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Introduction

We know that the cohomological methods, in particular sheaf theory, play an in-
creasing role not only in the theory of several complex variables ([5]), but also in
classical algebraic geometry (let me recall the recent works of Kodaira-Spencer
on the Riemann-Roch theorem). The algebraic character of these methods sug-
gested that it is possible to apply them also to abstract algebraic geometry; the
aim of this paper is to demonstrate that this is indeed the case.

The content of the particular chapters is as follows:

Chapter I is dedicated to general sheaf theory. It contains proofs of the
results of this theory needed for the two other chapters. Various algebraic
operations one might perform on sheaves are described in §1; we follow quite
exactly the exposition of Cartan ([2], [5]). In §2 we study coherent sheaves
of modules; these generalize analytic coherent sheaves (cf. [3], [5]), admitting
almost the same properties. §3 contains the definition of cohomology groups
of a space X with values in a sheaf F . In subsequent applications, X is an
algebraic variety, equipped with the Zariski topology, so it is not topologically
separated 1. and the methods used by Leray [10] and Cartan [3] (basing on
”partitions of unity” or ”fine” sheaves) do not apply; so one is led to follow the
method of Čech and define the cohomology groups Hq(X,F ) by passing to the
limit with finer and finer open coverings. Another difficulty arising from the
non-separatedness of X regards the ”cohomology exact sequence” (cf. nos 24
and 25): we could construct this exact sequence only for particular cases, yet
sufficient for the purposes we had in mind (cf. nos 24 and 47).

Chapter II starts with the definition of an algebraic variety, analogous to
that of Weil ([17], Chapter VII), but including the case of reducible varieties
(note that, contrary to Weil’s usage, we reserved the word variety only for
irreducible ones); we define the structure of an algebraic variety using the data
consisting of the topology (Zariski topology) and a sub-sheaf of the sheaf of
germs of functions (a sheaf of local rings). An algebraic coherent sheaf on an
algebraic variety V is simply a coherent sheaf of OV -modules, OV being the
sheaf of local rings on V ; we give various examples in §2. The results obtained
are in fact similar to related facts concerning Stein manifolds (cf. [3], [5]): if
F is a coherent algebraic sheaf on an affine variety V , then Hq(V,F ) = 0 for
all q > 0 and Fx is generated by H0(V,F ) for all x ∈ V . Moreover (§4), F
is determined by H0(V,F ) considered as a module over the ring of coordinates
on V .

Chapter III, concerning projective varieties, contains the results which are
essential for this paper. We start with establishing a correspondence between
coherent algebraic sheaves F on a projective space X = Pr(K) and graded
S-modules satisfying the condition (TF) of n◦ 56 (S denotes the polynomial

1i.e. Hausdorff
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algebra K[t0, . . . , tr]); this correspondence is bijective if one identifies two S-
modules whose homogeneous components differ only in low degrees (for precise
statements, see nos 57, 59 and 65). In consequence, every question concerning
F could be translated into a question concerning the associated S-module M .
This way we obtain a method allowing an algebraic determination of Hq(X,F )
starting fromM , which in particular lets us study the properties ofHq(X,F (n))
for n going to +∞ (for the definition of F (n), see n◦ 54); the results obtained
are stated in nos 65 and 66. In §4, we relate the groups Hq(X,F ) to the func-
tors ExtqS introduced by Cartan-Eilenberg [6]; this allows us, in §5, to study the
behavior of Hq(X,F (n)) for n tending to −∞ and give a homological character-
ization of varieties k times of the first kind. §6 exposes certain properties of the
Euler-Poincaré characteristic of a projective variety with values in a coherent
algebraic sheaf.

Moreover, we demonstrate how one can apply the general results of this
paper in diverse particular problems, and notably extend to the abstract case
the ”duality theorem” of [15], thus a part of the results of Kodaira-Spencer
on the Riemann-Roch theorem; in these applications, the theorems of nos 66,
75 and 76 play an essential role. We also show that, if the base field is the
field of complex numbers, the theory of coherent algebraic sheaves is essentially
identical to that of coherent analytic sheaves (cf. [4]).
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§1. Operations on sheaves I

§1 Operations on sheaves

1 Definition of a sheaf

Let X be a topological space. A sheaf of abelian groups on X (or simply a
sheaf ) consists of:

(a) A function x→ Fx, giving for all x ∈ X an abelian group Fx,

(b) A topology on the set F , the sum of the sets Fx.

If f is an element of Fx, we put π(f) = x; we call the mapping of π the
projection of F onto X; the family in F ×F consisting of pairs (f, g) such that
π(f) = π(g) is denoted by F + F .

Having stated the above definitions, we impose two axioms on the data (a)
and (b):

(I) For all f ∈ F there exist open neighborhoods V of f and U of π(f) such
that the restriction of π to V is a homeomorphism of V and U .

(In other words, π is a local homeomorphism).

(II) The mapping f 7→ −f is a continuous mapping from F to F , and the
mapping (f, g) 7→ f + g is a continuous mapping from F + F to F .

We shall see that, even when X is separated (which we do not assume), F is
not necessarily separated, which is shown by the example of the sheaf of germs
of functions (cf. n◦ 3).

Example of a sheaf. For G an abelian group, set Fx = G for all x ∈ X;
the set F can be identified with the product X ×G and, if it is equipped with
the product topology of the topology of X by the discrete topology on G, one
obtains a sheaf, called the constant sheaf isomorphic with G, often identified
with G.

2 Sections of a sheaf

Let F be a sheaf on a space X, and let U be a subset of X. By a section of
F over U we mean a continuous mapping s : U → F for which π ◦ s coincides
with the identity on U . We therefore have s(x) ∈ Fx for all x ∈ U . The set of
sections of F over U is denoted by Γ(U,F ); axiom (II) implies that Γ(U,F ) is
an abelian group. If U ⊂ V , and if s is a section over V , the restriction of s to U
is a section over U ; hence we have a homomorphism ρVU : Γ(V,F )→ Γ(U,F ).

If U is open in X, s(U) is open in F , and if U runs over a base of the
topology of X, then s(U) runs over a base of the topology of F ; this is only
another wording of axiom (I).

Note also one more consequence of axiom (I): for all f ∈ Fx, there exists a
section s over an open neighborhood of x for which s(x) = f , and two sections
with this property coincide on an open neighborhood of x. In other words, Fx

is an inductive limit of Γ(U,F ) for U running over the filtering order of all open
neighborhoods of x.
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§1. Operations on sheaves I

3 Construction of sheaves

Given for all open U ⊂ X an abelian group FU and for all pairs of open
U ⊂ V a homomorphism φVU : FV → FU , satisfying the transitivity condition
φVU ◦ φWV = φWU whenever U ⊂ V ⊂W .

The collection (FU , φ
V
U ) allows us to define a sheaf F in the following way:

(a) Put Fx = lim FU (inductive limit of the system of open neighborhoods
of x). If x belongs to an open subset U , we have a canonical morphism φUx :
FU → Fx.

(b) Let t ∈ FU and denote by [t, U ] the set of φUx (t) for x running over U ;
we have [t, U ] ⊂ F and we give F the topology generated by [t, U ]. Moreover,
an element f ∈ Fx has a base of neighborhoods consisting of the sets [t, U ] for
x ∈ U and φUx (t) = f .

One verifies immediately that the data (a) and (b) satisfy the axioms (I) and
(II), in other words, that F is a sheaf. We say that this is the sheaf defined by
the system (FU , φ

V
U ).

If f ∈ FU , the mapping x 7→ φUx (t) is a section of F over U ; hence we have
a canonical morphism ι : FU → Γ(U,F ).

Proposition 1. ι : FU → Γ(U,F ) is injective 1 if and only if the following
condition holds:

If an element t ∈ FU is such that there exists an open covering {Ui} of U
with φUUi(t) = 0 for all i, then t = 0.

If t ∈ FU satisfies the condition above, we have

φUx (t) = φUix ◦ ψUUi(t) = 0 if x ∈ Ui,

which means that ι(t) = 0. Conversely, suppose that ι(t) = 0 with t ∈ FU ;
since φUx (t) = 0 for x ∈ U , there exists an open neighborhood U(x) of x such
that φUU(x)(t) = 0, by the definition of an inductive limit. The sets U(x) form
therefore an open covering of U satisfying the condition stated above.

Proposition 2. Let U be an open subset of X, and let ι : FV → Γ(V,F )
be injective for all open V ⊂ U . Then ι : FU → Γ(U,F ) is surjective1 (and
therefore bijective) if and only if the following condition is satisfied:

For all open coverings {Ui} of U , and all systems {ti}, ti ∈ FUi such that

φUiUi∩Uj (ti) = φ
Uj
Ui∩Uj (tj) for all pairs (i, j), there exists a t ∈ FU with φUUi(t) = ti

for all i.

The condition is necessary: every ti defines a section si = ι(ti) over Ui, and
we have si = sj over Ui ∩Uj ; so there exists a section s over U which coincides
with si over Ui for all i; if ι : FU → Γ(U,F ) is surjective, there exists t ∈ FU

1Recall (cf. [1]) that a function f : E → E′ is injective if f(e1) = f(e2) implies e1 = e2,
surjective if f(E) = E′, bijective when it is both injective and surjective. An injective (resp.
surjective, bijective) mapping is called an injection (resp. a surjection, a bijection).
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§1. Operations on sheaves I

such that ι(t) = s. If we put t′i = φUUi(t), the section defined by t′i over Ui does
not differ from si; since ι(ti − t′i) = 0, which implies ti = t′i for ι was supposed
injective.

The condition is sufficient: if s is a section of F over U , there exists an
open covering {Ui} of U and elements ti ∈ FUi such that ι(ti) coincides with

the restriction of s to Ui; it follows that the elements φUiUi∩Uj (ti) and φ
Uj
Ui∩Uj (tj)

define the same section over Ui ∩Uj , so, by the assumption made on ι, they are
equal. If t ∈ FU satisfies φUUi(t) = ti, ι(t) coincides with s over each Ui, so also
over S, q.e.d.

Proposition 3. If F is a sheaf of abelian groups on X, the sheaf defined
by the system (Γ(U,F ), ρVU ) is canonically isomorphic with F .

This is an immediate result of properties of sections stated in n◦ 2.

Proposition 3 shows that every sheaf can be defined by an appropriate system
(FU , φ

V
U ). We will see that different systems can define the same sheaf F ;

however, if we impose on (FU , φ
V
U ) the conditions of Propositions 1 and 2, we

shall have only one (up to isomorphism) possible system: the one given by
(Γ(U,F ), ρVU ).

Example. Let G be an abelian group and denote by FU the set of functions
on U with values in G; define φVU : FV → FU by restriction of such functions.
We thus obtain a system (FU , φ

V
U ), and hence a sheaf F , called the sheaf of

germs of functions with values in G. One checks immediately that the system
(FU , φ

V
U ) satisfies the conditions of Propositions 1 and 2; we thus can identify

sections of F over an open U with the elements of FU .

4 Glueing sheaves

Let F be a sheaf on X, and let U be a subset of X; the set π−1(U) ⊂ F , with
the topology induced from F , forms a sheaf over U , called a sheaf induced by
F on U , end denoted by F (U) (or just F , when it does not cause confusion).

We see that conversely, we can define a sheaf on X by means of sheaves on
open subsets covering X:

Proposition 4. Let U = {Ui}i∈I be an open covering of X and, for all
i ∈ I, let Fi be a sheaf over Ui; for all pairs (i, j) let θij be an isomorphism
from Fj(Ui ∩ Uj) to Fi(Ui ∩ Uj); suppose that we have θij ◦ θjk = θik at each
point of Ui ∩ Uj ∩ Uk for all triples (i, j, k).

Then there exists a sheaf F and for all i an isomorphism ηi from F (Ui) to
Fi, such that θij = ηi ◦ η−1j at each point of Ui ∩ Uj. Moreover, F and ηi are
determined up to isomorphism by the preceding conditions.

The uniqueness of {F , ηi} is evident; for the proof of existence, we could
define F as a quotient space of the sum of Fi, but we will rather use the methods
of n◦ 3: if U is an open subset of X, let FU be the group whose elements are

10



§1. Operations on sheaves I

systems {sk}k∈I with sk ∈ Γ(U ∩ Uk,Fk) and sk = θkj(sj) on U ∩ Uj ∩ Uk ;
if U ⊂ V , we define φVU in an obvious way. The sheaf defined by the system
(FU , φ

V
U ) is the sheaf F we look for; moreover, if U ∈ Ui, the mapping sending

a system {sk} ∈ FU to the element si ∈ Γ(Ui,Fi) is an isomorphism from FU

to Γ(U,Fi), because of the transitivity condition; we so obtain an isomorphism
ηi : F (Ui)→ Fi, which obviously satisfies the stated condition.

We say that the sheaf F is obtained by glueing the sheaves Fi by means of
the isomorphisms θij .

5 Extension and restriction of a sheaf

Let X be a topological space, Y its closed subspace and F a sheaf on X. We
say that F is concentrated on Y , or that it is zero outside of Y if we have
Fx = 0 for all x ∈ X − Y .

Proposition 5. If a sheaf F is concentrated on Y , the homomorphism

ρXY : Γ(X,F )→ Γ(Y,F (Y ))

is bijective.

If a section of F over X is zero over Y , it is zero everywhere since Fx = 0 if
x /∈ Y , which shows that ρXY is injective. Conversely, let s be a section of F (Y )
over Y , and extend s onto X by putting s(x) = 0 for x /∈ Y ; the mapping
x 7→ s(x) is obviously continuous on X − Y ; on the other hand, if x ∈ Y , there
exists a section s′ of F over an open neighborhood U of x for which s′(x) = s(x);
since s is continuous on Y by assumption, there exists an open neighborhood V
of x, contained in U and such that s′(y) = s(y) for all y ∈ V ∩ Y ; since Fy = 0
if y /∈ Y , we also have that s′(y) = s(y) for y ∈ V − (V ∩ Y ); hence s and s′

coincide on V , which proves that s is continuous in a neighborhood of Y , so it is
continuous everywhere. This shows that ρXY is surjective, which ends the proof.

We shall now prove that the sheaf F (Y ) determines the sheaf F uniquely:

Proposition 6. Let Y be a closed subspace of X, and let G be a sheaf on Y .
Put Fx = Gx if x ∈ Y , Fx = 0 if x /∈ Y , and let F be the sum of the sets Fx.
Then F admits a unique structure of a sheaf over X such that F (Y ) = G .

Let U be an open subset of X; if s is a section of G on U ∩ Y , extend s by
0 on U − (U ∩ Y ); when s runs over Γ(U ∩ Y,G ), we obtain this way a group
FU of mappings from U to F . Proposition 5 then shows that if F is equipped
a structure of a sheaf such that F (Y ) = G , we have FU = Γ(U,F ), which
proves the uniqueness of the structure in question. The existence is proved
using the methods of n◦ 3 applied to FU and the restriction homomorphisms
φVU : FU → FV .

We say that a sheaf F is obtained by extension of the sheaf G by 0 outside
Y ; we denote this sheaf by GX , or simply G if it does not cause confusion.

11



§1. Operations on sheaves I

6 Sheaves of rings and sheaves of modules

The notion of a sheaf defined in n◦ 1 is that of a sheaf of abelian groups. It
is clear that there exist analogous definitions for all algebraic structures (we
could even define ”sheaves of rings”, where Fx would not admit an algebraic
structure, and we only require axiom (I)). From now on, we will encounter
mainly sheaves of rings and sheaves of modules:

A sheaf of rings A is a sheaf of abelian groups Ax, x ∈ X, where each Ax

has a structure of a ring such that the mapping (f, g) 7→ f · g is a continuous
mapping from A + A to A (the notation being that of n◦ 1). We shall always
assume that Ax has a unity element, varying continuously with x.

If A is a sheaf of rings satisfying the preceding condition, Γ(U,A ) is a ring
with unity, and ρVU : Γ(V,A )→ Γ(U,A ) is a homomorphism of rings preserving
unity if U ⊂ V . Conversely, given rings AU with unity and homomorphisms
φVU : AV → AU preserving unity and satisfying φVU ◦ φWV = φWU , the sheaf A
defined by the system (AU , φ

V
U ) is a sheaf of rings. For example, if G is a ring

with unity, the ring of germs of functions with values in G (defined in n◦ 3) is
a sheaf of rings.

Let A be a sheaf of rings. A sheaf F is called a sheaf of A -modules if every
Fx carries a structure of a left unitary2 Ax-module, varying ”continuously”
with x, in the following sense: if A + F is the subspace of A ×F consisting
of the pairs (a, f) with π(a) = π(f), the mapping (a, f) 7→ a · f is a continuous
mapping from A + F to F .

If F is a sheaf of A -modules, Γ(U,F ) is a unitary module over Γ(U,A ).
Conversely, if A is defined by the system (AU , φ

V
U ) as above, and let F be a

sheaf defined by the system (F , ψVU ), where every FU is a unitary AU -module,
with ψVU (a · f) = φVU (a) · ψVU (f); then F is a sheaf of A -modules.

Every sheaf of abelian groups can be considered a sheaf of Z-modules, Z
being the constant sheaf isomorphic to the ring of integers. This will allow us
to narrow our study to sheaves of modules from now on.

7 Subsheaf and quotient sheaf

Let A be a sheaf of rings, F a sheaf of A -modules. For all x ∈ X, let Gx be a
subset of Fx. We say that G =

⋃
Gx is a subsheaf of F if:

(a) Gx is a sub-Ax-module of Fx for all x ∈ X,

(b) G is an open subset of F .

Condition (b) can be also expressed as:

(b’) If x is a point of X, and if s is a section of F over a neighborhood of
x such that s(x) ∈ Gx, we have s(y) ∈ Gy for all y close enough to x.

2i.e. with the unity acting as identity
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§1. Operations on sheaves I

It is clear that, if these conditions are satisfied, G is a sheaf of A -modules.

Let G be a subsheaf of F and put Kx = Fx/Gx for all x ∈ X. Give
K =

⋃
Kx the quotient topology of F ; we see easily that we also obtain

a sheaf of A -modules, called the quotient sheaf of F by G , and denoted by
F/G . We can give another definition, using the methods of n◦ 3: if U is an
open subset of X, set KU = Γ(U,F )/Γ(U,G ) and let φVU a homomorphism
obtained by passing to the quotient with ρVU : Γ(V,F ) → Γ(U,F ); the sheaf
defined by the system (KU , φ

V
U ) coincides with K .

The second definition of K shows that, if s is a section of K over a neigh-
borhood of x, there exists a section t of F over a neighborhood of x such that
the class of t(y) mod Gy is equal to s(y) for all y close enough to x. Of course,
this does not hold globally in general: if U is an open subset of X we only have
an exact sequence

0→ Γ(U,G )→ Γ(U,F )→ Γ(U,K ),

the homomorphism Γ(U,F )→ Γ(U,K ) not being surjective in general (cf. n◦

24).

8 Homomorphisms

Let A be a sheaf of rings, F and G two sheaves of A -modules. An A -
homomorphism (or an A -linear homomorphism, or simply a homomorphism)
from F to G is given by, for all x ∈ X, an Ax-homomorphism φx : Fx → Gx,
such that the mapping φ : F → G defined by the φx is continuous. This
condition can also be expressed by saying that, if s is a section of F over U ,
x 7→ φx(s(x)) is a section of G over U (we denote this section by φ(s), or φ ◦ s).
For example, if G is a subsheaf of F , the injection G → F and the projection
F → F/G both are homomorphisms.

Proposition 7. Let φ be a homomorphisms from F to G . For all x ∈ X,
let Nx be the kernel of φx and let Ix be the image of φx. Then N =

⋃
Nx is

a subsheaf of F , I =
⋃

Ix is a subsheaf of G and φ defines an isomorphism
of F/N and I .

