we would have dim V' < 1). So we can find an
element g € m, not belonging to any of p; this element g is not divisible by 0
in the quotient ring O, v /(f); we denote by g, a representation of g in &,. We
see that we can apply Lemma to the pair &, v /(f),g); we then have:

dim ﬁa:,V/(f) = dim ﬁw,V/(fa g) — 1.
But by Hilbert’s syzygy theorem, we have dim &, v /(f,g) < r,sodim O, v <
r—1and dim &,y <r—2 QED.
Corollary. We have H*(V, Oy (—n)) = 0 for n large enough.
Remarks.
(1) The reasoning made before is classic in theory of syzygies. Cf. W. Grdbner,

Moderne Algebraische Geometrie, 152.6 and 153.1.

(2) If the dimension of V is > 2, we can have dim &,y = r — 2. This is
in particular the case when V is a cone which hyperplane section W is a
normal and irregular projective variety (i.e., HY (W, Ow ) # 0).
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77 Homological characterization of varieties k-times of first
kind

Let M be a graded S-module of finite type. We show by a reasoning identical
to that of Lemma 1:

Lemma 3 dim < k if and only if ExtL(M,S) =0 for ¢ > k.

As M is graded. we have Ext% (M, Q) = Ext{ (M, S)(—r—1), so the previous
condition is equivalent to Ext{(M, ) = 0 for ¢ > k. Given Theorem 1 of n°
we conclude:

Proposition 2.

(a) For dim M < r it is necessary and sufficient that M, — H°(M(n)) is
injective for alln € 7.

(b) If k is an integer > 1, for dim M < r —k it is necessary and sufficient that
a: M, — H°(M(n)) is bijective for all n € Z, and that H(M(n)) = 0 for
0<g<kandalneZ.

Let V be a closed subvariety of P,.(K), and let I(V') be an ideal if homoge-
neous polynomials, which are zero on V.

Denote S(V) = S/I(V), this is a graded S-module whose associated sheaf is
Oy. We sayﬂ that V' is a variety “k-times of first kind” of P,.(K) if the dimension
of S-module S(V) is < r — k. It is obvious that « : S(V),, — H°(V, Oy (n)) is
injective for all n € Z, so all varieties are 0-times of first kind. Using preceding
proposition to M = S(V'), we obtain:

Proposition 3. Let k be an integer > 1. For a subvariety V to be a k-
times of first kind, it is necessary and sufficient that the following conditions
are satisfied for alln € Z:

(i) a:S(V), — H°(V, Oy (n)) is bijective.
(i) H1(V, Oy (n)) =0 for 0 < g < k.

(The condition (i) can also be expressed by saying that linear series cut on
V by forms of degree n is complete, which is well known.)

By comparing with Theorem 2 (or by direct reasoning), we obtain:

Corollary. IfV is k-times of first kind, we have H1(V,O0y) = 0 for 0 <
q < k and, for all x € V, the dimension of Oy-module Oy is <r — k.

2Cf. P. Dubreil, Sur la dimension des idéauz de polynémes, J . Math. Pures App., 15,
1936, p. 271-283. See also W . Grobner, hloderne Algebraische Geometrie, §5.
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If m is an integer > 1, denote by ¢,,, the embedding of P,.(K) into a projective
space of convenient dimension, given by the monomials of degree m (cf. [§],
Chap. XVI, 6, or n° proof of Lemma 2). So the preceding corollary admits
following converse:

Proposition 4. Let k be an integer > 1, and let V be a connected and closed
subvariety of P.(K). Suppose that H1(V,0yv) =0 for 0 < q < k, and that for
all x € V the dimension of Oy-module Oy is <r — k.

Then for all m large enough, ¢, (V) is a subvariety k-times of first kind.

Because V is connected, we have H°(V, 0y) = K. So, if V is irreducible,
it’s evident (if not, H°(V, Oy) contains a polynomial algebra and is not of finite
dimension over K); if V is reducible, all elements f € H°(V,0y) induce a
constant on each of irreducible components of V', and this constants are the
same, because of connectivity of V.

By the fact that dim 0,y < r — 1, the algebraic dimension of each of irre-
ducible components of V is at least equal to 1. So it follows that

H(V, 0y (—n)) =0

for alln > 0 (because if f € HO(V, Oy (—n)) and f # 0, the fFg with g € S(V)
form a vector subspace of H(V, 0y) of dimension > 1).