Since φx is an Ax-homomorphism, Nx and Ix are submodules of F and
G respectively, and φx defines an isomorphism of Fx/Nx with Ix. If on the
other hand s is a local section of F , such that s(x) ∈ Nx, we have φ ◦ s(x) = 0,
hence φ ◦ s(y) = 0 for y close enough to x, so s(y) ∈ Ny, which shows that
N is a subsheaf of F . If t is a local section of G , such that t(x) ∈ Ix, there
exists a local section s ∈ F , such that φ ◦ s(x) = t(x), hence φ ◦ s = t in the
neighborhood of x, showing that I is a subsheaf of G , isomorphic with F/N .

The sheaf N is called the kernel of φ and denoted by Ker(φ); the sheaf I
is called the image of φ and denoted by Im(φ); the sheaf G /I is called the
cokernel of φ and denoted by Coker(φ). A homomorphism φ is called injective,

13
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or one-to-one, if each φx is injective, or equivalently if Ker(φ) = 0; it is called
surjective if each φx is surjective, or equivalently if Coker(φ) = 0; it is called
bijective if it is both injective and surjective, and Proposition 7 shows that it
is an isomorphism of F and G and that φ−1 is a homomorphism. All the
definitions related to homomorphisms of modules translate naturally to sheaves
of modules; for example, a sequence of homomorphisms is called exact if the
image of each homomorphisms coincides with the kernel of the homomorphism
following it. If φ : F → G is a homomorphism, the sequences:

0→ Ker(φ)→ F → Im(φ)→ 0

0→ Im(φ)→ G → Coker(φ)→ 0

are exact.

If φ is a homomorphism from F to G , the mapping s 7→ φ ◦ s is a Γ(U,A )-
homomorphism from Γ(U,F ) to Γ(U,G ). Conversely, if A , F , G are defined by
the systems (AU , φ

V
U ), (FU , ψ

V
U ), (GU , χVU ) as in n◦ 6, and take for every open

U ⊂ X an AU -homomorphism φU : FU → GU such that χVU ◦ φV = φU ◦ ψVU ;
by passing to the inductive limit, the φU define a homomorphism φ : F → G .

9 The direct sum of two sheaves

Let A be a sheaf of rings, F and G two sheaves of A -modules; for all x ∈ X,
form the module Fx⊕Gx, the direct sum of Fx and GX ; an element of Fx⊕Gx
is a pair (f, g) with f ∈ Fx and g ∈ Gx. Let K be the sum of the sets Fx⊕Gx
for x ∈ X ; we can identify K with the subset of F × G consisting of the pairs
(f, g) with π(f) = π(g). We give K the topology induced from F × G and
verify immediately that K is a sheaf of A -modules; we call this sheaf the direct
sum of F and G , and denote it by F ⊕ G . A section of F ⊕ G is of the form
x 7→ (s(x), t(x)), where s and t are sections of F and G over U ; in other words,
Γ(U,F ⊕ G ) is isomorphic to the direct sum Γ(U,F )⊕ Γ(U,G ).

The definition of the direct sum extends by recurrence to a finite number of
A -modules. In particular, a direct sum of p sheaves isomorphic to one sheaf F
is denoted by F p.

10 The tensor product of two sheaves

Let A be a sheaf of rings, F a sheaf right of A -modules, G a sheaf of left
A -modules. For all x ∈ X we set Kx = Fx ⊗ Gx, the tensor product being
taken over the ring Ax (cf. for example [6], Chapter II, §2); let K be the sum
of the sets Kx.

Proposition 8. There exists a structure of a sheaf on K , unique with the
property that if s and t are sections of F and G over an open subset U , the
mapping x 7→ s(x)⊗ t(x) ∈ Kx gives a section of K over U .

14
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The sheaf K thus defined is called the tensor product (over A ) of F and
G , and denoted by F ⊗A G ; if the rings Ax are commutative, it is a sheaf of
A -modules.

If K has a structure of a sheaf satisfying the above condition, and if fi and gi
are sections of F and G over an open U ⊂ X, the mapping x 7→

∑
si(x)⊗ ti(x)

is a section of K on U . In fact, all h ∈ Kx can be expressed in the form
h =

∑
fi ⊗ gi, fi ∈ FX , gi ∈ Gx, therefore also the form

∑
si(x)⊗ ti(x), where

si and ti are defined in an open neighborhood U of x; in result, every section of
K can be locally expressed in the preceding form, which shows the uniqueness
of the structure of a sheaf on K .

Now we show the existence. We might assume that A , F , G are defined by
the systems (AU , φ

V
U ), (FU , ψ

V
U ), (GU , χVU ) as in n◦ 6. Now set KU = FU ⊗GU ,

the tensor product being taken over AU ; the homomorphisms ψVU and χVU define,
by passing to the tensor product, a homomorphism ηVU : KV → KU ; besides,
we have limx∈U KU = limx∈U FU ⊗ limx∈U GU = Kx, the tensor product being
taken over Ax (for the commutativity of the tensor product with inductive
limits, see for example [6], Chapter VI, Exercise 18). The sheaf defined by the
system (KU , η

V
U ) can be identified with K , and K is thus given a structure

of a sheaf obviously satisfying the imposed condition. Finally, if the Ax are
commutative, we can suppose that the AU are also commutative (it suffices to
take for AU the ring Γ(U,A )), so KU is a AU -module, and K is a sheaf of
A −modules.

Now let φ be an A -homomorphism from F to F ′ and let ψ be an A -
homomorphism form G to G ′; in that case φx⊗ψx is a homomorphism (of abelian
groups in general – of Ax-modules, if Ax is commutative) and the definition of
F ⊗A G shows that the collection of φx⊗ψx is a homomorphism from F ⊗A G
to F ′ ⊗A G ′; this homomorphism is denoted by φ⊗ ψ; if ψ is the identity, we
write φ instead of φ⊗ 1.

All of the usual properties of the tensor product of two modules translate to
the tensor product of two sheaves of modules. For example, all exact sequences:

F → F ′ → F ′′ → 0

give rise to an exact sequence:

F ⊗A G → F ′ ⊗A G → F ′′ ⊗A G → 0.

We have the canonical isomorphisms:

F ⊗A (G1 ⊕ G2) ≈ F ⊗A G1 ⊕F ⊗A G2, F ⊗A A ≈ F ,

and (supposing that Ax are commutative, to simplify the notation):

F ⊗A G ≈ G ⊗A F , F ⊗A (G ⊗A K ) ≈ (F ⊗A G )⊗A K .

15
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11 The sheaf of germs of homomorphisms from one sheaf
to another

Let A be a sheaf of rings, F and G two sheaves of A -modules. If U is an open
subset of X, let KU be the group of homomorphisms from F (U) to G (U) (we
also write ”homomorphism from F to G over U” in place of ”homomorphism
from F (U) to G (U)”). The operation of restricting a homomorphism defines
φVU : KV → KU ; the sheaf defined by (KU , φ

V
U ) is called the sheaf of germs

of homomorphisms from F to G and denoted by HomA (F ,G ). If Ax are
commutative, HomA (F ,G ) is a sheaf of A -modules.

An element of HomA (F ,G ), being a germ of a homomorphism from F to
G in a neighborhood of x, defines an Ax-homomorphism from Fx to Gx ; hence
a canonical homomorphism

ρ : HomA (F ,G )x → HomAx(Fx,Gx).

But, contrary to what happened with the operations studied up to now, the
homomorphism ρ is not a bijection in general ; we will give in n◦ 14 a sufficient
condition for that.

If φ : F ′ → F and ψ : G → G ′ are homomorphisms, we define in an obvious
way a homomorphism

HomA (φ, ψ) : HomA (F ,G )→ HomA (F ′,G ′).

Every exact sequence 0→ G → G ′ → G ′′ gives rise to an exact sequence:

0→ HomA (F ,G )→ HomA (F ,G ′)→ HomA (F ,G ′′).

We also have the canonical isomorphisms: HomA (A ,G ) ≈ G ,

HomA (F ,G1 ⊕ G2) ≈ HomA (F ,G1)⊕HomA (F ,G2)

HomA (F1 ⊕F2,G ) ≈ HomA (F1,G )⊕HomA (F2,G ).
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§2 Coherent sheaves of modules

In this paragraph, X denotes a topological space and A a sheaf of rings on X.
We suppose that all the rings Ax, x ∈ X are commutative and have a unity
element varying continuously with x. All sheaves considered until n◦ 16 are
sheaves of A -modules and all homomorphisms are A -homomorphisms.

12 Definitions

Let F be a sheaf of A -modules, and let s1, . . . , sp be sections of F over an
open U ⊂ X. If we assign to any family f1, . . . , fp of elements of Ax the element∑i=p
i=1 fi · si(x) of Fx, we obtain a homomorphism φ : A p → F , defined over an

open subset U (being precise, φ is a homomorphism from A p(U) to F (U), with
the notations from n◦ 4). The kernel R(s1, . . . , sp) of the homomorphism φ is
a subsheaf of A p, called the sheaf of relations between the si; the image of φ is
a subsheaf of F generated by si. Conversely, any homomorphism φ : A p → F
defines the sections s1, . . . , sp by the formulas

s1(x) = φx(1, 0, . . . , 0), . . . , sp(x) = φx(0, . . . , 0, 1).

Definition 1. A sheaf of A -modules F is said to be of finite type if it is
locally generated by a finite number of its sections.

In another words, for every point x ∈ X, there exists an open neighborhood
U of x and a finite number of sections s1, . . . , sp of F over U such that every
element of Fy, y ∈ U is a linear combination, with coefficients in Ay, of si(y).
According to the preceding statements, it is another way of saying that the
restriction of F to U is isomorphic to a quotient sheaf of A p.

Proposition 1. Let F be a sheaf of finite type. If s1, . . . , sp are sections of
F , defined over a neighborhood of a point x ∈ X and generating Fx, then they
also generate Fy for all y close enough to x.

Because F is of finite type, there is a finite number of sections of F in a
neighborhood of x, say t1, . . . , tq, which generate Fy for y close enough to x.
Since sj(x) generate Fx, there exist sections fij of A in a neighborhood of x

such that ti(x) =
∑j=p
j=1 fij(x) · sj(x); it follows that, for y close enough to x,

we have:

ti(y) =

j=p∑
j=1

fij(y) · sj(y),

which implies that sj(y) generate Fy, q.e.d.

Definition 2. A sheaf of A -modules F is said to be coherent if:
(a) F is of finite type,
(b) If s1, . . . , sp are sections of F over an open U ⊂ X, the sheaf of relations

between the si is of finite type (over the open set U).
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We will observe the local character of definitions 1 and 2.

Proposition 2. Locally, every coherent sheaf is isomorphic to the cokernel
of a homomorphism φ : A q → A p.

This is an immediate result of the definitions and the remarks preceding
definition 1.

Proposition 3. Any subsheaf of finite type of a coherent sheaf is coherent.

Indeed, if a sheaf F satisfies condition (b) of definition 2, then any subsheaf
of F satisfies it also.

13 Main properties of coherent sheaves

Theorem 1. Let 0 → F
α−→ G

β−→ K → 0 be an exact sequence of homomor-
phisms. If two of the sheaves F , G , K are coherent, so is the third.

Suppose that G and K are coherent. Locally, there exists a homomorphism
γ : A p → G ; let I the kernel of β ◦ γ; since K is coherent, I is a sheaf of
finite type (condition (b)); thus γ(I ) is a sheaf of finite type, thus coherent by
Proposition 3; since α is an isomorphism from F to γ(I ), it follows that F is
also coherent.

Suppose that F and G are coherent. Because G is of finite type, K is also of
finite type, so it remains to prove that K satisfies the condition (b) of definition
2. Let s1, . . . , sp be a finite number of sections of K in a neighborhood of a
point x ∈ X. The question being local, we can assume that there exist sections
s′1, . . . , s

′
p of G such that si = β(s′i). Let n1, . . . , nq be a finite number of sections

of F in a neighborhood of x, generating Fy for y close enough to x. A family
f1, . . . , fp of elements of Ay belongs to R(s1, . . . , sp)y if and only if one can find
g1, . . . , gq ∈ Ay such that

i=p∑
i=1

fi · s′i =

j=q∑
j=1

gj · α(nj) in y.

Now the sheaf of relations between the s′i and the α(nj) is of finite type, because
G is coherent. The sheaf R(s1, . . . , sp), the image of the preceding by the
canonical projection from A p+q to A p is thus of finite type, which shows that
K is coherent.

Suppose that F and K are coherent. The question being local, we might
assume that F (resp. K ) is generated by a finite number of sections n1, . . . , nq
(resp. s1, . . . , sp); furthermore we might assume that there exist sections s′i of G
such that si = β(s′i). It is clear that the sections s′i and α(nj) generate G , which
proves that G is a sheaf of finite type. Now let t1, . . . , tr be a finite number of
sections of G in a neighborhood of a point x; since K is coherent, there exist
sections f ij or A r (1 ≤ i ≤ r, 1 ≤ j ≤ s), defined in the neighborhood of x,
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which generate the sheaf of relations between the β(ti). Put uj =
∑i=r
i=1 f

i
j · ti;

since
∑i=r
i=1 f

i
j ·β(ti) = 0, the uj are contained in α(F ) and, since F is coherent,

the sheaf of relations between the uj is generated, in a neighborhood of x, by

a finite number of sections, say gjk (1 ≤ j ≤ s, 1 ≤ k ≤ t). I say that the∑j=s
j=1 g

j
k · f ij generate the sheaf R(t1, . . . , tr) in a neighborhood of x; indeed,

if
∑i=r
i=1 fi · ti = 0 on y, with fi ∈ Ay, we have

∑i=r
i=1 fi · β(ti) = 0 and there

exist gj ∈ Ay with fi =
∑j=s
j=1 gjf

i
j ; noting that

∑i=r
i=1 fi · ti = 0, one obtains∑j=s

j=1 gj ·uj = 0, thus making the system gj a linear combination of the systems

gjk and showing our assertion. It follows that G satisfies condition (b), which
ends the proof.

Corollary. A direct sum of a finite family of coherent sheaves is coherent.

Theorem 2. Let φ be a homomorphism from a coherent sheaf F to a
coherent sheaf G . The kernel, the cokernel and the image of φ are also coherent
sheaves.

Because F is coherent, =(φ) is of finite type, thus coherent by Proposition
3. We apply Theorem 1 to the exact sequences

0→ Ker(φ)→ F → Im(φ)→ 0

0→ Im(φ)→ G → Coker(φ)→ 0

seeing that Ker(φ) and Coker(φ) are also coherent.

Corollary. Let F and G be two coherent subsheaves of a coherent sheaf K .
The sheaves F + G and F ∩ G are coherent.

For F +G , this follows from Proposition 3; and for F ∩G , this is the kernel
of F → K /G .

14 Operations on coherent sheaves

We have just seen that a direct sum of a finite number coherent sheaves is a
coherent sheaf. We will now show analogous results for the functors ⊗ and Hom.

Proposition 4. If F and G are two coherent sheaves, F⊗A G is a coherent
sheaf.

By Proposition 2, F is locally isomorphic to the cokernel of a homomorphism
φ : A q → A p; thus F ⊗A G is locally isomorphic to the cokernel of φ :
A q⊗A G → A p⊗A G . But A q⊗A G and A p⊗A G are isomorphic to G q and
G p respectively, which are coherent (Corollary of Theorem 1). Thus F ⊗A G
is coherent (Theorem 2).

Proposition 5. Let F and G be two sheaves, F being coherent. For all
x ∈ X, the module HomA (F ,G )x is isomorphic to HomAx(Fx,Gx).
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Precisely, we prove that the homomorphism

ρ : HomA (F ,G )x → HomA (F ,G )x,

defined in n◦ 11, is bijective. First of all, let ψ : F → G be a homomorphism
defined in a neighborhood of x, being zero in Fx; since F is of finite type, we
conclude immediately that ψ is zero in a neighborhood of x, which proves that
ρ is injective. We will show that ρ is surjective, or in other words, that if φ is a
Ax-homomorphism from Fx to Gx, there exists a homomorphism ψ : F → G ,
defined in a neighborhood of x and such that ψx = φ. Let m1, . . . ,mp be a finite
number of sections of F in a neighborhood of x, generating Fy for all y close
enough to x, and let f ij (1 ≤ i ≤ p, 1 ≤ j ≤ q) be sections of A p generating
R(m1, . . . ,mp) in a neighborhood of x. There exist local sections of G , say

n1, . . . , np, such that ni(x) = φ(mi(x)). Put pj =
∑i=p
i=1 f

i
j · ni, 1 ≤ j ≤ q; the

pj are local sections of G being zero in x, so in every point of a neighborhood
U of x. It follows that for y ∈ U , the formula

∑
fi ·mi(y) = 0 with fi ∈ Ay,

implies
∑
fi · ni(y) = 0; for any element m =

∑
fi ·mi(y) ∈ Fy, we thus can

put:

ψy(m) =

i=p∑
i=1

fi · ni(y) ∈ Gy.

The collection of ψy, y ∈ U constitutes a homomorphism ψ : F → G , defined
over U and such that ψx = φ, which ends the proof.

Proposition 6. If F and G are two coherent sheaves, then HomA (F ,G )
is a coherent sheaf.

The question being local, we might assume, by Proposition 2, that we have
an exact sequence A q → A p → F → 0. From the preceding Proposition it
follows that the sequence:

0→ HomA (F ,G )→ HomA (A p,G )→ HomA (A q,G )

is exact. Now the sheaf HomA (A p,G ) is isomorphic to G p, thus is coherent, the
same for HomA (A q,G ). Theorem 2 then shows that HomA (F ,G ) is coherent.

15 Coherent sheaves of rings

A sheaf of rings A can be regarded as a sheaf of A -modules; if this sheaf of
A -modules is coherent, we say that A is a coherent sheaf of rings. Since A is
clearly of finite type, this means that A satisfies condition (b) of Proposition
2. In other words:

Definition 3. A sheaf A is a coherent sheaf of rings if the sheaf of relations
between a finite number of sections of A over an open subset U is a sheaf of
finite type on U .
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Examples. (1) If X is a complex analytic variety, the sheaf of germs of
holomorphic functions on X is a coherent sheaf of rings, by a theorem of K. Oka
(cf. [3], statement XV, or [5], §5).

(2) If X is an algebraic variety, the sheaf of local rings of X is a coherent
sheaf of rings (cf. n◦ 37, Proposition 1).

When A is a coherent sheaf of rings, we have the following results:

Proposition 7. For a sheaf of A -modules, being coherent is equivalent to
being locally isomorphic to the cokernel of a homomorphism φ : A q → A p.

The necessity part is Proposition 2; the sufficiency follows from the coherence
of A p and A q and from Theorem 2.

Proposition 8. A subsheaf of A is coherent if and only if it is of finite
type.

This is a special case of Proposition 3.

Corollary. The sheaf of relations between a finite number of sections of a
coherent sheaf is coherent.

In fact, this sheaf is of finite type, from the definition of a coherent sheaf.

Proposition 9. Let F be a coherent sheaf of A -modules. For all x ∈ X,
let Ix be an ideal of Ax consisting of those a ∈ Ax for which a · f = 0 for all
f ∈ Fx. Then the Ix form a coherent sheaf of ideals (called the annihilator of
F ).

In fact, Ix is the kernel of the homomorphism Ax → HomAx(Fx,Gx); we
then apply Propositions 5 and 6 and Theorem 2.

More generally, the conductor F : G of a coherent sheaf G into its coherent
subsheaf F is a coherent sheaf of ideals (being the annihilator of G /F ).

16 Change of ring

The notions of a sheaf of finite type, and of a coherent sheaf, are dependent on
the fixed sheaf of rings A . When we will consider multiple sheaves of rings,
we will say ”of finite type over A ”, ”A -coherent” to point out that we mean
sheaves of A -modules.

Theorem 3. Let A be a coherent sheaf of rings, I a coherent sheaf of
ideals of A . Let F be a sheaf of A /I -modules. Then F is A /I -coherent if
and only if it is A -coherent. In particular, A /I is a coherent sheaf of rings.

It is clear that ”of finite type over A ” is the same as ”of finite type over
A /I ”. For the other part, if F is A -coherent, and if s1, . . . , sp are sections
of F over an open U , the sheaf of relations between the si with coefficients in
A , is of finite type over A . It follows immediately that the sheaf of relations
between the si with coefficients in A /I , is of finite type over A /I , since it
is the image of the preceding by the canonical mapping A p → (A /I )p. Thus
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F is A /I -coherent. In particular, since A /I is A -coherent, it is also A /I -
coherent, in other words, A /I is a coherent sheaf of rings. Conversely, if F
is A /I -coherent, it is locally isomorphic to the cokernel of a homomorphism
φ : (A /I )q → (A /I )p and since A /I is A -coherent, F is coherent by
Theorem 2.

17 Extension and restriction of a coherent sheaf

Let Y be a closed subspace of a space X. If G is a sheaf over Y , we denote by
GX the a sheaf obtained by extending G by 0 outside Y ; it is a sheaf over X
(cf. n◦ 5). If A is a sheaf of rings over Y , A X is a sheaf of rings over X, and
if F is a sheaf of A -modules, then FX is a sheaf of A X -modules.

Proposition 10. F is of finite type over A if and only if FX is of finite
type over A X .

Let U be an open subset of X, and let V = U ∩ Y . Any homomorphism
φ : A p → F over V defines a homomorphism φX : (A X)p → FX over U ,
and conversely; so φ is surjective if and only if φX is. The proposition follows
immediately from this.

We therefore show:

Proposition 11. F is A -coherent if and only if FX is A X-coherent.

Hence, by putting F = A :

Corollary. A is a coherent sheaf of rings if and only if A X is a coherent
sheaf of rings.
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§3 Cohomology of a space with values in a
sheaf

In this paragraph, X is a topological space, separated or not. By a covering of
X we will always mean an open covering.

18 Cochains of a covering

Let U = {Ui}i∈I be a covering of X. If s = (i0, . . . , ip) is a finite sequence of
elements of I, we put

Us = Ui0...ip = Ui0 ∩ . . . ∩ Uip .

Let F be a sheaf of abelian groups on the space X. If p is an integer
≥ 0, we call a p-cochain of U with values in F a function f assigning to every
s = (i0, . . . , ip) of p + 1 elements of I a section fs = fi0...ip of F over Ui0...ip .
The p-cochains form an abelian group, denoted by Cp(U,F ); it is the product
group

∏
Γ(Us,F ), the product being over all sequences s of p + 1 elements of

I. The family of Cp(U,F ), p = 0, 1, . . . is denoted by C(U,F ). A p-cochain is
also called a cochain of degree p.

A p-cochain is said to be alternating if:
(a) fi0...ip = 0 whenever any two of the indices i0, . . . , ip are equal,
(b) fiσ0...iσp = εσfi0...ip if σ is a permutation of the set {0, . . . , p} (εσ denotes

the sign of σ).

The alternating cochains form a subgroup C ′p(U,F ) of the group Cp(U,F );
the family of the C ′p(U,F ) is denoted by C ′(U,F ).

19 Simplicial operations

Let S(I) be the simplex with the set I as its set of vertices; an (ordered) simplex
of S(I) is a sequence s = (i0, . . . , ip) of elements of I; p is called the dimension
of s. Let K(I) =

⊕∞
p=0Kp(I) be the complex defined by S(I); by definition,

Kp(I) is a free group with the set of simplexes of dimension p of S(I) as its
base.

If s is a simplex of S(I), we denote by |s| the set of vertices of s.

A mapping h : Kp(I)→ Kq(I) is called a simplicial endomorphism if
(i) h is a homomorphism,
(ii) For any simplex s of dimension p of S(I) we have

h(s) =
∑
s′

cs
′

s · s′, with cs
′

s ∈ Z,
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the sum being over all simplexes s′ of dimension q such that |s′| ⊂ |s|.

Let h be a simplicial endomorphism, and let f ∈ Cq(U,F ) be a cochain of
degree q. For any simplex s of dimension p put:

(thf)s =
∑
s′

cs
′

s · ρs
′

s (fs′),

ρs
′

denoting the restriction homomorphism: Γ(Us′ ,F ) → Γ(Us,F ), which
makes sense because |s′| ⊂ |s|. The mapping s 7→ (thf)s is a p-cochain, de-
noted by thf . The mapping f 7→ thf is a homomorphism

th : Cq(U,F )→ Cp(U,F ),

and one verifies immediately the formulas:

t(h1 + h2) = th1 + th2,
t(h1 ◦ h2) = th2 ◦ th1, t1 = 1.

Note. In practice, we often do not write the restriction homomorphism ρs
′

s .

20 Complexes of cochains

We apply the above to the simplicial endomorphism

∂ : Kp+1(I)→ Kp(I),

defined by the usual formula:

∂(i0, . . . , ip+1) =

j=p+1∑
j=0

(−1)j(i0, . . . , îj , . . . , ip+1),

the signˆmeaning, as always, that the symbol below it should be omitted.

We thus obtain a homomorphism t∂ : Cp(U,F ) → Cp+1(U,F ), which we
denote by d; from definition, we have that

(df)i0...ip+1 =

j=p+1∑
j=0

(−1)jρj(fi0...̂ij ...ip+1
),

where ρj denotes the restriction homomorphism

ρj : Γ(Ui0...̂ij ...ip+1
,F )→ Γ(Ui0...ip+1 ,F ).

Since ∂ ◦ ∂ = 0, we have d ◦ d = 0. Thus we find that C(U,F ) is equipped with
a coboundary operator making it a complex. The q-th cohomology group of the
complex C(U,F ) will be denoted by Hq(U,F ). We have:

Proposition 1. H0(U,F ) = Γ(X,F ).
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A 0-cochain is a system (fi)i∈I with every fi being a section of F over Ui.
It is a cocycle if and only if it satisfies fi − fj = 0 over Ui ∩ Uj , or in other
words, if there is a section f of F on X coinciding with fi on Ui for all i ∈ I.
Hence the Proposition.

(Thus H0(U,F ) is independent of U; of course this is not true for Hq(U,F )
in general).

We see immediately that df is alternating if f is alternating; in other words,
d preserves C ′(U,F ) which forms a subcomplex of C(U,F ). The cohomology
groups of C ′(U,F ) are denoted by H ′q(U,F ).

Proposition 2. The inclusion of C ′(U,F ) in C(U,F ) induces an isomor-
phism of Hq(U,F ) and Hq(U,F ), for every q ≥ 0.

We equip the set I with a structure of a total order, and let h be a simplicial
endomorphism of K(I) defined in the following way:

h((i0, . . . , iq)) = 0 if any two indices i0, . . . , iq are equal,
h((i0, . . . , iq)) = εσ(iσ0 . . . iσq) if all indices i0, . . . , iq are distinct and σ is a

permutation of {0, . . . , q} for which iσ0 < iσ1 < . . . < iσq .

We verify right away that h commutes with ∂ and that h(s) = s if dim(s) = 0;
in result (cf. [7], Chapter VI, §5) there exists a simplicial endomorphism k,
raising the dimension by one, such that 1−h = ∂ ◦ k+ k ◦ ∂. Hence, by passing
to C(U,F ),

1− th = tk ◦ d+ d ◦ tk.

But we check immediately that th is a projection from C(U,F ) onto C ′(U,F );
since the preceding formula shows that it is a homotopy operator, the Proposi-
tion is proved. (Compare with [7], Chapter VI, theorem 6.10).

Corollary. Hq(U,F ) = 0 for q > dim(U).

By the definition of dim(U), we have Ui0...iq = ∅ for q > dim(U), if the indices
i0, . . . , iq are distinct; hence C ′q(U,F ) = 0, which shows that

Hq(U,F ) = H ′q(U,F ) = 0.

21 Passing to a finer covering

A covering U = {Ui}i∈I is said to be finer than the covering V = {Vj}j∈J if there
exists a mapping τ : I → J such that Ui ⊂ Vτi for all i ∈ I. If f ∈ Cq(V,F ),
put

(τf)i0,...,iq = ρVU (fτi0...τiq ),

ρVU denoting the restriction homomorphism defined by the inclusion of Ui0...iq
in Vτi0...τiq . The mapping f 7→ τf is a homomorphism from Cq(V,F ) to
Cq(U,F ), defined for all q ≥ 0 and commuting with d, thus it defines homo-
morphisms

τ∗ : Hq(V,F )→ Hq(U,F ).
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Proposition 3. The homomorphisms τ∗ : Hq(V,F ) → Hq(U,F ) depend
only on U and V and not on the chosen mapping τ .

Let τ and τ ′ be two mappings from I to J such that Ui ⊂ Vτi and Ui ⊂ Vτ ′i
; we have to show that τ∗ = τ ′∗.

Let f ∈ Cq(V,F ); set

(kf)i0...iq−1
=

h=q−1∑
h=0

(−1)hρh(fτi0...τijτ ′ih...τ ′iq−1
),

where ρh denotes the restriction homomorphism defined by the inclusion of
Ui0...iq−1

in Vτi0...τijτ ′ih...τ ′iq−1
.

We verify by direct computation (cf. [7], Chapter VI, §3) that we have

dkf + k df = τ ′f − τf,

which ends the proof of the Proposition.

Thus, if U is finer than V, there exists for every integer q ≥ 0 a canonical ho-
momorphism from Hq(V,F ) to Hq(U,F ). From now on, this homomorphism
will be denoted by σ(U,V).

22 Cohomology groups of X with values in a sheaf F

The relation ”U is finer than V” (which we denote henceforth by U ≺ V)
is a relation of a preorder3 between coverings of X; moreover, this relation
is filtered4, since if U = {Ui}i∈I and V = {Vj}j∈J are two coverings, W =
{Ui ∩ Vj}(i,j)∈I×J is a covering finer than U and than V.

We say that two coverings U and V are equivalent if we have U ≺ V and
V ≺ U. Any covering U is equivalent to a covering U′ whose set of indices is
a subset of P(X); in fact, we can take for U′ the set of open subsets of X
belonging to the family U. We can thus speak of the set of classes of coverings
with respect to this equivalence relation; this is an ordered filtered set. 5

If U ≺ V, we have defined at the end of the preceding n◦ a well defined
homomorphism σ(U,V) : Hq(V,F ) → Hq(U,F ), defined for every integer
q ≥ 0 and every sheaf F on X. It is clear that σ(U,U) is the identity and
that σ(U,V) ◦ σ(V,W) = σ(U,W) if U ≺ V ≺ W. It follows that, if U is
equivalent to V, then σ(U,V) and σ(V,U) are inverse isomorphisms; in other
words, Hq(F ,U) depends only on the class of the covering U.

Definition. We call the q-th cohomology group of X with values in a sheaf
F , and denote by Hq(X,F ), the inductive limit of groups Hq(U,F ), where U

3i.e. quasiorder
4i.e. directed
5To the contrary, we cannot speak about the ”set” of coverings, because a covering is a

family whose set of indices is arbitrary.
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runs over the filtered ordering of classes of coverings of X, with respect to the
homomorphisms σ(U,V).

In other words, an element of Hq(X,F ) is just a pair (U, x) with x ∈
Hq(U,F ), and we identify two such pairs (U, x) and (V, y) whenever there
exists a W with W ≺ U, W ≺ V and σ(W,U)(x) = σ(W,V)(y) in Hq(W,F ).
Any covering U in X is thus associated a canonical homomorphism σ(U) :
Hq(U,F )→ Hq(X,F ).

We will see that Hq(X,F ) can also be defined by an inductive limit of
Hq(U,F ) where U runs over a cofinal family of coverings. Thus, if X is quasi-
compact (resp. quasi-paracompact), we can consider only finite (resp. locally
finite) coverings.

When q = 0, by Proposition 1 we have:

Proposition 4. H0(X,F ) = Γ(X,F ).

23 Homomorphisms of sheaves

Let φ be a homomorphism from a sheaf F to a sheaf G . If U is a covering of X,
we can assign to any f ∈ Cq(U,F ) an element φf ∈ Cq(U,G ) defined by the
formula (φf)s = φ(fs). The mapping f 7→ φf is a homomorphism from C(U,F )
to C(U,G ) commuting with the coboundary, thus it defines homomorphisms
φ∗ : Hq(U,F ) → Hq(U,G ). We have φ∗ ◦ σ(U,V) = σ(U,V) ◦ ψ∗, hence, by
passing to the limit, the homomorphisms

φ∗ : Hq(X,F )→ Hq(X,G ).

When q = 0, φ∗ coincides with the homomorphism from Γ(X,F ) to Γ(X,G )
induced in the natural way by φ.

In general, the homomorphisms φ∗ satisfy usual formal properties:

(φ+ ψ)∗ = φ∗ + ψ∗, (φ ◦ ψ)∗, 1∗ = 1.

In other words, for all q ≥ 0, Hq(X,F ) is a covariant additive functor of
F . Hence we gather that if F is the direct sum of two sheaves G1 and G2, then
Hq(X,F ) is the direct sum of Hq(X,G1) and Hq(X,G2).

Suppose that F is a sheaf of A -modules. Any section of A on X defines
an endomorphism of F , therefore of Hq(X,F ). It follows that Hq(X,F ) are
modules over the ring Γ(X,A ).
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24 Exact sequence of sheaves: the general case

Let 0→ A
α−→ B

β−→ C → 0 be an exact sequence of sheaves. If U is a covering
of X, the sequence

0→ C(U,A )
α−→ C(U,B)

β−→ C(U,C )

is obviously exact, but the homomorphism β need not be surjective in general.
Denote by C0(U,C ) the image of this homomorphism; it is a subcomplex of
C(U,C ) whose cohomology groups will be denoted by Hq

0 (U,C ). The exact
sequence of complexes:

0→ C(U,A )→ C(U,B)→ C0(U,C )→ 0

giving rise to an exact sequence of cohomology:

. . .→ Hq(U,B)→ Hq
0 (U,C )

d−→ Hq+1(U,A )→ Hq+1(U,B)→ . . . ,

where the coboundary operator d is defined as usual.

Now let U = {Ui}i∈I and V = {Vj}j∈J be two coverings and let τ : I → J
be such that Ui ⊂ Vτi ; we thus have U ≺ V. The commutative diagram:

0 C(V,A ) C(V,B) C(V,C )

0 C(U,A ) C(U,B) C(U,C )

τ τ τ

shows that τ maps C0(V,C ) into C0(U,C ), thus defining the homomorphisms
τ∗ : Hq

0 (V,C )→ Hq
0 (U,C ). Moreover, the homomorphisms τ∗ are independent

of the choice of the mapping τ : this follows from the fact that, if f ∈ Cq0(V,C ),
we have kf ∈ Cq−10 (U,C ), with the notations of the proof of Proposition 3. We
have thus obtained canonical homomorphisms σ(U,V) : Hq

0 (V,C )→ Hq
0 (U,C );

we might then define Hq
0 (X,C ) as the inductive limit of the groups Hq

0 (U,C ).

Because an inductive limit of exact sequences is an exact sequence (cf. [7],
Chapter VIII, theorem 5.4), we obtain:

Proposition 5. The sequence

. . .→ Hq(X,B)
β∗−→ Hq

0 (X,C )
d−→ Hq+1(X,A )

α∗−−→ Hq+1(X,B)→ . . .

is exact.

(d denotes the homomorphism obtained by passing to the limit with the
homomorphisms d : Hq

0 (U,C )→ Hq+1(U,A )).

To apply the preceding Proposition, it is convenient to compare the groups
Hq

0 (X,C ) and Hq(X,C ). The inclusion of C0(U,C ) in C(U,C ) defines the
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homomorphisms Hq
0 (U,C ) → Hq(U,C ), hence, by passing to the limit with U,

the homomorphisms:
Hq

0 (X,C )→ Hq(X,C ).

Proposition 6. The canonical homomorphism Hq
0 (X,C ) → Hq(X,C ) is

bijective for q = 0 and injective for q = 1.

We will prove the following lemma:

Lemma 1. Let V = {Vj}j∈J be a covering and let f = (fj) be an element
of C0(V,C ). There exists a covering U = {Ui}i∈I and a mapping τ : I → J
such that Ui ⊂ Vτi and τf ∈ C0

0 (U,C ).

For any x ∈ X, take a τx ∈ J such that x ∈ Vτx. Since fτx is a section of
C over Vτx, there exists an open neighborhood Ux of x, contained in Vτx and
a section bx of B over Ux such that β(bx) = fτx on Ux. The {Ux}x∈X form
a covering U of X, and the bx form a 0-chain b of U with values in V; since
τf = β(b), we have that τf ∈ C0

0 (U,C ).

We will now show that H1
0 (X,C )→ H1(X,C ) is injective. An element of the

kernel of this mapping may be represented by a 1-cocycle z = (zj0j1) ∈ C ′0(V,C )
such that there exists an f = (fj) ∈ C0(V,C ) with df = z; applying Lemma
1 to f yields a covering U such that τf ∈ C0

0 (U,C ), which shows that τz is
cohomologous to 0 in C0(U,C ), thus its image in H1

0 (X,C ) is 0. This shows
that H0

0 (X,C )→ H0(X,C ) is bijective.

Corollary 1. We have an exact sequence:

0→ H0(X,A )→ H0(X,B)→ H0(X,C )→ H1(X,A )→ H1(X,B)→ H1(X,C ).

This is an immediate consequence of Propositions 5 and 6.

Corollary 2. If H1(X,A ) = 0, then Γ(X,B)→ Γ(X,C ) is surjective.

25 Exact sequence of sheaves: the case of X paracompact

Recall that a space X is said to be paracompact if it is separated and if any
covering of X admits a locally finite finer covering. On paracompact spaces,
we can extend Proposition 6 for all values of q (I do not know whether that
extension is possible for nonseparated spaces):

Proposition 7. If X is paracompact, the canonical homomorphism

Hq
0 (X,C )→ Hq(X,C )

is bijective for all q ≥ 0.

This Proposition is an immediate consequence of the following lemma, anal-
ogous to Lemma 1:
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Lemma 2. Let V = {Vj}j∈J be a covering, and let f = (fj0...jq ) be an
element of Cq(V,C ). There exists a covering U = {Ui}i∈I and a mapping
τ : I → J such that Ui ⊂ Vτi and τf ∈ Cq0(U,C ).

Since X is paracompact, we might assume that V is locally finite. Then
there exists a covering {Wj}j∈J such that Wj ⊂ Vj . For every x ∈ X, choose
an open neighborhood Ux of x such that

(a) If x ∈ Vj (resp. x ∈Wj), then Ux ⊂ Vj (resp. Ux ⊂Wj),
(b) If Ux ∩Wj 6= ∅, then Ux ⊂Wj ,
(c) If x ∈ Vj0...jq , there exists a section b of B over Ux such that β(b) = fj0...jq

over Ux.

The condition (c) can be satisfied due to the definition of the quotient sheaf
and to the fact that x belongs to a finite number of sets Vj0...jq . Having (c)
satisfied, it suffices to restrict Ux appropriately to satisfy (a) and (b).