That being said, denote by V;,, the subvariety ¢,,,(V'); we obviously have:
Oy, (n) = Oy(nm).

For m large enough the following conditions are satisfied:
(a) a: S(V)pm — HO(V, Oy (nm)) is bijective for alln > 1.
This follows from Proposition 5 of n°
(b) HY(V, 0y (mn)) =0 for 0 < g < k and for all n > 1.
This follows from Proposition of n°
(c) H1(V, Oy (nm)) =0 for 0 < ¢ <k and for alln < —1.
This follows from Theorem 2 of n°® @ and hypothesis made on & v .

On the other hand, we have HY(V,0y) = K, HY(V, Oy (nm)) = 0 for all
n < —1, and H(V,0y) = 0 for 0 < ¢ < k, by the hypothesis. It follows that
Vi satisfies all the hypothesis of Proposition 3, QED.

Corollary. Let k be an integer > 1, and let V be a projective variety with-
out singularities, of dimension > k. For V being birationally isomorphic to a
subvariety k-times of first kind of a convenient projective space, it is necessary
and sufficient that V is connected and that H1(V,0y) =0 for 0 < g < k.

The necessity is evident, by Proposition 3. To show sufficiency, it suffices to
remark that €, v is of dimension < r —k (cf. n° and to apply the previous
proposition.
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78 Complete intersections

A subvariety V of dimension p of projective space P,.(K) is a complete inter-
section if the ideal I(V) of polynomials zero at V admits a system of r — p
generators P, ..., P._p; in this case, all irreducible components of V' have the
dimension p, by the theorem of Macaulay (cf. [9], n® 17). It is known, that
this variety is p-times of first kind, which implies that H?(V, Oy (n)) = 0 for
0 < ¢ < p, as we have just seen. We will determine H?(V, Oy (n)) as a function
of degree my, ..., m,_, of homogeneous polynomials P, ..., P._,.

Let S(V) = S/I(V) be a ring of projective coordinates of V. By theorem 1
of n° [72|all it is left, is to determine the S-module Exty ”(S(V), ). We have a
resolution, analogous to that of n° we take L? the graded free S-module, ad-
mitting for a base the elements e(il, .., 1q), corresponding to sequences (i1, ..., i4)
such that 1 <4y <ip < ... < iy, <7 —p and of degree Z;I-:l my;; for LY we take
S. We set:

q o~
> (-1 Leridjenidig)

j=1

=
=
=
=
| |

.

The sequence 0 — L™ & . 4 10 S(V) — 0 is exact ([6], Chap.

VIII, Prop. 4.3). It follows that the Ext%(S(V'),Q) are the cohomology groups
of the complex formed by the Homg(L?,Q); but we can identify an element of
Homg(L?,),, with a system f (i1, ...iq), where the f(i1,...,4,) are homogeneous
polynomials of degree m;, +...+m;_ +n—r—1; after this identification is made,
the operator of coboundary is given by usual formula:

q
(df)(ix-.iq41) Z 1) P; WA Zq+1>

j=1

The theorem of Macaulay implies that we are in conditions of [T1], and we ob-
tain that Ext%(S(V),Q) = 0 for ¢ # r—p. On the other hand, Ext ”(S(V),Q),
is isomorphic to a vector subspace of S(V) formed by homogeneous elements
of degree N + n, where N = ZZ 1 m; —r — 1. Using Theorem 1 of n° we
obtain:

Proposition 5. Let V' be a complete intersection, defined by the homoge-
neous polynomials Py, ..., P._, of degrees my,...,my_y.

(a) The function o : S(V), — H°(V, Oy (n)) is bijective for all n € Z.
(b) HI(V,Oy(n)) =0 for 0 < g <p and alln € Z.

(c) HY(V, Oy (n)) is isomorphic to a dual vector space to HY(V, Oy (N — n)),
with N =3"""m; —r—1.

We see that in particular HP(V, Oy) is zero if N < 0.
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§6 THE CHARACTERISTIC FUNCTION AND
ARITHMETIC GENUS

79 Euler-Poincare characteristic
Let V be a projective variety and % a coherent algebraic sheaf on V. Let
hi(V, F) =dimxgHI(V, F).