The family {Ux}x∈X forms a covering U; for any x ∈ X, choose τx ∈ J such
that x ∈Wτx. We now check that τf belongs to Cq0(U,C ), in other words, that
fτx0...τxq is the image by β of a section of B over Ux0

∩. . .∩Uxq . If Ux0
∩. . .∩Uxq

is empty, this is obvious; if not, we have Ux0
∩Uxk 6= ∅ for 0 ≤ k ≤ q, and since

Uxk ⊂ Uτxk , we have Ux0 ∩Wτxk 6= ∅, which implies by (b) that Ux0 ⊂ Vτxk ,
hence x0 ∈ Vτx0...τxq ; we then apply (c), seeing that there exists a section b of
B over Ux0

such that β(b)x = fτx0...τxq on Ux0
, so also on Ux0

∩ . . .∩Uxq , which
ends the proof.

Corollary. If X is paracompact, we have an exact sequence:

. . .→ Hq(X,B)
β∗−→ Hq(X,C )

d−→ Hq+1(X,A )
α∗−−→ Hq+1(X,B)→ . . .

(the map d being defined as the composition of the inverse of the isomorphism
Hq

0 (X,C )→ Hq(X,C ) with d : Hq
0 (X,C )→ Hq+1(X,A )).

The exact sequence mentioned above is called the exact sequence of coho-
mology defined by a given exact sequence of sheaves 0 → A → B → C → 0.
More generally, it exists whenever we can show that Hq

0 (X,C ) → Hq(X,C ) is
bijective (we will see in n◦ 47 that this is the case when X is an algebraic variety
and when A is an algebraic coherent sheaf).

26 Cohomology of a closed subspace

Let F be a sheaf over a space X, and let Y be a subspace of Y . Let F (Y ) be
the sheaf induced by F on Y , in the sense of n◦ 4. If U = {Ui}i∈I is a covering
of X, the sets U ′i = Y ∩ Ui form a covering U′ of Y ; if fi0...iQ is a section of F
over Ui0...iq , the restriction of fi0...iq to U ′i0...iq = Y ∩Ui0...iq is a section of F (Y ).

The operation of restriction is a homomorphism ρ : C(U,F ) → C(U′,F (Y )),
commuting with d, thus defining ρ∗ : Hq(U,F ) → Hq(U′,F (Y )). If U ≺ V,
we have U′ ≺ V′, and ρ∗ ◦ σ(U,V) = σ(U′,V′) ◦ ρ∗; thus the homomorphisms
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ρ∗ define, by passing to the limit with U, homomorphisms ρ∗ : Hq(X,F ) →
Hq(Y,F (Y )).

Proposition 8. Assume that Y is closed in X and that F is zero outside
Y . Then ρ∗ : Hq(X,F )→ Hq(Y,F (Y )) is bijective for all q ≥ 0.

The Proposition is implied by the following facts:
(a) Any covering W = {Wi}i∈I of Y is of the form U′ for some covering U of

X.
Indeed, it suffices to put Ui = Wi ∪ (X − Y ), since Y is closed in X.
(b) For any covering U of X, ρ : C(U,F ) → C(U′,F (Y )) is bijective.

Indeed, the result follows from Proposition 5 of n◦ 5, applied to Ui0...iq and the
sheaf F .

We can also express Proposition 8 in the following manner: If G is a sheaf
on Y , and if GX is the sheaf obtained by extending G by 0 outside Y , we have
Hq(Y,G ) = Hq(X,GX) for all q ≥ 0; in other words, the identification of G
with GX is compatible with passing to cohomology groups.
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§4 Comparison of cohomology groups of
different coverings

In this paragraph, X denotes a topological space and F is a sheaf onX. We pose
conditions on a covering U of X, under which we have Hn(U,F ) = Hn(X,F )
for all n ≥ 0.

27 Double complexes

A double complex (cf. [6], Chapter VI, §4) is a bigraded abelian group

K =
⊕
p,q

Kp,q, p ≥ 0, q ≥ 0,

equipped with two endomorphisms d′ and d′′ satisfying the following properties:
— d′ maps Kp,q to Kp+1,q and d′′ maps Kp,q to Kp,q+1,
— d′ ◦ d′ = 0, d′ ◦ d′′ + d′′ ◦ d′ = 0, d′′ ◦ d′′ = 0.

An element of Kp,q is said to be bihomogenous of bidegree (p, q), and of
total degree p + q. The endomorphism d = d′ + d′′ satisfies d ◦ d = 0, and the
cohomology groups of K with respect to this coboundary operator are denoted
by Hn(K), where n means the total degree.

We can treat d′ as a coboundary operator on K; since d′ is compatible with
the bigrading of K, we also obtain cohomology groups, denoted by Hp,q

I (K); for
d′′, we have the groups Hp,q

II (K).

We denote by Kq
II the subgroup of K0,q consisting of elements x such that

d′(x) = 0, and by KII the direct sum of Kq
II (q = 0, 1, . . .). We have an

analogous definition of KI =
⊕∞

p=0K
p
I . We note that

Kq
II = H0,q

I (K) and Kp
I = Hp,0

II (K).

KII is a subcomplex of K, and the operator d coincides on KII with the
operator d′′.

Proposition 1. If Hp,q
I (K) = 0 for p > 0 and q ≥ 0, the inclusion KII → K

defines a bijection from Hn(KII) to Hn(K), for all n ≥ 0.

(Cf. [4], statement XVII-6, whose proof we shall repeat here).

By replacing K by K/KII , we are led to prove that if Hp,q
I (K) = 0 for p ≥ 0

and q ≥ 0, then Hn(K) = 0 for all n ≥ 0. Put

Kh =
⊕
q≥h

Kp,q.

The groupsKh (h = 0, 1, . . .) are subcomplexes embedded inK, andKh/Kh+1 is
isomorphic to

⊕∞
p=0K

p,h, equipped with the coboundary operator d′. We thus
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have Hn(Kh/Kh+1) = Hh,n−h
I (K) = 0 for any n and h, therefore Hn(Kh) =

Hn(Kh+1). Since Hn(Kh) = 0 if h > n, we deduce, by descending recursion on
h, that Hn(Kh) = 0 for all n and h, and since K0 is equal to K, the Proposition
follows.

28 The double complex defined by two coverings

Let U = {Ui}i∈I and V = {Vj}j∈J be two coverings of X. If s is a p-simplex of
S(I) and s′ a q-simplex of S(J), we denote by Us the intersection of Ui, i ∈ s
(cf. n◦ 18), the intersection of Vj , j ∈ s′, by Vs the covering of Us formed by
{Us ∩ Vj}j∈J and by Us′ the covering of Vs′ formed by {Vs′ ∩ Ui}i∈I .

We define a double complex C(U,V; F ) =
⊕

p,q C
p,q(U,V; F ) as follows:

Cp,q(U,V; F ) =
∏

Γ(Us ∩ Vs′ ,F ), the product taken over all pairs (s, s′)
where s is a simplex of dimension p of S(I) and s′ is a simplex of dimension q
of S(J).

An element f ∈ Cp,q(U,V; F ) is thus a system (fs,s′) of sections of F on
Us ∩ Vs′ or, with the notations of n◦ 18, it is a system

fi0...ip,j0...jq ∈ Γ(Ui0...ip ∩ Vj0...jq ,F ).

We can also identify Cp,q(U,V; F ) with
∏
s′ C

p(Us′ ,F ); thus, for all s′, we
have a coboundary operator d : Cp(Us′ ,F → Cp+1(Us′ ,F ), giving a homomor-
phism

dU : Cp,q(U,V; F )→ Cp+1,q(U,V; F ).

Making the definition of dU explicit, we obtain:

(dUf)i0...ip+1,j0...jq =

k=p+1∑
k=0

(−1)kρk(fi0...̂ik...ip+1,j0...jq
),

ρk being the restriction homomorphism defined by the inclusion of

Ui0...ip ∩ Vj0...jq in Ui0...ik...ip+1
∩ Vj0...jq .

We define dV : Cp,q(U,V; F )→ Cp,q+1(U,V; F ) the same way and we have

(dVf)i0...ip,j0...jq+1
=

h=q+1∑
h=0

(−1)hρh(fi0...ip,j0...ĵh...jq+1
).

It is clear that dU ◦ dU = 0, dU ◦ dV = dV ◦ dU, dV ◦ dV = 0. We thus
put d′ = dU, d′′ = (−1)pdV, equipping C(U,V; F ) with a structure of a double
complex. We now apply to K = C(U,V; F ) the definitions from the preceding
n◦ ; the groups or complexes denoted in the general case by Hn(K), Hp,q

I (K),
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Hp,q
I (K), Hp,q

II (K), KI , KII will be denoted by Hn(U,V; F ), Hp,q
I (U,V; F ),

Hp,q
II (U,V; F ), CI(U,V; F ) and CII(U,V; F ), respectively.

From the definitions of d′ and d′′, we immediately obtain:

Proposition 2. Hp,q
I (U,V; F ) is isomorphic to

∏
s′ H

p(Us′ ,F ), the prod-
uct being taken over all simplexes of dimension q of S(J). In particular,

CqII(U,V; F ) = H0,q
I (U,V; F )

is isomorphic to
∏
s′ H

0(Us′ ,F ) = Cq(V,F ).

We denote by ι′′ the canonical isomorphism: C(V,F ) → CII(U,V; F ). If
(fj0...jq ) is an element of Cq(V,F ), we thus have

(ι′′f)i0,j0...jq = ρi0(fj0...jq ),

where ρi0 denotes the restriction homomorphism defined by the inclusion of

Ui0 ∩ Vj0...jq in Vj0...jq .

Obviously, a statement analogous to Proposition 2 holds for Hp,q
I I(U,V; F ),

and we have an isomorphism ι′ : C(U,F )→ CI(U,V; F ).

29 Applications

Proposition 3. Assume that Hp(Us′ ,F ) = 0 for every s′ and all p > 0. Then
the homomorphism Hn(V,F )→ Hn(U,V; F ), defined by ι′′, is bijective for all
n ≥ 0.

This is an immediate consequence of Propositions 1 and 2.

Before stating Proposition 4, we prove a lemma:

Lemma 1. Let W = {Wi}i∈I be a covering of a space Y and let F be a
sheaf on Y . If there exists an i ∈ I such that Wi = Y , then Hp(W,F ) = 0 for
all p > 0.

Let W′ be a covering of Y consisting of a single open set Y ; we obviously
have W ≺W′, and the assumption made on W means that W′ ≺W. In result
(n◦ 22) we have Hp(W,F ) = Hp(W′,F ) = 0 if p > 0.

Proposition 4. Suppose that the covering V is finer than the covering U.
Then ι′′ : Hn(V,F ) → Hn(U,V; F ) is bijective for all n ≥ 0. Moreover, the
homomorphism ι′ ◦ ι′′−1 : Hn(U,F )→ Hn(V,F ) coincides with the homomor-
phism σ(V,U) defined in n◦ 21.

We apply Lemma 1 to W = Us′ and Y = Vs′ , seeing that Hp(Us′ ,F ) = 0
for all p > 0, and then Proposition 3 shows that

ι′′ : Hn(V,F )→ Hn(U,V; F )
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is bijective for all n ≥ 0.

Let τ : J → I be a mapping such that Vj ⊂ Uτj ; for the proof of the second
part of the Proposition, we need to observe that if f is an n-cocycle of C(U,F ),
the cocycles ι′(f) and ι′′(τf) are cohomologous in C(U,V; F ).

For any integer p, 0 ≤ p ≤ n − 1, define gp ∈ Cp,n−p−1(U,V; F ) by the
following formula

gpi0...ip,j0...jn−p−1
= ρp(fi0...ipτj0...τjn−p),

ρp denoting the restriction defined by the inclusion of

Ui0...ip ∩ Vj0...jn−p−1 in Ui0...ip,τj0...τjn−p−1 .

We verify by a direct calculation (keeping in mind that f is a cocycle) that
we have

d′′(g0) = ι′′(τf), . . . , d′′(gp) = d′(gp−1), . . . d′(gn−1) = (−1)nι′(f)

hence d(g0− g1 + . . .+ (−1)n−1gn−1) = ι′′(τf)− ι′(f), which shows that ι′′(τf)
and ι′(f) are cohomologous.

Proposition 5. Suppose that V is finer than U and that Hq(Vs,F ) = 0 for
all s and all q > 0. Then the homomorphism σ(V,U) : Hn(U,F )→ Hn(V,F )
is bijective for all n ≥ 0.

If we apply Proposition 3, switching the roles of U and V, we see that ι′ :
Hn(V,F ) → Hn(U,V; F ) is bijective. The Proposition then follows directly
from Proposition 4.

Theorem 1. Let X be a topological space, U = {Ui}i∈I a covering of X, F
a sheaf on X. Assume that there exists a family Vα, α ∈ A of coverings of X
satisfying the following properties:

(a) For any covering W of X, there exists an α ∈ A with Vα ≺W,
(b) Hq(Vα

s ,F ) = 0 for all α ∈ A, all simplexes s ∈ S(I) and every q > 0,
Then σ(U) : Hn(U,F )→ Hn(X,F ) is bijective for all n ≥ 0.

Since Vα are arbitrarily fine, we can assume that they are finer than U. In
this case, the homomorphism

σ(Vα,U) : Hn(U,F )→ Hn(Vα,F )

is bijective for all n ≥ 0, by Proposition 5. Because Vα are arbitrarily fine,
Hn(X,F ) is the inductive limit of Hn(Vα,F ), and the theorem follows.

Remarks. (1) It is probable that Theorem 1 remains valid when we replace
the condition (b) with the following weaker condition:

(b’) limαH
q(Vα

s ,F ) = 0 for any simplex s of S(I) and any q > 0.

(2) Theorem 1 is analogous to a theorem of Leray on acyclic coverings. Cf.
[10] and also [4], statement XVII-7.
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§1. Algebraic varieties II

From now on, K denotes a commutative algebraically closed field of arbitrary
characteristic.

§1 Algebraic varieties

30 Spaces satisfying condition (A)

Let X be a topological space. The condition (A) is the following:
(A) — Any decreasing sequence of closed subsets of X is stationary.

In other words, if we have F1 ⊃ F2 ⊃ F3 ⊃ . . ., Fi being closed in X, there
exists an integer n such that Fm = Fn for m ≥ n. Or:

(A’) — The set of closed subsets of X, ordered by inclusion, satisfies the
minimality condition

Examples. Equip a set X with the topology where the closed subsets are
the finite subsets of X and the whole X; the condition (A) is then satisfied.
More generally, any algebraic variety, equipped with Zariski topology, satisfies
(A) (cf. n◦ 34).

Proposition 1. (a) If X satisfies the condition (A), then X is quasi-
compact,

(b) If X satisfies (A), any subspace of X satisfies it also.
(c) If X is a finite union of Yi, the Yi satisfying (A), then X also satisfies

(A).

If Fi is a filtering decreasing set of closed subsets of X, and if X satisfies (A’),
then there exists an Fi contained in all others; if

⋂
Fi = ∅, there is therefore an

i such that Fi = ∅, which shows (a).

Let G1 ⊃ G2 ⊃ G3 ⊃ . . . be a decreasing sequence of closed subsets of a
subspace Y of X; if X satisfies (A), there exists an n for which Ḡm = Ḡn for
m ≥ n, hence Gm = Y ∩ Ḡm = Y ∩ Ḡn = Gn, which shows (b).

Let F1 ⊃ F2 ⊃ F3 ⊃ . . . be a decreasing sequence of closed subsets of a space
X satisfying (c); since all Yi satisfy (A), there exists for all i an ni such that
Fm ∩ Yi = Fni ∩ Yi for m ≥ ni; if n = Sup(ni), we then have Fm = Fn for
m ≥ n, which shows (c).

A space X is said to be irreducible if it is not a union of two closed subspaces,
distinct from X itself; or equivalently, if any two non-empty open subsets have
a non-empty intersection. Any finite family of non-empty open subsets of X
then has a non-empty intersection, and any open subset of X is also irreducible.

Proposition 2. Any space X satisfying the condition (A) is a union of a
finite number of irreducible closed subsets Yi. If we suppose that that Yi is not
contained in Yj for any pair (i, j), i 6= j, the set of Yi is uniquely determined by
X; the Yi are then called the irreducible components of X.
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The existence of a decomposition X =
⋃
Yi follows immediately from (A).

If Zk is another such decomposition of X, we have Yi =
⋃
Yi ∩ Zk, and, since

Yi is irreducible, this implies of an index k such that Zk ⊃ Yi; interchanging
the roles of Yi and Zk, we conclude analogously that there exists an index i′ for
which Yi′ ⊃ Zk; thus Yi ⊂ Zk ⊂ Yi′ , which by the assumption made on Yi leads
to i = i′ and Yi = Zk, hence the uniqueness of the decomposition.

Proposition 3. Let X be a topological space that is a finite union of non-
empty open subsets Vi. Then X is irreducible if and only if all Vi are irreducible
and Vi ∩ Vj 6= 0 for all pairs (i, j).

The necessity of these conditions was noted above; we show that they are
sufficient. If X = Y ∪Z, where Y and Z are closed, we have Vi = (Vi∩Y )∪(Vi∩
Z), which shows that each Vi is contained either in Y or in Z. Suppose that Y
and Z are distinct from X; we can then find two indices i, j such that Vi is not
contained in Y and Vj is not contained in Z; according to our assumptions on
Yi, we then have Vi ⊂ Z and Vj ⊂ Y . Set T = Vj−Vi∩Vj ; T is closed in Vj and
we have Vj = T ∪ (Z ∩ Vj); as Vj is irreducible, it follows that either T = Vj ,
which means that Vi ∩ Vj = ∅, or Z ∩ Vj = Vj , which means that Vj ⊂ Z, and
in both cases this leads to a contradiction, q.e.d.

31 Locally closed subsets of an affine space

Let r be an integer ≥ 0 and let X = Kr be the affine space of dimension r
over the field K. We equip X with the Zariski topology ; recall that a subset
of X is closed in this topology if it is the zero set of a family of polynomials
Pα ∈ K[X1, . . . , Xr]. Since the ring of polynomials is Noetherian, X satisfies
the condition (A) from the preceding n◦ . Moreover, one easily shows that X is
an irreducible space.

If x = (x1, . . . , xr) is a point of X, we denote by Ox the local ring of x; recall
that this is the subring of the field K(X1, . . . , Xr) consisting of those fractions
which can be put in the form:

R = P/Q, where P and Q are polynomials and Q(x) 6= 0.

Such a fraction is said to be regular in x; for all points x ∈ X for which
Q(x) 6= 0, the function x 7→ P (x)/Q(x) is a continuous function with values in
K (K being given the Zariski topology) which can be identified with R, the field
K being infinite. The Ox, x ∈ X thus form a subsheaf O of the sheaf F (X) of
germs of functions on X with values in K (cf. n◦ 3); the sheaf O is a sheaf of
rings.

We will extend the above to locally closed subspaces of X (we call a subset
of a space X locally closed in X if it is an intersection of a open subset with a
closed subset of X). Let Y be such a subspace and let F (Y ) be the sheaf of
germs of functions on Y with values in K; if x is a point of Y , the operation of
restriction defines a canonical homomorphism

εx : F (X)x → F (Y )x.
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The image of Ox under εx is a subring of F (Y )x which we denote by Ox,Y ;
the Ox,Y form a subsheaf OY of F (Y ), which we call the sheaf of local rings
of Y . A section of OY over an open subset V of Y is thus, by definition, a
function f : V → K which is equal, in the neighborhood of any point x ∈ V ,
to a restriction to V of a rational function regular at x; such a function is said
to be regular on V ; it is a continuous function if we equip V with the induced
topology and K with the Zariski topology. The set of regular functions at all
points of V is a ring, the ring Γ(V,OY ); observe also that, if f ∈ Γ(V,Ox) and
if f(x) 6= 0 for all x ∈ V , then 1/f also belongs to Γ(V,OY ).

We can characterize the sheaf OY in another way:

Proposition 4. Let U (resp. F ) be a open (resp. closed) subspace of X and
let Y = U ∩ F . Let I(F ) be the ideal K[X1, . . . , Xr] consisting of polynomials
vanishing on F . If x is a point of Y , the kernel of the surjection εx : Ox → Ox,Y
coincides with the ideal I(F ) · Ox of Ox.

It is clear that each element of I(F ) · Ox belongs to the kernel of εx. Con-
versely, let R = P/Q be an element of the kernel, P andQ being two polynomials
with Q(x) 6= 0. By assumption, there exists an open neighborhood W of x such
that P (y) = 0 for all y ∈ W ∩ F ; let F ′ be the complement of W , which is
closed in X; since x ∈ F ′, there exists, by the definition of the Zariski topology,
a polynomial P1 vanishing on F ′ and nonzero at x; the polynomial P ·P1 belongs
to I(F ) and we can write R = P · P1/Q · P1, which shows that R ∈ I(F ) · Ox.

Corollary. The ring Ox,Y is isomorphic to the localization of K[X1, . . . , Xr]/I(F )
in the maximal ideal defined by the point x.

This follows immediately from the construction of localization a quotient
ring (cf. for example [8], Chap. XV, §5, th. XI).

32 Regular functions

Let U (resp. V ) be a locally closed subspace of Kr (resp. Ks). A function
φ : U → V is said to be regular on U (or simply regular) if:

φ is continuous,
If x ∈ U and f ∈ Oφ(x),V then f ◦ φ ∈ Ox,U .

Denote the coordinates of the point φ(x) by φi(x), 1 ≤ i ≤ s. We then have:

Proposition 5. A map φ : U → V is regular on U if and only if φi : U → K
are regular on U for all i, 1 ≤ i ≤ s.

As the coordinate functions are regular on V , the condition is necessary.
Conversely, suppose that we have φi ∈ Γ(U,OU ) for each i; if P (X1, . . . , Xs)
is a polynomial, the function P (φ1, . . . , φs) belongs to Γ(U,OU ) since Γ(U,OU )
as a ring; it follows that it is a continuous function on U , thus its zero set is
closed, which shows the continuity of φ. If we have x ∈ U and f ∈ Oφ(x),V , we
can write f locally in the form f = P/Q, where P and Q are polynomials and
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Q(φ(x)) 6= 0. The function f ◦φ is then equal to P ◦φ/Q ◦φ in a neighborhood
of x; from what we gave seen, P ◦ φ and Q ◦ φ are regular in a neighborhood of
x. As Q ◦φ(x) 6= 0, it follows that f ◦φ is regular in a neighborhood of x, q.e.d.

A composition of two regular maps is regular. A bijection φ : U → V is
called a biregular isomorphism (or simply an isomorphism) if φ and φ−1 are
regular; or equivalently, if φ is a homeomorphism of U to V which transforms
the sheaf OU into the sheaf OV .

33 Products

If r and r′ are two nonnegative integers, we identify the affine space Kr+r′ with
the product Kr×Kr′ . The Zariski topology on Kr+r′ is finer than the product
of the Zariski topologies on Kr and Kr′ ; it is even strictly finer if r and r′

are positive. In result, if U and U ′ are locally closed subspaces of Kr and Kr′ ,
U×U ′ is a locally closed subspace of Kr+r′ and the sheaf OU×U ′ is well defined.

On the other hand, let W be a locally closed subspace of Kt, t ≥ 0 and
let φ : W → U and φ′ : W → U ′ be two maps. As an immediate result of
Proposition 5 we have:

Proposition 6. A map x → (φ(x), φ′(x)) is regular from W to U × U ′ if
and only if φ and φ′ are regular.

As any constant function is regular, the preceding Proposition shows that
any section x 7→ (x, x′0), x′0 ∈ U ′ is a regular function from U to U × U ′; on
the other hand, the projections U × U ′ → U and U × U ′ → U ′ are obviously
regular.

Let V and V ′ be locally closed subspaces of Ks and Ks′ and let ψ : U → V
and ψ′ : U ′ → V ′ be two mappings. The preceding remarks, together with
Proposition 6, show that we then have (cf. [1], Chap. IV):

Proposition 7. A map ψ × ψ′ : U × U ′ → V × V ′ is regular if and only if
ψ and ψ′ are regular.

Hence:

Corollary. A map ψ × ψ′ is a biregular isomorphism if and only if ψ and
ψ′ are biregular isomorphisms.

34 Definition of the structure of an algebraic variety

Definition. We call an algebraic variety over K (or simply an algebraic variety)
a set X equipped with:

1◦ a topology,
2◦ a subsheaf Ox of the sheaf F (X) of germs of functions on X with values

in K,
this data being subject to axioms (V AI) and (V AII) stated below.
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First note that if X and Y are equipped with two structures of the above
type, we have a notion of isomorphism of X and Y : it is a homeomorphism
of X to Y which transforms OX to OX . On the other hand, if X ′ is an open
subset of X, we can equip X ′ with the induced topology and the induced sheaf:
we have a notion of an induced structure on an open subset. That being said,
we can state the axiom (V AI):

(V AI) — There exists a finite open covering V = {Vi}i∈I of the space X
such that each Vi, equipped with the structure induced from X, is isomorphic
to a locally closed subspace Ui of an affine space, equipped with the sheaf OUi
defined in n◦ 31.

To simplify the language, we call an prealgebraic variety a topological space
X together with a sheaf OX satisfying the axiom (V AI). An isomorphism
φi : Vi → Ui is called a chart of the open subset Vi; the condition (V AI)
means that it is possible to cover X with finitely many open subsets possessing
charts. Proposition 1 from n◦ 30 shows that X satisfies condition (A), thus it
is quasi-compact and so are its subspaces.

The topology on X is called the ,,Zariski topology” and the sheaf OX is
called the sheaf of local rings of X.

Proposition 8. Let X be a set covered by a finite family of subsets Xj,
j ∈ J . Suppose that each Xj is equipped with a structure of a prealgebraic
variety and that the following conditions are satisfied:

(a) Xi ∩Xj is open in Xi for all i, j ∈ J ,
(b) the structures induced by Xi and Xj on Xi ∩Xj coincide for all i, j ∈ J .

Then there exists a unique structure of a prealgebraic variety on X such that
Xj are open in X and such that the structure induced on each Xi is the given
structure.

The existence and uniqueness of the topology on X and the sheaf OX are
immediate; it remains to check that this topology and this sheaf satisfy (V AI),
which follows from the fact that Xj form a finite family and satisfy (V AI).

Corollary. Let X and X ′ be two prealgebraic varieties. There exists a
structure of a prealgebraic variety on X ×X ′ satisfying the following condition:
If φ : V → U and φ′ : V ′ → U ′ are charts (V being open in X and V ′ being
open in X ′), then V × V ′ is open in X ×X ′ and φ× φ′ : V × V ′ → U ×U ′ is a
chart.

Cover X by a finite number of open Vi having charts φi : Vi → Ui and
let (V ′j , U

′
j , φ
′
j) be an analogous system for X ′. The set X × X ′ is covered by

Vi× V ′j ; equip each Vi× V ′j with the structure of a prealgebraic variety induced

from Ui × U ′j by φ−1i × φ′−1j ; the assumptions (a) and (b) of Proposition 8
are satisfied for this covering of X ×X ′, by the corollary of Proposition 7. We
obtain a structure of a prealgebraic variety on X×X ′ which satisfies appropriate
conditions.
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We can apply the preceding corollary to the particular case X ′ = X; so
X × X has a structure of a prealgebraic variety, and in particular a topology.
We can now state the axiom (V AII):

(V AII) — The diagonal ∆ of X ×X is closed in X ×X.

Suppose that X is a prealgebraic variety obtained by the ,,gluing” procedure
of Proposition 8; then the condition (V AII) is satisfied if and only if Xij =
∆ ∩Xi ×Xj is closed in Xi ×Xj . Or Xij is the set of (x, x) for x ∈ Xi ∩Xj .
Suppose that there exist charts φ : Xi → Ui and let Tij = φ × φj(Xij); Tij is
the set of (φi(x), φj(x)) for x running over Xi ∩Xj . The axiom (V AII) takes
therefore the following form:

(V A′II) — For each pair (i, j), Tij is closed in Ui × Uj.

In this form we recognize Weil’s axiom (A) (cf. [16], p. 167), except that
Weil considered only irreducible varieties.

Examples of algebraic varieties: Any locally closed subspace U of an affine
space, equipped with the induced topology and the sheaf OU defined in n◦ 31 is
an algebraic variety. Any projective variety is an algebraic variety (cf. n◦ 51).
Any algebraic fiber space (cf. [17]) whose base and fiber are algebraic varieties
is an algebraic variety.

Remarks. (1) We observe an analogy between condition (V AII) and the
condition of separatedness imposed on topological, differential and analytic va-
rieties.

(2) Simple examples show that condition (V AII) is not a consequence of
condition (V AI).

35 Regular mappings, induced structures, products

Let X and Y be two algebraic varieties and let φ be a function from X to Y .
We say that φ is regular if:

(a) φ is continuous.
(b) If x ∈ X and f ∈ Oφ(x),Y then f ◦ φ ∈ Ox,X .

As in n◦ 32, the composition of two regular functions is regular and a bijec-
tion φ : X → Y is an isomorphism if and only if φ and φ−1 are regular functions.
Regular functions form a family of morphisms for the structure of an algebraic
variety in the sense of [1], Chap. IV.

Let X be an algebraic variety and let X ′ be a locally closed subspace of X.
We equip X ′ with the topology induced from X and the sheaf OX′ induced by
OX (to be precise, for all x ∈ X ′ we define Ox,X′ as the image of Ox,X under the
canonical homomorphism F (X)x → F (X ′)x). The axiom (V AI) is satisfied:
if φi : Vi → Ui is a system of charts such that X =

⋃
Vi, we set V ′i = X ′ ∩ Vi,

U ′i = φi(V
′
i ) and φi : V ′i → U ′i is a system of charts such that X ′ =

⋃
V ′i . The

axiom (V AII) is satisfied as well since the topology of X ′ ×X ′ is induced from
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X × X (we could also use (V A′II)). We define the structure of an algebraic
variety on X ′ which is induced by that of X; we also say that X ′ is a subvariety
of X (in Weil [16], the term ,,subvariety” is reserved for what we call here an
irreducible closed subvariety). If ι denotes the inclusion of X ′ in X, ι is a regular
mapping; moreover, if φ is a function from an algebraic variety Y to X ′ then
φ : Y → X ′ is regular if and only if ι ◦ φ : Y → X is regular (which justifies the
term ,,induced structure”, cf. [1], loc. cit.).

If X and X ′ are two algebraic varieties, X×X ′ is an algebraic variety, called
the product variety ; it suffices to check that the axiom (V A′II) is satisfied, in
other words, that if φi : Vi → Ui and φ′i : V ′i → U ′i are systems of charts such that
X =

⋃
Vi and X ′ =

⋃
V ′i , then the set Tij ×T ′i′j′ is closed in Ui×Uj ×U ′i′ ×V ′j′

(with the notations of n◦ 34); this follows immediately from the fact that Tij
and T ′i′j′ are closed in Ui × Uj and U ′i′ × U ′j′ respectively.

Propositions 6 and 7 are valid without change for arbitrary algebraic vari-
eties.

If φ : X → Y is a regular mapping, the graph Φ of φ is closed in X × Y ,
because it is the inverse image of the diagonal Y × Y by φ × 1 : X × Y →
Y × Y ; moreover, the mapping ψ : X → Φ defined by ψ(x) = (x, φ(x)) is
an isomorphism: indeed, ψ is a regular mapping, and so is ψ−1 (since it is a
restriction of the projection X × Y → X).

36 The field of rational functions on an irreducible variety

We first show two lemmas of purely topological nature:

Lemma 1. Let X be a connected space, G an abelian group and G a constant
sheaf on X isomorphic to G. The canonical mapping G→ Γ(X,G ) is bijective.

An element of Γ(X,G ) is just a continuous mapping from X to G equipped
with the discrete topology. Since X is connected, any such a mapping is con-
stant, hence the Lemma.

We call a sheaf F on a space X locally constant if any point x has an open
neighborhood U such that F (U) is constant on U .

Lemma 2. Any locally constant sheaf on an irreducible space is constant.

Let F be a sheaf, X a space and set F = Γ(X,F ); it suffices to demonstrate
that the canonical homomorphism ρx : F → Fx is bijective for all x ∈ X,
because we would thus obtain an isomorphism of the constant sheaf isomorphic
to F with the given sheaf F .

If f ∈ F , the set of points x ∈ X such that f(x) = 0 is open (by the
general properties of sheaves) and closed (because F is locally constant); since
an irreducible space is connected, this set is either ∅ or X, which shows that ρx
is injective.
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Now take m ∈ Fx and let s be a section of F over a neighborhood U of x
such that s(x) = m; cover X by nonempty open subsets Ui such that F (Ui)
is constant on Ui; since X is irreducible, we have U ∩ Ui 6= ∅; choose a point
xiU∩Ui; obviously there exists a section si of F over Ui such that si(xi) = s(xi),
and since the sections s and si coincide in xi, they coincide on whole U ∩ Ui,
since U ∩ Ui is irreducible, hence connected; analogously si and sj coincide on
Ui ∩ Uj , since they coincide on U ∩ Ui ∩ Uj 6= ∅; thus the sections si define a
unique section s of F over X and we have ρx(s) = m, which ends the proof.

Now let X be an irreducible algebraic variety. If U is a nonempty open
subset of X, set AU = Γ(U,OX); AU is an integral domain: indeed, suppose
that we have f · g = 0, f and g being regular functions from U to K; if F (resp.
G) denotes the set of x ∈ U such that f(x) = 0 (resp. g(x) = 0), we have
U = F ∪G and F and G are closed in U , because f and g are continuous; since
U is irreducible, it follows that F = U or G = U , which means exactly that f
or g is zero on U . We can therefore form the field of fractions of AU , which
we denote by KU ; if U ⊂ V , the homomorphism ρVU : AV → AU is injective,
because U is dense in V , and we have a well defined isomorphism φVU of KV to
KU ; the system of {KU , φ

V
U} defines a sheaf of fields K ; then Kx is canonically

isomorphic with the field of fractions of Ox,X .

Proposition 9. For any irreducible algebraic variety X, the sheaf K defined
above is a constant sheaf.

By Lemma 2, it suffices to show the Proposition when X is a locally closed
subvariety of the affine space Kr; let F be the closure of X in Kr and let I(F ) be
the ideal in K[X1, . . . , Xr] of polynomials vanishing on F (or equivalently on X).
If we set A = K[X1, . . . , Xr]/I(F ), the ring A is an integral domain because X
is irreducible; let K(A) be the ring of fractions of A. By corollary of Proposition
4, we can identify Ox,X with the localization of A in the maximal ideal defined
by x; we thus obtain an isomorphism of the field K(A) with the field of fractions
of Ox,X and it is easy to check that it defines an isomorphism of the constant
sheaf equal to K(A) with the sheaf K , which shows the Proposition.

By Lemma 1, the sections of the sheaf K form a field, isomorphic with Kx

for all x ∈ X, which we denote by K(X). We call it the field of rational functions
on X; it is an extension of finite type1 of the field K, whose transcendence degree
over K is the dimension of X (we extend this definition to reducible varieties
by imposing dimX = Sup dimYi if X is a union of closed irreducible varieties
Yi). In general, we identify the field K(X) with the field Kx; since we have
Ox,X ⊂ Kx, we see that we can view Ox,X as a subring of K(X) (it is the ring
of specialization of the point x in K(X) in the sense of Weil, [16], p. 77). If U
is an open subset of X, Γ(U,OX) is the intersection in K(X) of the rings Ox,X
for x running over U .

If Y is a subvariety of X, we have dimY ≤ dimX; if furthermore Y is closed
and does not contain any irreducible component of X, we have dimY < dimX,

1 i.e. finitely generated
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as shown by reducing to the case of subvarieties of Kr (cf. for example [8],
Chap. X, §5, th. II).
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§2 Coherent algebraic sheaves

37 The sheaf of local rings on an algebraic variety

Return to the notations of n◦ 31: let X = Kr and let O be the sheaf of local
rings of X. We have:

Lemma 1. The sheaf O is a coherent sheaf of rings, in the sense of n◦ 15.

Let x ∈ X, let U be an open neighborhood of x and let f1, . . . , fp be sections
of O over U , i.e. rational functions regular at each point of U ; we must show
that the sheaf of relations between f1, . . . , fp is a sheaf of finite type over O.
Possibly replacing U by a smaller neighborhood, we can assume that fi can be
written in the form fi = Pi/Q where Pi and Q are polynomials and Q does

not vanish on U . Let now y ∈ U and gi ∈ Oy such that
∑i=p
i=1 gifi is zero in a

neighborhood of y; we can again write gi in the form gi = Ri/S where Ri and

S are polynomials and S does not vanish in y. The relationship ,,
∑i=p
i=1 gifi = 0

in a neighborhood of y” is equivalent to the relationship ,,
∑i=p
i=1 RiPi = 0 in

a neighborhood of y”, i.e. equivalent to
∑i=p
i=1 RiPi = 0. As the module of

relations between the polynomials Pi is a module of finite type (because the
ring of polynomials is Noetherian), it follows that the sheaf of relations between
fi is of finite type.

Let now V be a closed subvariety of X = Kr; for any x ∈ X let Jx(V ) be
the ideal of Ox consisting of elements f ∈ Ox whose restriction to V is zero in
a neighborhood of x (we thus have Jx(V ) = Ox if x /∈ V ). The Jx(V ) form a
subsheaf J (V ) of the sheaf O.

Lemma 2. The sheaf J (V ) is a coherent sheaf of O-modules.

Let I(V ) be the ideal of K[X1, . . . , Xr] consisting of polynomials P vanishing
on V . By Proposition 4 from n◦ 31, Jx(V ) is equal to I(V ) · Ox for all x ∈ V
and this formula remains valid for x /∈ V as shown immediately. The ideal I(V )
being generated by a finite number of elements, it follows that the sheaf J (V )
is of finite type, thus coherent by Lemma 1 and Proposition 8 from n◦ 15.

We shall now extend Lemma 1 to arbitrary algebraic varieties:

Proposition 1. If V is an algebraic variety, the sheaf OV is a coherent
sheaf of rings on V .

The question being local, we can suppose that V is a closed subvariety of
the affine space Kr. By Lemma 2, the sheaf J (V ) is a coherent sheaf of ideals,
thus the sheaf O/J (V ) is a coherent sheaf of rings on X, by Theorem 3 from
n◦ 16. This sheaf of rings is zero outside V and its restriction to V is just OV
(n◦ 31); thus the sheaf OV is a coherent sheaf of rings on V (n◦ 17, corollary of
Proposition 11).

Remark. It is clear that Proposition is valid more generally for any preal-
gebraic variety.
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38 Coherent algebraic sheaves

If V is an algebraic variety whose sheaf of local rings is OV , we call an algebraic
sheaf on V any sheaf of OV –modules, in the sense of n◦ 6; if F and G are
two algebraic sheaves, we say that φ : F → G is an algebraic homomorphism
(or simply a homomorphism) if it is a OV –homomorphism; recall that this is
equivalent to saying that φx : Fx → Gx is Ox,V –linear and that φ transforms
local sections of F into local sections of G .

If F is an algebraic sheaf on V , the cohomology groups Hq(V,F ) are mod-
ules over Γ(V,OV ), cf. n◦ 23; in particular, they are vector spaces over K.

An algebraic sheaf F over V is said to be coherent if it is a coherent sheaf
of OV –modules, in the sense of n◦ 12; by Proposition 7 of n◦ 15 and Proposi-
tion 1 above, these sheaves are characterized by the property of being locally
isomorphic to the cokernel of an algebraic homomorphism φ : Oq

V → Op
V .