We have seen (n° Theorem 1) that h?(V,.#) are finite for all integer ¢
and zero for ¢ > dimV. So we can define an integer x(V,.%#) by:

M8

X(V,7) = ) _(=1)* h(V,.7).

Il
=)

q

This is the Euler-Poincare characteristic of V' with coefficient in .%.

Lemma 1. Let 0 — Ly — ... = L, — 0 be an exact sequence, with L; being
finite dimensional vector spaces over K, and homomorphisms L; — L;+1 being
K-linear. Then we have:

p
> (-1 dimgLy = 0.

q=1

We proceed by induction on p. The lemma is evident if p < 3. If L;q is the
kernel of L, 1 — L,, we have two exact sequences:

0—=Li—..—=L, ;=0

0= L, =Ly 1—L,—0.

Applying induction hypothesis to each sequence, we see that Zf;;f (—1)9dimL,+
(=1)P=*dimL;,_, =0, and
dimL;,_, — dimLy,_y 4+ dimL, = 0,
which proves the lemma.

Proposition 1. Let0 — o — B — € — 0 be an exact sequence of coherent
algebraic sheaves on a projective variety V , with homomorphisms of — A and
B — € being K -linear. Then we have:

X(Va 93) = X(Va o) + X(V7 %)

By Corollary 2 of Theorem 5 of n° we have an exact sequence of coho-
mology:

o = HYV,B) = H(V,€) - H(V, o) - H™H(V, B) — ...
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Applying Lemma to this exact sequence of vector spaces we obtain the
Proposition.

Proposition 2. Let 0 — % — ... = %, — 0 be an ezact sequence
of coherent algebraic sheaves on a projective variety V, with homomorphisms
Fi — Fiv1 being algebraic. Then we have:

Y (=D x(V.Fy) = 0.

q=1

We proceed by induction on p. The proposition is a particular case of Propo-
sition 1 if p < 3. If we define #;_; to be the kernel of %, 1 — 7, the sheaf

F,1 is coherent algebraic because .7, 1 — .7, is an algebraic homomorphism.

So we can applicate the induction hypothesis to two exact sequences
0= F1 = ..o F 10

0= .7, 1 = Fp1 = Fp,

and the Proposition follows.

80 Relation with characteristic function of a graded S-
module

Let .7 be a coherent algebraic sheaf on the space P,.(K). We write x(.%) instead
of x(P.(K), #). We have:

Proposition 3. x(%(n)) is a polynomial of n of degree < r.

By Theorem 2 of n° there exists a graded S-module M of finite type,
such that /(M) is isomorphic to .#. Applying the Hilbert’s syzygy theorem to
M we obtain an exact sequence of graded S-modules:

0Lt 5 . L5 M=o,

where LY are free of finite type. Applying the functor &7 to this sequence, we
obtain an exact sequence of sheaves:

025 5257 50,

where each £7 is isomorphic to a finite direct sum of shaves &(n;). The propo-
sition 2 implies that x(.% (n)) is equal to an alternating sum of x(.£°(n)), which
brings us to case of the sheaf &'(n;). Now it follows from n° that we have
x(€(n)) = ("), which is a polynomial on n of the degree < r. This implies
the Proposition.

Proposition 4. Let M be a graded S-module satisfying condition (TF), and
let F = o/ (M). For all n large enough, we have x(% (n)) = dimg M,
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We know (by n° that for n large enough, the homomorphism « : M,, —
H(X,.%(n)) is bijective, and HY(X,.Z(n)) = 0 for ¢ > 0. So we have:

x(Z(n)) = KX, Z(n)) = dimg M,.

We use a well known fact, that dimg M, is a polynomial of n for n large
enough. This polynomial, which we denote by P, is called the characteristic
function of M. For all n € Z we have Py(n) = x(.%(n)), and in particular for
n = 0, we see that the constant term of Py is equal to x(F).

Apply this to M = S/I(V), I(V) being a homogeneous ideal of S of poly-
nomials which are zero on a closed subvariety V' of P,.(K). The constant term
of Py is called in this case the arithmetic genus of V' (cf. [19]). Since on the
other hand we have &/ (M) = Oy, we obtain:

Proposition 5. The arithmetic genus of a projective variety V is equal to

X(V,0y) = (=1)*dimg HI(V, Oy ).
q=0

Remarks.

(1) The preceding Proposition makes evident the fact, that the arithmetic genus
1s independent of an embedding of V' into a projective space, since it’s true
for H1(V, 0).