We shall give some examples of coherent algebraic sheaves (we will see more
of them later, cf. in particular nos 48, 57).

39 Sheaf of ideals defined by a closed subvariety

Let W be a closed subvariety of an algebraic variety V . For any x ∈ V , let
Jx(W ) be the ideal of Ox,V consisting of elements f whose restriction to W
is zero in a neighborhood of x; let J (W ) be the subsheaf of OV formed by
Jx(W ). We have the following Proposition, generalizing Lemma 2:

Proposition 2. The sheaf J (W ) is a coherent algebraic sheaf.

The question being local, we can suppose that V (thus also W ) is a closed
subvariety of the affine space Kr. It follows from Lemma 2, applied to W , that
the sheaf of ideals defined by W in Kr is of finite type; this shows that J (W ),
which is its image under the canonical homomorphism O → OV , is also of finite
type, thus is coherent by Proposition 8 of n◦ 15 and Proposition 1 of n◦ 37.

Let OW be the sheaf of local rings of W and let OV
W be the sheaf on V

obtained by extending OW by 0 outside W (cf. n◦ 5); this sheaf is canonically
isomorphic to OV /J (W ), in other words, we have an exact sequence:

0→J (W )→ OV → OV
W → 0.

Let then F be an algebraic sheaf on W and let FV be the sheaf obtained by
extending F by 0 outside W ; we can consider FV as a sheaf of OV

W –modules,
thus also as a sheaf of OV –modules whose annihilator contains J (W ). We
have:

Proposition 3. If F is a coherent algebraic sheaf on W , FV is a coherent
algebraic sheaf on V . Conversely, if G is an coherent algebraic sheaf on V whose
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annihilator contains J (W ), the restriction of G to W is a coherent algebraic
sheaf on W .

If F is a coherent algebraic sheaf on W , FV is a coherent sheaf of OV
W –

modules (n◦ 17, Proposition 11), thus a coherent sheaf of OV –modules (n◦

16, Theorem 3). Conversely, if G is a coherent algebraic sheaf on V whose
annihilator contains J (W ), G can be considered as a sheaf of OV /J (W )–
modules, and is a coherent sheaf (n◦ 16, Theorem 3); the restriction of G to W
is then a coherent sheaf of OW –modules (n◦ 17, Proposition 11).

So, any coherent algebraic sheaf on W can by identified with an algebraic
coherent sheaf on V (and this identification does not change cohomology groups,
by Proposition 8 of n◦ 26). In particular, any coherent algebraic sheaf on an
affine (resp. projective) variety can be considered as a coherent algebraic sheaf
on an affine (resp. projective) space; we will frequently use this possibility later.

Remark. Let G be a coherent algebraic sheaf on V which is zero outside
W ; the annihilator of G does not necessarily contain J (W ) (in other words, G
not always can be considered as an coherent algebraic sheaf on W ); all we can
say is that it contains a power of J (W ).

40 Sheaves of fractional ideals

Let V be an irreducible algebraic variety and let K(V ) denote the constant
sheaf of rational functions on V (cf. n◦ 36); K(V ) is an algebraic sheaf which
is not coherent if dimV > 0. An algebraic subsheaf F of K(V ) can be called a
,,sheaf of fractional ideals” since each Fx is a fractional ideal of Ox,V .

Proposition 4. An algebraic subsheaf F of K(V ) is coherent if and only
if it is of finite type.

The necessity is trivial. To prove the sufficiency, it suffices to prove that
K(V ) satisfies condition (b) of definition 2 from n◦ 12, in other that if f1, . . . , fp
are rational functions, the sheaf R(f1, . . . , fp) is of finite type. If x is a point of
V , we can find functions gi and h such that fi = gi/h, gi and h being regular
in a neighborhood U of x and h being nonzero on U ; the sheaf R(f1, . . . , fp)
is then equal to the sheaf R(g1, . . . , gp), which is of finite type, since OV is a
coherent sheaf of rings.

41 Sheaf associated to the total space of a vector bundle

Let E be an algebraic fiber space with a vector space of dimension r as a fiber
and an algebraic variety V as a base; by definition, the typical fiber of E is a
vector space Kr and the structure group is the linear group GL(r,K) acting on
Kr in the usual way (for the definition of an algebraic fiber space, cf. [17]; see
also [15], n◦ 4 for analytic vector bundles).
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If U is an open subset of V , let S (E)U denote the set of regular sections of E
on U ; if V ⊃ U , we have the restriction homomorphism φVU : S (E)V → S (E)U
; thus a sheaf S (E), called the sheaf of germs of sections of E. Since E is a
vector bundle, each S (E)U is a Γ(U,OV )–module and it follows that S (E) is
an algebraic sheaf on V . If we identify locally E with V ×Kr, we have:

Proposition 5. The sheaf S (E) is locally isomorphic to Or
V ; in particular,

it is a coherent algebraic sheaf.

Conversely, it is easily seen that any algebraic sheaf F on V , locally iso-
morphic to Or

V , is isomorphic to a sheaf S (E) where E is determined up to
isomorphism (cf. [15] for the analytic case).

If V is a variety without singularities, we can take for E the vector bundle
of p-covectors tangent to V (p being a nonnegative integer); let Ωp be the sheaf
corresponding to S (E); an element of Ωpx, x ∈ V is just a differential form of
degree p on V , regular in x. If we set hp,q = dimK H

q(V,Ωp), we know that
in the classical case (and if V is projective), hp,q is equal to the dimension of
harmonic forms of type (p, q) (theorem of Dolbeault2 and, if Bn denotes the n-th
Betti number of V , we have Bn =

∑
p+q=n h

p,q. In the general case, we could
take the above formula for the definition of the Betti numbers of a nonsingular
projective variety (we will see in n◦ 66 that hp,q are finite). It is convenient to
study their properties, in particular to see if they coincide with those involved
in the Weil conjectures for varieties over finite fields3. We only mention that
they satisfy the ,,Poincaré duality” Bn = B2m−n when V is an irreducible of
dimension m.

The cohomology groups Hq(V,S (E)) are also involved in other issues, in-
cluding the Riemann-Roch, as well as in the classification of algebraic fiber
spaces with base V and the affine group x 7→ ax+ b as the structural group (cf.
[17], §4, where the case when dimV = 1 is studied).

2P. Dolbeault. Sur la cohomologie des variétés analytiques complexes. C. R. Paris, 246,
1953, p. 175-177.

3Bulletin Amer. Math. Soc., 55, 1949, p.507
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§3 Coherent algebraic sheaves on affine
varieties

42 Affine varieties

An algebraic variety V is said to be affine if it is isomorphic to a closed subvariety
of an affine space. The product of two affine varieties is an affine variety; any
closed subvariety of an affine variety is an affine variety.

An open subset U of an algebraic variety V is said to be affine if, equipped
with the structure of an algebraic variety induced from X, it is an affine variety.

Proposition 1. Let U and V be two open subsets of an algebraic variety
X. If U and V are affine, U ∩ V is affine.

Let ∆ be the diagonal of X × X; by n◦ 35, the mapping x 7→ (x, x) is a
biregular isomorphism from X onto ∆; thus the restriction of this map to U ∩V
is a biregular isomorphism of U ∩ V onto ∆ ∩ U × V . Since U and V are affine
varieties, U×V is also an affine variety; on the other hand, ∆ is closed in X×X
by the axiom (V AII), thus ∆ ∩ U × V is closed in U × V , hence affine, q.e.d.

(It is easily seen that this Proposition is false for prealgebraic varieties; the
axiom (V AII) plays an essential role).

Let us now introduce a notation which will be used thorough the rest of
this paragraph: if V is an algebraic variety and f is a regular function on V ,
we denote by Vf the open subset of V consisting of all points x ∈ V for which
f(x) 6= 0.

Proposition 2. If V is an affine algebraic variety and f is a regular function
on V , the open subset Vf is affine.

Let W be the subset of V ×K consisting of pairs (x, λ) such that λ·f(x) = 1;
it is clear that W is closed in V ×K, thus it is an affine variety. For all (x, λ) ∈W
set π(x, λ) = x; the mapping π is a regular mapping from W to Vf . Conversely,
for all x ∈ Vf , set ω(x) = (x, 1/f(x)); the mapping ω : Vf → W is regular and
we have π ◦ ω = 1, ω ◦ π = 1, thus Vf and W are isomorphic, q.e.d.

Proposition 3. Let V be a closed subvariety of Kr, F be a closed subset of
V and let U = V − F . The open subsets VP form a base for the topology of U
when P runs over the set of polynomials vanishing on F .

Let U ′ = V −F ′ be an open subset of U and let x inU ′; we must show that
there exists a P for which VP ⊂ U ′ and x ∈ VP ; in other words, P has to be
zero on F ′ and nonzero in x; the existence of such a polynomial follows simply
from the definition of the topology of Kr.

Theorem 1. The open affine subsets of an algebraic variety X form an
open base for the topology of X.
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The question being local, we can assume that X is a locally closed sub-
space of an affine space Kr; in this case, the theorem follows immediately from
Propositions 2 and 3.

Corollary. The coverings of X consisting of open affine subsets are arbi-
trarily fine.

We note that if U = {Ui}i∈I is such a covering, the Ui0...ip are also open
affine subsets, by Proposition 1.

43 Some preliminary properties of irreducible varieties

Let V be a closed subvariety of Kr and let I(V ) be the ideal of K[X1, . . . , Xr]
consisting of polynomials vanishing on V ; letA be the quotient ringK[X1, . . . , Xr]/I(V );
we have a canonical homomorphism

ι : A→ Γ(V,OV )

that is injective by the definition of I(V ).

Proposition 4. If V is irreducible, ι : A→ Γ(V,OV ) is bijective.

(In fact, this holds for any closed subvariety of Kr, as will be shown in the
next n◦ ).

Let K(V ) be the field of fractions of A; by n◦ 36, we can identify Ox,V with
the localization of A in the maximal ideal mx consisting of polynomials vanishing
in x, and we have Γ(V,OV ) = A =

⋂
x∈V Ox,V (all Ox,V being considered as

subrings of K(V )). But all maximal ideals of A are mx, since K is algebraically
closed (Hilbert’s theorem of zeros); it follows immediately (cf. [8], Chap. XV,
§5, th. X) that A =

⋂
x∈V Ox,V = Γ(V,OV ), q.e.d.

Proposition 5. Let X be an irreducible algebraic variety, Q a regular func-
tion on X and P a regular function on XQ. Then, for n sufficiently large, the
rational function QnP is regular on the whole of X.

By quasi-compactness of X, the question is local; by Theorem 1, we can thus
suppose that X is a closed subvariety of Kr. The above Proposition shows that
then Q is an element of A = K[X1, . . . , Xr]/(I(X)). The assumption made on
P means that for any point x ∈ XQ we can write P = Px/Qx with Px and Qx
in A and Qx(x) 6= 0; if a denotes the ideal of A generated by all Qx, the variety
of zeros of a is contained in the variety of zeros of Q; by Hilbert’s theorem of
zeros, this leads to Qn ∈ a for n sufficiently large, hence Qn =

∑
RxQx and

QnP =
∑
RxPx with Rx ∈ A, which shows that QnP is regular on X.

(We could also use the fact that XQ is affine if X is and apply Proposition
4 to XQ).

Proposition 6. Let X be an irreducible algebraic variety, Q a regular func-
tion on X, F a coherent algebraic sheaf on X and s a section of F over X
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whose restriction to XQ is zero. Then for n sufficiently large the section Qns
is zero on the whole of X.

The question being again local, we can assume:
(a) that X is a closed subvariety of Kr,
(b) that F is isomorphic to a cokernel of a homomorphism φ : Op

X → Oq
X ,

(c) that s is the image of a section σ of Oq
X .

(Indeed, all the above conditions are satisfied locally).

Set A = Γ(X,OX) = K[X1, . . . , Xr]/I(X). The section σ can be identified
with a system of q elements of A. Let on the other hand

t1 = φ(1, 0, . . . , 0), . . . , tp = φ(0, . . . , 0, 1);

the ti, 1 ≤ i ≤ p are sections of Oq
X over X, thus can be identified with systems

of q elements of A. The assumption made on s means that for all x ∈ XQ we

have σ(x) ∈ φ(Op
x,X), that is, σ can be written in the form σ =

∑i=p
i=1 fi · ti with

fi ∈ Ox,X ; or, by clearing denominators, that there exist Qx ∈ A, Qx(x) 6= 0 for

which Qx · σ =
∑i=p
i=1 Ri · ti with Ri ∈ A. The reasoning used above shows then

that, for n sufficiently large, Qn belongs to the ideal generated by Qx, hence
Qnσ(x) ∈ φ(Op

x,X) for all x ∈ X, which means that Qns is zero on the whole of
X.

44 Vanishing of certain cohomology groups

Proposition 7. Let X be an irreducible algebraic variety, Qi a finite family
of regular functions on X that do not vanish simultaneously and U the open
covering of X consisting of XQi = Ui. If F is a coherent algebraic subsheaf of
Op
X , we have Hq(U,F ) = 0 for all q > 0.

Possibly replacing U by an equivalent covering, we can assume that none of
the functions Qi vanishes identically, in other words that we have Ui 6= ∅ for all
i.

Let f = (fi0...iq ) be a q-cocycle of U with values in F . Each fi0...iq is
a section of F over Ui0...iq , thus can be identified with a system of p regular
functions on Ui0...iq ; applying Proposition 5 to Q = Qi0 . . . Qiq we see that, for n
sufficiently large, gi0...iq = (Qi0 . . . Qiq )

nfi0...iq is a system of p regular functions
on X. Choose an integer n for which this holds for all systems i0, . . . , iq, which
is possible because there is a finite number of such systems. Consider the image
of gi0...iq in the coherent sheaf Op

X/F ; this is a section vanishing on Ui0...iq ;
then applying Proposition 6 we see that for m sufficiently large, the product of
this section with (Qi0 . . . Qiq )

m is zero on the whole of X. Setting N = m+ n,
we see that we have constructed sections hi0...iq of F over X which coincide
with (Qi0 . . . Qiq )

Nfi0...iq on Ui0...iq .

As the QNi do not vanish simultaneously, there exist functions

Ri ∈ Γ(X,OX)
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such that
∑
RiQ

N
i = 1. Then for any system i0, . . . , iq−1 set

ki0...iq−1 =
∑
i

Rihii0...iq−1/(Qi0 . . . Qiq−1)N ,

which makes sense because Qi0 . . . Qiq−1
is nonzero on Ui0...iq−1

.

We have thus defined a cochain k ∈ Cq−1(U,F ). I claim that f = dk, which
will show the Proposition.

We must check that (dk)i0...iq = fi0...iq ; it suffices to show that these two
sections coincide on U =

⋂
Ui, since they will coincide everywhere, because they

are systems of p rational functions on X and U 6= 0. Now over U , we can write

ki0...iq−1
=
∑
i

Ri ·QNi · fii0...iq ,

hence

(dk)i0...iq =

j=q∑
j=0

(−1)q
∑
i

Ri ·QNi · fii0...̂ij ...iq

and taking into account that f is a cocycle,

(dk)i0...iq =
∑
i

Ri ·QNi · fi0...iq = fi0...iq , q.e.d.

Corollary 1. Hq(X,F ) = 0 for q > 0.

Indeed, Proposition 3 shows that coverings of the type used in Proposition
7 are arbitrarily fine.

Corollary 2. The homomorphism Γ(X,Op
X)→ Γ(X,Op

X/F ) is surjective.

This follows from Corollary 1 above and from Corollary 2 to Proposition 6
from n◦ 24.

Corollary 3. Let V be a closed subvariety of Kr and let

A = K[X1, . . . , Xr]/I(V ).

Then the homomorphism ι : A→ Γ(V,OV ) is bijective.

We apply Corollary 2 above to X = Kr, p = 1, F = J (V ), the sheaf of
ideals defined by V ; we obtain that every element of Γ(V,OV ) is the restriction
of a section of O on X, that is, a polynomial, by Proposition 4 applied to X.
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45 Sections of a coherent algebraic sheaf on an affine va-
riety

Theorem 2. Let F be a coherent algebraic sheaf on an affine variety X. For
every x ∈ X, the Ox,X–module Fx is generated by elements of Γ(X,F ).

Since X is affine, it can be embedded as a closed subvariety of an affine space
Kr; by extending the sheaf F by 0 outside X, we obtain a coherent algebraic
sheaf on Kr (cf. n◦ 39) and we are led to prove the theorem for the new sheaf.
In other words, we can suppose that X = Kr.

By the definition of a coherent sheaf, there exists a covering of X consisting
of open subsets on which F is isomorphic with a quotient of the sheaf Op.
Applying Proposition 3, we see that there exists a finite number of polynomials
Qi that do not vanish simultaneously and such that on every Ui = XQi there
exists a surjective homomorphism φi : Opi → F ; we can furthermore assume
that none of the polynomials is identically zero.

The point x belongs to one Ui, say U0; it is clear that Fx is generated by
sections of F over U0; as Q0 is invertible in Ox, it suffices to prove the following
lemma:

Lemma 1. If s0 is a section of F over U0, there exists an integer N and a
section s of F over X such that s = QN0 · s0 over U0.

By Proposition 2, Ui ∩ U0 is an affine variety, obviously irreducible; by ap-
plying Corollary 2 of Proposition 7 to this variety and to φi : Opi → F , we
see that there exists a section σ0i of Opi on Ui ∩ U0 such that φi(σ0i) = s0 on
Ui ∩ U0; as Ui ∩ U0 is the set of points of Ui in which Q0 does not vanish, we
can apply Proposition 5 to X = Ui, Q = Q0 and we see that there exists, for n
sufficiently large, a section σi of Opi over Ui which coincides with Qn0 · σ0i over
Ui ∩U0; by setting s′i = φi(σi), we obtain a section of F over Ui that coincides
with Qn0 · s0 over Ui ∩ U0. The sections s′i and s′j coincide on Ui ∩ Uj ∩ U0;
applying Proposition 6 to s′i − s′j , we see that for m sufficiently large we have
Qm0 (s′i − s′j) = 0 on the whole of Ui ∩ Uj . The Qm0 · s′i then define a unique

section s of F over X, and we have s = Qn+m0 s0 on U0, which shows the lemma
and completes the proof of Theorem 2.

Corollary 1. The sheaf F is isomorphic to a quotient sheaf of the sheaf
Op
X .

Because Fx is an Ox,X–module of finite type, it follows from the above
theorem that there exists a finite number of sections of F generating Fx; by
Proposition 1 of n◦ 12, these sections generate Fy for y sufficiently close to x.
The space X being quasi-compact, we conclude that there exists a finite number
of sections s1, . . . , sp of F generating Fx for all x ∈ X, which means that F is
isomorphic to a quotient sheaf of the sheaf Op

X .
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Corollary 2. Let A
α−→ B

β−→ C be an exact sequence of coherent algebraic

sheaf on an affine variety X. The sequence Γ(X,A )
α−→ Γ(X,B)

β−→ Γ(X,C ) is
also exact.

We can suppose, as in the proof of Theorem 2, that X is an affine space
Kr, thus is irreducible. Set J = =(α) = Ker(β); everything reduces to seeing
that α : Γ(X,A ) → Γ(X,J ) is surjective. Now, by Corollary 1, we can find
a surjective homomorphism φ : Op

X → A and, by Corollary 2 to Proposition
7, α ◦ φ : Γ(X,Op

X) → Γ(X,J ) is surjective; this is a fortiori the same for
α : Γ(X,A )→ Γ(X,J ), q.e.d.

46 Cohomology groups of an affine variety with values in
a coherent algebraic sheaf

Theorem 3. Let X be an affine variety, Qi a finite family of regular functions
on X that do not vanish simultaneously and let U be the open covering of X
consisting of XQi = Ui. If F is a coherent algebraic sheaf on X, we have
Hq(U,F ) = 0 for all q > 0.

Assume first that X is irreducible. By Corollary 1 to Theorem 2, we can
find an exact sequence

0→ R → Op
X → F → 0.

The sequence of complexes: 0→ C(U,R)→ C(U,Op
X)→ C(U,F )→ 0 is exact ;

indeed, this reduces to saying that every section of F over Ui0...iq is the image
of a section of Op

X over Ui0...iq , which follows from Corollary 2 to Proposition 7
applied to the irreducible variety Ui0...iq . This exact sequence gives birth to an
exact sequence of cohomology:

. . .→ Hq(U,Op
X)→ Hq(U,F )→ Hq+1(U,R)→ . . . ,

and as Hq(U,Op
X) = Hq+1(U,R) = 0 for q > 0 by Proposition 7, we conclude

that Hq(U,F ) = 0.

We proceed now to the general case. We can embed X as a closed subvariety
of an affine space Kr; by Corollary 3 to Proposition 7, the functions Qi are
induced by polynomials Pi; let on the other hand Rj be a finite system of
generators of the ideal I(X). The functions Pi, Rj do not vanish simultaneously
on Kr, thus define an open covering U′ of Kr; let F ′ be the sheaf obtained by
extending F by 0 outside X; applying what we have proven to the space Kr,
the functions Pi, Rj and the sheaf F ′, we see that Hq(U′,F ′) = 0 for q > 0.
As we can immediately verify that the complex C(U′,F ′) is isomorphic to the
complex C(U,F ), it follows that Hq(U,F ) = 0, q.e.d.

Corollary 1. If X is an affine variety and F a coherent algebraic sheaf on
X, we have Hq(X,F ) = 0 for all q > 0.
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Indeed, the coverings used in the above theorem are arbitrarily fine.

Corollary 2. Let 0 → A → B → C → 0 be an exact sequence of sheaves
on an affine variety X. If the sheaf A is coherent algebraic, the homomorphism
Γ(X,V)→ Γ(X,C ) is surjective.

This follows from Corollary 1, by setting q = 1.

47 Coverings of algebraic varieties by open affine subsets

Proposition 8. Let X be an affine variety and let U = {Ui}i∈I be a finite
covering of X by open affine subsets. If F is a coherent algebraic sheaf on X,
we have Hq(U,F ) = 0 for all q > 0.

By Proposition 3, there exist regular functions Pj on X such that the cov-
ering V = {XPj} is finer than U. For every (i0, . . . , ip), the covering Vi0,...,ip

induced by V on Ui0...ip is defined by restrictions of Pj to Ui0...ip ; as Ui0...ip is
an affine variety by Proposition 1, we can apply Theorem 3 to it and conclude
that Hq(Vi0...ip ,F ) = 0 for all q > 0. Applying then Proposition 5 of n◦ 29,
we see that

Hq(U,F ) = Hq(V,F ),

and, as Hq(V,F ) = 0 for q > 0 by Theorem 3, the Proposition is proven.

Theorem 4. Let X be an algebraic variety, F a coherent algebraic sheaf
on X and U = {Ui}i∈I a finite covering of X by open affine subsets. The
homomorphism σ(U) : Hn(U,F )→ Hn(X,F ) is bijective for all n ≥ 0.

Consider the family Vα of all finite coverings of X by open affine subsets.
By the corollary of Theorem 1, these coverings are arbitrarily fine. On the other
hand, for every system (i0, . . . , ip) the covering Vα

i0...ip
induced by Vα on Ui0...ip

is a covering by open affine subsets, by Proposition 1; by Proposition 8, we thus
have Hq(Vα

i0...ip
,F ) = 0 for q > 0. The conditions (a) and (b) of Theorem 1,

n◦ 29 are satisfied and the theorem follows.

Theorem 5. Let X be an algebraic variety and U = {Ui}i∈I a finite cov-
ering of X by open affine subsets. Let 0 → A → B → C → 0 be an exact
sequence of sheaves on X, the sheaf A being coherent algebraic. The canonical
homomorphism Hq

0 (U,C )→ Hq(U,C ) (cf. n◦ 24) is bijective for all q ≥ 0.

It obviously suffices to prove that C0(U,C ) = C(U,C ), that is, that every
section of C over Ui0...iq is the image of a section of B over Ui0...iq , which follows
from Corollary 2 of Theorem 3.

Corollary 1. Let X be an algebraic variety and let 0→ A → B → C → 0
be an exact sequence of sheaves on X, the sheaf A being coherent algebraic. The
canonical homomorphism Hq

0 (X,C )→ Hq(X,C ) is bijective for all q ≥ 0.

This is an immediate consequence of Theorems 1 and 5.

Corollary 2. We have an exact sequence:

. . .→ Hq(X,B)→ Hq(X,C )→ Hq+1(X,A )→ Hq+1(X,B)→ . . .
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§4 Correspondence between modules of
finite type and coherent algebraic

sheaves

48 Sheaf associated to a module

Let V be an affine variety, O the sheaf of local rings of V ; the ring A = Γ(V,O),
which will be called the ring of coordinates of V , is an algebra over K which
has no nilpotent elements but 0. If V is embedded as a closed subvariety of
an affine space Kr, we know (cf. n◦ 44) that A is identified with the quotient
algebra of K[X1, . . . , Xr] by the ideal of polynomials vanishing on V ; it follows
that the algebra A is generated by a finite number of elements.

Conversely, we verify easily that if A is a commutative K–algebra without
nilpotent elements (other that 0) and is generated by a finite number of elements,
there exists an affine variety V such that A is isomorphic to Γ(V,O); moreover,
V is determined up to isomorphism by this property (we can identify V with
the set of characters of A equipped with the usual topology).

Let M be an A–module; M defines a constant sheaf on V which we denote
again by M ; the same way A defines a constant sheaf, and the sheaf M can
be considered as a sheaf of A–modules. Define A (M) = O ⊗A M , the sheaf
O being also considered as a sheaf of A–modules; it is clear that A (M) is an
algebraic sheaf on V . Moreover, if φ : M → M ′ is an A–homomorphism, we
have a homomorphism A (φ) = 1⊗φ : A (M)→ A (M ′); in other words, A (M)
is a covariant functor of the module M .

Proposition 1. The functor A (M) is exact.

Let M →M ′ →M ′′ be an exact sequence of A–modules. We must observe
that the sequence A (M) → A (M ′) → A (M ′′) is exact, in other words, that
for all x ∈ V the sequence:

Ox ⊗AM → Ox ⊗AM ′ → Ox ⊗AM ′′

is exact.

Now Ox is nothing else that the localization AS of A, S being the set of
those f ∈ A for which f(x) 6= 0 (for the definition of localization, cf. [8], [12] or
[13]). Proposition 1 is thus a particular case of the following result:

Lemma 1. Let A be a ring, S a multiplicative system in A not containing
0, AS the localization of A in S. If M → M ′ → M ′′ is an exact sequence of
A–modules, the sequence AS ⊗AM → AS ⊗AM ′ → AS ⊗AM ′′ is exact.

Denote by MS the set of fractions m/s with m ∈M , s ∈ S, two fractions m/s
and m′/s′ being identified if there exists an s′′ ∈ S such that s′′(s′·m−s·m′) = 0;
it is easily seen that MS is an AS–module and that the mapping

a/s⊗m 7→ a ·m/s
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is an isomorphism from AS ⊗A A onto MS ; we are thus led to prove that the
sequence

MS →M ′S →M ′′S

is exact, which is obvious.

Proposition 2. A (M) = 0 implies M = 0.

Let m be an element of M ; if A (M) = 0, we have 1 ⊗m = 0 in Ox ⊗AM
for all x ∈ V . By the discussion above, 1⊗m = 0 is equivalent to existence of
an element s ∈ A, s(x) 6= 0 such that s ·m = 0; the annihilator of m in M is
not contained in any maximal ideal of A, which implies that it is equal to A, so
m = 0.

Proposition 3. If M is an A–module of finite type, A (M) is a coherent
algebraic sheaf on V .

Because M is of finite type and since A is Noetherian, M is isomorphic to
the cokernel of a homomorphism φ : Aq → Ap and A (M) is isomorphic to the
cokernel of A (φ) : A (Aq) → A (Ap). As A (Ap) = Op and A (Aq) = Oq, it
follows that A (M) is coherent.

49 Module associated to an algebraic sheaf

Let F be an algebraic sheaf on V and let Γ(F ) = Γ(V,F ); since F is a sheaf
of O–modules, Γ(F ) is equipped with a natural structure of an A–module.
Any algebraic homomorphism φ : F → G defines an A–homomorphism Γ(φ) :
Γ(F )→ Γ(G ). If we have an exact sequence of algebraic sheaves F → G → K ,
the sequence

Γ(F )→ Γ(G )→ Γ(K )

is exact (n◦ 45); applying this to an exact sequence Op → F → 0 we see that
Γ(F ) is an A–module of finite type if F is coherent.

The functors A (M) and Γ(F ) are ,,inverse” to each other:

Theorem 1. (a) If M is an A-module of finite type, Γ(A (M)) is canoni-
cally isomorphic to M .

(b) If F is a coherent algebraic sheaf on V , A (Γ(F )) is canonically iso-
morphic to F .

First let us show (a). Every element m ∈ M defines a section α(m) of
A (M) by the formula: α(m)(x) = 1⊗m ∈ Ox ⊗AM ; hence a homomorphism
α : M → Γ(A (M)). When M is a free module of finite type, α is bijective (it
suffices to see this when M = A, in which case it is obvious); if M is an arbitrary
module of finite type, there exists an exact sequence L1 → L0 →M → 0 where
L0 and L1 are free of finite type; the sequence A (L1)→ A (L0)→ A (M)→ 0
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is exact, thus also the sequence Γ(A (L1))→ Γ(A (L0))→ Γ(A (M))→ 0. The
commutative diagram:

L1 L0 M 0

Γ(A (L1)) Γ(A (L0)) Γ(A (M)) 0

α α α α

shows then that α : M → Γ(A (M)) is bijective, which shows (a).

Let now F be an algebraic coherent sheaf on V . If we associate to every
s ∈ Γ(F ) an element s(x) ∈ F (X), we obtain an A–homomorphism: Γ(F )→
Fx which extends to an Ox–homomorphism βx : Ox ⊗A Γ(F )→ Fx; we easily
verify that the βx form a homomorphism of sheaves β : A (Γ(F ))→ F . When
F = Op, the homomorphism β is bijective; it follows by the same reasoning as
above that β is bijective for every coherent algebraic sheaf F , which shows (b).

Remarks. (1) We could also deduce (b) from (a); cf. n◦ 65, proof of
Proposition 6.

(2) We will see in Chapter III how the above correspondence should be
modified when one studies coherent sheaves on the projective space.

50 Projective modules and vector bundles

Recall ([6], Chap. I, th. 2.2) that an A–module is called projective if it is a
direct summand of a free A–module.

Proposition 4. Let M be an A–module of finite type. Then M is projective
if and only if the Ox–module Ox ⊗AM is free for every x ∈ V .

If M is projective, Ox ⊗A M is Ox–projective, thus Ox–free since Ox is a
local ring (cf. [6], Chap. VIII, th. 6.1’).

Conversely, if all Ox ⊗AM are free, we have

dim(M) = Sup dimx∈V (Ox ⊗AM) = 0 (cf.[6], Chap.V II, Exer.11),

from which it follows that M is projective ([6], Chap. VI, §2).

Note that if F is a coherent algebraic sheaf on V and if Fx is isomorphic to
Op
x , F is isomorphic to Op in a neighborhood of x; if this property is satisfied

in every x ∈ V , the sheaf F is thus locally isomorphic to the sheaf Op, the
integer p being constant on every connected component of V . Applying this to
the sheaf A (M), we obtain:

Corollary. Let F be a coherent algebraic sheaf on a connected affine variety
V . The three following properties are equivalent:

(i) Γ(F ) is a projective A–module,
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(ii) F is locally isomorphic to Op,
(iii) F is isomorphic to the sheaf of germs of sections of a vector bundle

with base V .

In other words, the mapping E 7→ Γ(S (E) (E denoting a vector bundle)
gives a bijective correspondence between classes of vector bundles and classes
of projective A–modules of finite type; in this correspondence, a trivial bundle
corresponds to a free module and conversely.

Note that when V = Kr (in which case A = K[X1, . . . , Xr]), we do not
know if there exist projective A–modules that are not free, or equivalently, if
there exist algebraic vector bundles with base Kr that are not trivial.
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§1 Projective varieties

51 Notations

(The notations introduced below will be used without reference during the whole
chapter).

Let r be an integer ≥ 0 and let Y = Kr+1 − {0}; the multiplicative group
K∗ of nonzero elements of K acts on Y by the formula

λ(µ0, . . . , µr) = (λµ0, . . . , λµr).

Two points y and y′ will be called equivalent if there exists λ ∈ K∗ such that
y′ = λy; the quotient space of Y by this equivalence relation will be denoted
by Pr(K) or simply X; it is the projective space of dimension r over K; the
canonical projection of Y onto X will be denoted π.

Let I = {0, 1, . . . , r}; for every i ∈ I, we denote by ti the i-th coordinate
function on Kr+1, defined by the formula:

ti(µ0, . . . , µr) = µi.

We denote by Vi the open subset of Kr+1 consisting of points whose ti is
6= 0 and by Ui the image of Vi by π; the {Ui} form a covering U of X. If i ∈ I
and j ∈ I, the function tj/ti is regular on Vi and invariant for K∗, thus defines
a function on Ui which we denote also by tj/ti; for fixed i, the functions tj/ti,
j 6= i define a bijection φi : Ui → Kr.

We equip Kr+1 with the structure of an algebraic variety and Y the induced
structure. Likewise, we equip X with the quotient topology from Y : a closed
subset of X is thus the image by π of a closed cone in Kr+1. If U is open
in X, we define AU = Γ(π−1(U),OY ); this is the sheaf of regular functions
on π−1(U). Let A0

U be the subring of AU consisting of elements invariant for
K∗ (that is, homogeneous functions of degree 0). When V ⊃ U , we have a
restriction homomorphism φVU : A0

V → A0
U and the system (A0

U , φ
V
U ) defines a

sheaf OX which can be considered as a subsheaf of the sheaf F (X) of germs of
functions on X. Such a function f , defined in a neighborhood of x belongs to
Ox,X if and only if it coincides locally with a function of the form P/Q where
P and Q are homogeneous polynomials of the same degree in t0, . . . , tr with
Q(y) 6= 0 for y ∈ π−1(x) (which we write for brevity as Q(x) 6= 0).

Proposition 1. The projective space X = Pr(K), equipped with the topology
and sheaf above, is an algebraic variety.

The Ui, i ∈ I are open in X and we verify immediately that the bijections
φi : Ui → Kr defined above are biregular isomorphisms, which shows that the
axiom (V AI) is satisfied. To show that (V AII) is also satisfied, we must observe
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that the subset of Kr×Kr consisting of all pairs (ψi(x), ψj(x)) where x ∈ Ui∩Uj
is closed, which does not pose difficulties.

In what follows, X will be always equipped with the structure of an algebraic
variety just defined; the sheaf OX will be simply denoted O. An algebraic variety
V is called projective if it is isomorphic to a closed subvariety of a projective
space. The study of coherent algebraic sheaves on projective varieties can be
reduced to the study of coherent algebraic sheaves on Pr(K), cf. n◦ 39.

52 Cohomology of subvarieties of the projective space

Let us apply Theorem 4 from n◦ 47 to the covering U = {Ui}i∈I defined in the
preceding n◦ : it is possible since each Ui is isomorphic to Kr. We thus obtain:

Proposition 2. If F is a coherent algebraic sheaf on X = Pr(K), the
homomorphism σ(U) : Hn(U,F )→ Hn(X,F ) is bijective for all n 6= 0.

Since U consists of r + 1 open subsets, we have (cf. n◦ 20, corollary to
Proposition 2):

Corollary. Hn(X,F ) = 0 for n > r.

This result can be generalized in the following way:

Proposition 3. Let V be an algebraic variety, isomorphic to a locally closed
subvariety of the projective space X. Let F be an algebraic coherent sheaf on
V and let W be the subvariety of V such that F is zero outside W . We then
have Hn(V,F ) = 0 for n > dimW .

In particular, taking W = V , we see that we have:

Corollary. Hn(V,F ) = 0 for n > dimV .

Identify V with a locally closed subvariety of X = Pr(K); there exists an
open subset U of X such that V is closed in U . We can clearly assume that
W is closed in V , so that W is closed in U . Let F = X − U . Before proving
Proposition 3, we establish two lemmas:

Lemma 1. Let k = dimW ; there exists k + 1 homogeneous polynomials
Pi(t0, . . . , tr) of degrees > 0, vanishing on F and not vanishing simultaneously
on W .

(By abuse of language, we say that a homogeneous polynomial P vanishes
in a point x of Pr(K) if it vanishes on π−1(x)).

We proceed by induction on k, the case when k = −1 being trivial. Choose
a point on each irreducible component of W and let P1 be a homogeneous poly-
nomial vanishing on F , of degree > 0 and nonvanishing in each of these points
(the existence of P1 follows from the fact that F is closed, given the definition of
the topology of Pr(K)). Let W ′ be a subvariety of W consisting of points x ∈W
such that P1(x) = 0; by the construction of P1, no irreducible component of W
is contained in W ′ and it follows (cf. n◦ 36) that dimW ′ < k. Applying the
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induction assumption to W ′, we see that there exist k homogeneous polynomials
P2, . . . , Pk+1 vanishing on F and nonvanishing simultaneously on W ′; it is clear
that the polynomials P1, . . . , Pk+1 satisfy appropriate conditions.

Lemma 2. Let P (t0, . . . , tr) be a homogeneous polynomial of degree n > 0.
The set XP of all points x ∈ X such that P (x) 6= 0 is an open affine subset of
X.

If we assign to every point y = (µ0, . . . , µr) ∈ Y the point of the space KN

having for coordinates all monomials µm0
0 . . . µmrr , m0+ . . .+mr = n, we obtain,

by passing to quotient, a mapping φn : X → PN−1(K). It is classical, and also
easy to verify, that φn is a biregular isomorphism of X onto a closed subvariety
of PN−1(K) (,,Veronese variety”); now φn transforms the open subset XP onto
the locus of points of φn(X) not lying on a certain hyperplane of PN−1(X); as
the complement of any hyperplane is isomorphic to an affine space, we conclude
that XP is isomorphic to a closed subvariety of an affine space.

We shall now prove Proposition 3. Extend the sheaf F by 0 on U − V ;
we obtain a coherent algebraic sheaf on U which we also denote by F , and
we know (cf. n◦ 26) that Hn(U,F ) = Hn(V,F ). Let on the other hand
P1, . . . , Pk+1 be homogeneous polynomials satisfying the conditions of Lemma
1; let Pk+2, . . . , Ph be homogeneous polynomials of degrees > 0, vanishing on
W ∪F and not vanishing simultaneously in any point of U −W (to obtain such
polynomials, it suffices to take a system of homogeneous coordinates of the ideal
defined by W ∪ F in K[t0, . . . , tr]). For every i, 1 ≤ i ≤ h, let Vi be the set of
points x ∈ X such that Pi(x) 6= 0; we have Vi ⊂ U and the assumptions made
above show that V = {Vi} is an open covering of U ; moreover, Lemma 2 shows
that Vi are open affine subsets, so Hn(V,F ) = Hn(U,F ) = Hn(V,F ) for all
n ≥ 0. On the other hand, if n > k and if the indices i0, . . . , in are distinct,
one of the indices is > k + 1 and Vi0...in does not meet W ; we conclude that
the group of alternating cochains C ′n(V,F ) is zero if n > k, which shows that
Hn(V,F ) = 0, by Proposition 2 of n◦ 20.