(2) The virtual arithmetic genus (defined by Zariski in [19]) can also be re-
duced to Fuler-Poincare characteristic. We return to this question later, by
Riemann-Roch theorem.

(8) For the reason of convenience, we have adopted the definition of arithmetic
genus different from the classical one (c¢f. [19]). If all irreducible compo-
nents of V have the same dimension p, two definitions are related by the
following formula: x(V,0y) =14 (=1)Ppa(V).

81 The degree of the characteristic function

If .% is a coherent algebraic sheaf on an algebraic variety V', we call the support
of %, and denote by Supp(#), the set of points x € V such that .%, # 0. By
the fact that .# is a sheaf of finite type, this set is closed. If we have .#, = 0,
the zero section generates .%,, then also %, for y in neighborhood of z (n° |12}
Proposition 1), which means that the complement of Supp(.#) is open.

Let M be a graded S-module of finite type, and let &% = o/ (M) be a sheaf
defined by M on P.(K) = X. We can determine Supp(.%) from M in the
following manner:
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Let 0 = (), M* be a decomposition of 0 as an intersection of homogeneous
primary submodules M® of M. M correspond to homogeneous primary ideals
p* (cf. [12], Chap. IV). We suppose that this decomposition is ’the shortest
possible’, i.e. that non of M“ is contained in an intersection of others. For
all x € X, each p defines a primary ideal p$ of a local ring 0,, and we have
p¢ = 0 if and only if x is not an element of a variety V' defined by an ideal p©.
We have also 0 =), M in M,, and we verify easily that we thereby obtain a
primary decomposition of 0 in M,. The M correspond to primary ideals pg;
if z ¢ V*, we have M2 = M, and if we restrict ourself to consider M2 such
that € V', we obtain ’the shortest possible decomposition’ (cf. [12], Chap
IV, th 4.). We conclude that M, # 0 if and only if « is an element of V¢, thus
Supp(F) =, V=

Proposition 6. If .7 is a coherent algebraic sheaf on P.(K), the degree of
X(F(n)) is equal to the dimension of Supp(F).

We proceed by induction on r. The case 7 = 0 is trivial. We can suppose
that & = &/ (M), where M is a graded S-module of finite type. Using notation
introduced below, we have to show that x(&#(n)) is an polynomial of degree
q = Sup dim V<.

Let ¢ be a linear homogeneous form, which do not appear in any of proper
prime ideals p®. Such a form exists because the field K is infinite. Let E be a
hyperplane of X with equation ¢ = 0. Consider the exact sequence:

0—0(-1)—= 0 — Og — 0,

where ¢ — Of is a restriction homomorphism, while &(—1) — € is a ho-
momorphism f — ¢f. Applying tensor product with %, we obtain an exact
sequence:

f(—l)—)?—h?E%O, with Fg =% Q¢ Og.
On U;, we can identify .#(—1) with .#, and this identification transforms
the homomorphism % (—1) — % defined above to the multiplication by t/¢;.
Because t was chosen outside p%, t/t; don’t belong to any prime ideal of M, =

F,, if © € U;, and the preceding homomorphism is injective (cf. [12], p. 122, th.
7,b”)). So we have an exact sequence:

0= F(-1) = F— Fr—0,
from which, for all n € Z the exact sequence:

0—F(n—-1)— F(n) > Fr(n) —0.

Applying Proposition 1, we see that:
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But the sheaf %5 is a coherent sheaf of &g-modules, which means that it
is a coherent algebraic sheaf on E, which is a projective space of dimension
r — 1. Moreover %, g = 0 means that the endomorphism of .%, defined by
multiplication by t/t; is surjective, which leads to F, = 0 (cf. [6], Chap VIII,
prop 5.1°). It follows that Supp(Fk) = E N Supp(F), and because E does
not contain any of varieties V¢, if follows by a known fact, that the dimension
of Supp(Fg) is equal to ¢ — 1. By the induction hypothesis x(-Zg(n)) is a
polynomial of degree ¢ — 1. As this difference is prime to the function x(.% (n)),
the latter is a polynomial of degree q.

Remarks.

(1) Proposition 6 was well known for % = &'/.#, .# being a coherent sheaf of
ideals. Cf. [9] n°

(2) The above proof does not use Proposition 3 and shows it once again.
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