53 Cohomology of irreducible algebraic curves

If V is an irreducible algebraic variety of dimension 1, the closed subsets of V
distinct from V are finite subsets. If F is a finite subset of V and x a point of
F , we set V px = (V − F ) ∪ {x}; the V Fx , x ∈ F form a finite open covering VF

of V .

Lemma 3. The coverings VF of the above type are arbitrarily fine.

Let U = {Ui}i∈I be an open covering of V , which we may assume to be finite
since V is quasi-compact. We can likewise assume that Ui 6= ∅ for all i ∈ I.
If we set Fi = V − Ui, Fi is also finite, and so is F =

⋃
i∈I Fi. We will show

that VF ≺ U, which proves the lemma. Let x ∈ F ; there exists an i ∈ I such
that x /∈ Fi, since the Ui cover V ; we have then F − {x} ⊃ Fi, because F ⊃ Fi,
which means that V Fx ⊂ Ui and shows that VF ≺ U.
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Lemma 4. Let F be a sheaf on V and F a finite subset of V . We have

Hn(VF ,F ) = 0

for n ≥ 2.

Set W = V −F ; it is clear that V Fx0
∩ . . .∩V Fxn = W if x0, . . . , xn are distinct

and if n ≥ 1. If we put G = Γ(W,F ), it follows that the alternating complex
C ′(VF ,F ) is isomorphic, in dimensions ≥ 1, to C ′(S(F ), G), S(F ) denoting
the simplex with F for the set of vertices. It follows that

Hn(VF ,F ) = Hn(S(F ), G) = 0 for n ≥ 2,

the cohomology of a simplex being trivial.

Lemmas 3 and 4 obviously imply:

Proposition 4. If V is an irreducible algebraic curve and F is an arbitrary
sheaf in V , we have Hn(V,F ) = 0 for n ≥ 2.

Remark. I do not know whether an analogous result is true for varieties of
arbitrary dimension.
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§2 Graded modules and coherent algebraic
sheaves on the projective space

54 The operation F (n)

Let F be an algebraic sheaf on X = Pr(K). Let Fi = F (Ui) be the restriction
of F to Ui (cf. n◦ 51); if n is an arbitrary integer, let θij(n) be the isomorphism
of Fj(Ui∩Uj) with Fi(Ui∩Uj) defined by multiplication by the function tnj /t

n
i ;

this makes sense, since tj/ti is a regular function on Ui ∩Uj with values in K∗.
We have θij(n) ◦ θjk(n) = θik(n) at every point of Ui ∩ Uj ∩ Uk; we can thus
apply Proposition 4 of n◦ 4 and obtain an algebraic sheaf denoted by F (n),
defined by gluing the sheaves Fi = F (Ui) using the isomorphisms θij(n).

We have the canonical isomorphisms: F (0) ≈ F , F (n)(m) ≈ F (n + m).
Moreover, F (n) is locally isomorphic to F , thus coherent if F is; it also follows
that every exact sequence F → F ′ → F ′′ of algebraic sheaves gives birth to
exact sequences F (n)→ F ′(n)→ F ′′(n) for all n ∈ Z.

We can apply the above procedure to the sheaf F = O and so obtain the
sheaves O(n), n ∈ Z. We will give another description of these sheaves: if U is
open in X, let AnU be the subset of AU = Γ(π−1(U),OY ) consisting of regular
functions of degree n (that is, satisfying the identity f(λy) = λnf(y) for λ ∈ K∗
and y ∈ π−1(U)); the AnU are A0

U–modules, thus give birth to an algebraic sheaf,
which we denote by O ′(n). An element of O ′(n)x, x ∈ X can be this identified
with a rational function P/Q, P and Q being homogeneous polynomials such
that Q(x) 6= 0 and degP − degQ = n.

Proposition 1. The sheaves O(n) and O ′(n) are canonically isomorphic.

By definition, a section of O(n) over an open U ⊂ X is a system (fi) of
sections of O over U ∩ Ui with fi = (tnj /t

n
i ) · fj on U ∩ Ui ∩ Uj ; the fj can

be identified with regular functions, homogeneous of degree 0 over π−1(U) ∩
π−1(Ui); set gi = tni · fi; we then have gi = gj at every point of π−1(U) ∩
π−1(Ui) ∩ π−1(Uj), thus the gi are the restrictions of a unique regular function
on π−1(U), homogeneous of degree n. Conversely, such a function g defines a
system (fi) by setting fi = g/tni . The mapping (fi) 7→ g is thus an isomorphism
of O(n) with O ′(n).

Henceforth, we will often identify O(n) with O ′(n) by means of the above
isomorphism. We observe that a section of O ′(n) over X is just a regular
function on Y , homogeneous of degree n. If we assume that r ≥ 1, such a
function is identically zero for n < 0 and it is a homogeneous polynomial of
degree n for n ≥ 0.

Proposition 2. For every algebraic sheaf F , the sheaves F (n) and F ⊗O

O(n) are canonically isomorphic.
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Since O(n) is obtained from the Oi by gluing with respect to θij(n), F⊗O(n)
is obtained from Fi⊗Oi by gluing with respect to the isomorphisms 1⊗ θij(n);
identifying Fi ⊗ Oi with Fi we recover the definition of F (n).

Henceforth, we will also identify F (n) with F ⊗ O(n).

55 Sections of F (n)

Let us first show a lemma on algebraic varieties, that is quite analogous to
Lemma 1 of n◦ 45:

Lemma 1. Let V be an affine variety, Q a regular function on V and VQ
the set of all points x ∈ V such that Q(x) 6= 0. Let F be a coherent algebraic
sheaf on V and let s be a section of F over VQ. Then, for n sufficiently large,
there exists a section s′ of F over the whole V such that s′ = Qns over VQ.

Embedding V in an affine space and extending F by 0 outside V , we are
brought to the case where V is an affine space, thus is irreducible. By Corollary 1
to Theorem 2 from n◦ 45, there exists a surjective homomorphism φ : Op

V → F ;
by Proposition 2 of n◦ 42, VQ is an open affine subset and thus there exists (n◦ 44,
Corollary 2 to Proposition 7) a section σ of Op

V over VQ such that φ(σ) = s. We
can identify σ with a system of p regular functions on VQ; applying Proposition
5 of n◦ 43 to each of these functions, we see that there exists a section σ′ of Op

V

over V such that σ′ = Qnσ on VQ, provided that n is sufficiently large. Setting
s′ = φ(σ′), we obtain a section of F over V such that s′ = Qns on VQ.

Theorem 1. Let F be a coherent algebraic sheaf on X = Pr(K). There
exists an integer n(F ) such that for all n ≥ n(F ) and all x ∈ X, the Ox–module
F (n)x is generated by elements of Γ(X,F (n)).

By the definition of F (n), a section s of F (n) over X is a system (si) of
sections of F over Ui satisfying the compatibility conditions:

si = (tnj /t
n
i ) · sj on Ui ∩ Uj ;

we say that si is the i-th component of s.

On the other hand, since Ui is isomorphic to Kr, there exists a finite number
of sections sαi of F over Ui which generate Fx for all x ∈ Ui (n◦ 45, Corollary 1
to Theorem 2); if for a certain integer n we can find sections sα of F (n) whose
i-th component is sαi , it is clear that Γ(X,F (n)) generates F (n)x for all x ∈ Ui.
Theorem 1 is thus proven if we prove the following Lemma:

Lemma 2. Let si be a section of F over Ui. For all n sufficiently large,
there exists a section s of F (n) whose i-th component is equal to si.

Apply Lemma 1 to the affine variety V = Uj , the function Q = ti/tj and the
section si restricted to Ui ∩ Uj ; this is legal, because ti/tj is a regular function
on Uj whose zero set is equal to Uj −Ui ∩Uj . We conclude that there exists an
integer p and a section s′j of F over Uj such that s′j = (tpi /t

p
j ) · si on Ui ∩ Uj ;
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for j = i, we have s′i = si, which allows us to write the preceding formula in the
form s′j = (tpi /t

p
j ) · s′i.

The s′j being defined for every index j (with the same exponent p), consider
s′j−(tpk/t

p
j )·s′k; it is a section of F over Uj∩Uk whose restriction to Ui∩Uj∩Uk is

zero; by applying Proposition 6 of n◦ 43 we see that for every sufficiently large
integer q we have (tqi /t

q
j)(s

′
j − (tpk/t

p
j ) · s′k) = 0 on Uj ∩ Uk; if we then put

sj = (tqi /t
q
j) · s′j and n = p + q, the above formula is written sj = (tnk/t

n
j ) · sk

and the system s = (sj) is a section of F (n) whose i-th component is equal to
si, q.e.d.

Corollary. Every coherent algebraic sheaf F on X = Pr(K) is isomorphic
to a quotient sheaf of a sheaf O(n)p, n and p being suitable integers.

By the above theorem, there exists an integer n such that F (−n)x is gen-
erated by Γ(X,F (−n)) for every x ∈ X; by the quasi-compactness of X, this
is equivalent to saying that F (−n) is isomorphic to a quotient sheaf of a sheaf
Op, p being an appropriate integer ≥ 0. It follows then that F ≈ F (−n)(n) is
isomorphic to a quotient sheaf of O(n)p ≈ Op(n).

56 Graded modules

Let S = K[t0, . . . , tr] be the algebra of polynomials in t0, . . . , tr; for every integer
n ≥ 0, let Sn be the linear subspace of S consisting by homogeneous polynomials
of degree n; for n < 0, we set Sn = 0. The algebra S is a direct sum of Sn,
n ∈ Z and we have Sp · Sq ⊂ Sp+q; in other words, S is a graded algebra.

Recall that an S–module M is said to be graded if there is given a decompo-
sition of M into a direct sum: M =

⊕
n∈ZMn, Mn being subgroups of M such

that Sp ·Mq ⊂Mp+q for every couple (p, q) of integers. An element of Mn is said
to be homogeneous of degree n; a submodule N of M is said to be homogeneous
if it is a direct sum of N ∩Mn, in which case it is a graded S–module. If M
and M ′ are two graded S–modules, an S–homomorphism

φ : M →M ′

is said to be homogeneous of degree s if φ(Mn) ⊂ M ′n+s for every n ∈ Z. A
homogeneous S–homomorphism of degree 0 is simply called a homomorphism.

If M is a graded S–module and n an integer, we denote by M(n) the graded
S–module:

M(n) =
⊕
p∈Z

M(n)p with M(n)p = Mn+p.

We thus have M(n) = M as S–modules, but a homogeneous element of degree
p of M(n) is homogeneous of degree n+ p in M ; in other words, M(n) is made
from M by lowering degrees by n units.

We denote by C the class of graded S–modules M such that Mn = 0 for n
sufficiently large. If A → B → C is an exact sequence of homomorphisms of
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graded S–modules, the relations A ∈ C , C ∈ C clearly imply B ∈ C ; in other
words, C is a class in the sense of [14], Chap. I. Generally, we use the terminol-
ogy introduced in the aforementioned article; in particular, a homomorphism
φ : A → B is called C -injective (resp. C -surjective) if Ker(φ) ∈ C (resp. if
Coker(φ) ∈ C ) and C -bijective if it is both C -injective and C -surjective.

A graded S–module M is said to be of finite type if it is generated by a finite
number of elements; we say that M satisfies the condition (TF) if there exists
an integer p such that the submodule

⊕
n≥pMn of M is of finite type; it is the

same to say that M is C -isomorphic to a module of finite type. The modules
satisfying (TF) form a class containing C .

A graded S–module L is called free (resp. free of finite type) if it admits a
base (resp. a finite base) consisting of homogeneous elements, in other words
if it is isomorphic to a direct sum (resp. to a finite direct sum) of the modules
S(ni).

57 The algebraic sheaf associated to a graded S-module

If U is a nonempty subset ofX, we denote by S(U) the subset of S = K[t0, . . . , tr]
consisting of homogeneous polynomialsQ such thatQ(x) 6= 0 for all x ∈ U ; S(U)
is a multiplicatively closed subset of S, not containing 0. For U = X, we write
S(x) instead of S({x}).

Let M be a graded S–module. We denote by MU the set of fractions m/Q
with m ∈ M , Q ∈ S(U), m and Q being homogeneous of the same degree; we
identify two fractions m/Q and m′/Q′ if there exists Q′′ ∈ S(U) such that

Q′′(Q′ ·m−Q ·m′) = 0;

it is clear that we have defined an equivalence relation between the pairs (m,Q).
For U = x, we write Mx instead of M{x}.

Applying this to M = S, we see that SU is the ring of rational functions P/Q,
P and Q being homogeneous polynomials of the same degree and Q ∈ S(U); if
M is an arbitrary graded S–module, we can equip MU with a structure of an
SU–module by imposing:

m/Q+m′/Q′ = (Q′m+Qm′)/QQ′

(P/Q) · (m/Q′) = Pm/QQ′.

If U ⊂ V , we have S(V ) ⊂ S(U), hence the canonical homomorphisms

φVU : MV →MU ;

the system (MU , φ
V
U ), where U and V run over nonempty open subsets of X,

define thus a sheaf which we denote by A (M); we verify immediately that

lim
x∈U

MU = Mx,
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that is, that A (M)x = Mx. In particular, we have A (S) = O and as the MU

are SU–modules, it follows that A (M) is a sheaf of A (S)–modules, that is, an
algebraic sheaf on X. Any homomorphism φ : M → M ′ defines in a natural
way the SU -linear homomorphisms φU : MU → M ′U , thus a homomorphism of
sheaves A (φ) : A (M) → A (M ′), which we frequently denote φ. We clearly
have

A (φ+ ψ) = A (φ) + A (ψ), A (1) = 1, A (φ ◦ ψ) = A (φ) ◦A (ψ).

The operation A (M) is thus a covariant additive functor defined on the category
of graded S–modules and with values in the category of algebraic sheaves on X.

(The above definitions are quite analogous to these of §4, from Chap. II; it
should be noted however that SU is not the localization of S in S(U), but only
its homogeneous component of degree 0.)

58 First properties of the functor A (M)

Proposition 3. The functor A (M) is an exact functor.

Let M
α−→M ′

β−→M ′” be an exact sequence of graded S–modules and show

that the sequence Mx
α−→ M ′x

β−→ M ′′x is also exact. Let m′/Q ∈ M ′x be an
element of the kernel of β; by the definition of M ′′x , there exist R ∈ S(x) such
that Rβ(m′) = 0; but then there exists m ∈ M such that α(m) = Rm′ and we
have α(m/RQ) = m′/Q, q.e.d.
(Compare with n◦ 48, Lemma 1.)

Proposition 4. If M is a graded S–module and if n is an integer, A (M(n))
is canonically isomorphic to A (M)(n).

Let i ∈ I, x ∈ Ui and m/Q ∈M(n)x, with m ∈M(n)p, Q ∈ S(x), degQ = p.
Put:

ηi,x(m/Q) = m/tni Q ∈Mx,

which is valid because m ∈ Mn+p and tni Q ∈ S(x). We immediately see that
ηi,x : M(n)x → Mx is bijective for all x ∈ Ui and defines an isomorphism ηi of
A (M(n)) to A (M) over Ui. Moreover, we have ηi ◦ η−1j = θij(n) over Ui ∩ Uj .
By the definition of the operation F (n) and Proposition 4 of n◦ 4, this shows
that A (M(n)) is isomorphic to A (M)(n).

Corollary. A (S(n)) is canonically isomorphic to O(n).

Indeed, it has been said that A (S) was isomorphic to O.

(It is also clear that A (S(n)) is isomorphic to O ′(n), because O ′(n)x consists
precisely of the rational functions P/Q such that degP − degQ = n and Q ∈
S(x).)

Proposition 5. Let M be a graded S–module satisfying the condition (TF).
The algebraic sheaf A (M) is also a coherent sheaf. Moreover A (M) = 0 if and
only if M ∈ C .
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If M ∈ C , for all m ∈ M and x ∈ X there exists Q ∈ S(x) such that
Qm = 0; it suffices to take Q of a sufficiently large degree; we thus have Mx = 0,
hence A (M) = 0. Let now M be a graded S–module satisfying the condition
(TF); there exists a homogeneous submodule N of M , of finite type and such
that M/N ∈ C ; applying the above together with Proposition 3, we see that
A (N)→ A (M) is bijective and it thus suffices to prove that A (N) is coherent.
Since N is of finite type, there exists an exact sequence L1 → L0 → N → 0
where L0 and L1 are free modules of finite type. By Proposition 3, the sequence
A (L1) → A (L0) → A (N) → 0 is exact. But, by the corollary to Proposition
4, A (L0) and A (L1) are isomorphic to finite direct sums of the sheaves O(ni)
and are thus coherent. It follows that A (N) is coherent.

Let finally M be a graded S–module satisfying (TF) and such that A (M) =
0; by the above considerations, we can suppose that M is of finite type. If m is
a homogeneous element of M , let am be the annihilator of m, that is, the set of
all polynomials Q ∈ S such that Q ·m = 0; it is clear that am is a homogeneous
ideal. Moreover, the assumption Mx = 0 for all x ∈ X implies that the variety
of zeros of am in Kr+1 is reduced to {0}; Hilbert’s theorem of zeros shows
that every homogeneous polynomial of sufficiently large degree belongs to am.
Applying this to the finite system of generators of M , we conclude immediately
Mp = 0 for p sufficiently large, which completes the proof.

By combining Propositions 3 and 5 we obtain:

Proposition 6. Let M and M ′ be two graded S–modules satisfying the
condition (TF) and let φ : M →M ′ be a homomorphism of M to M ′. Then

A (φ) : A (M)→ A (M ′)

is injective (resp. surjective, bijective) if and only if φ is C -injective (resp.
C -surjective, C -bijective).

59 The graded S–module associated to an algebraic sheaf

Let F be an algebraic sheaf on X and set:

Γ(F ) =
⊕
n∈Z

Γ(F )n, with Γ(F )n = Γ(X,F (n)).

The group Γ(F ) is a graded group; we shall equip it with a structure of an
S–module. Let s ∈ Γ(X,F (q)) and let P ∈ Sp; we can identify P with a section
of O(p) (cf. n◦ 54), thus P⊗s is a section of O(p)⊗F (q) = F (q)(p) = F (p+q),
using the homomorphisms from n◦ 54; we have then defined a section of F (p+q)
which we denote by P · s instead of P ⊗ s. The mapping (P, s) → P · s equips
Γ(F ) with a structure of an S–module that is compatible with the grading.

71



§2. Graded modules and coherent algebraic sheaves on the projective space III

In order to compare the functors A (M) and Γ(F ) we define two canonical
homomorphisms:

α : M → Γ(A (M)) and β : A (Γ(F ))→ F .

Definition of α. Let M be a graded S–module and let m ∈ M0 be a
homogeneous element of M of degree 0. The element m/1 is a well-defined
element of Mx that varies continuously with x ∈ X; thus m defines a section
α(m) of A (M). If now m is homogeneous of degree n, m is homogeneous of
degree 0 in M(n), thus defines a section α(m) of A (M(n)) = A (M)(n) (cf.
Proposition 4). This is the definition of α : M → Γ(A (M)) and it is immediate
that it is a homomorphism.

Definition of β. Let F be an algebraic sheaf on X and let s/Q be an
element of Γ(F )x with s ∈ Γ(X,F (n)), Q ∈ Sn and Q(x) 6= 0. The function
1/Q is homogeneous of degree −n and regular in x, hence a section of O(−n) in
a neighborhood of x; it follows that 1/Q⊗ s is a section of O(−n)⊗F (n) = F
in a neighborhood of x, thus defines an element of Fx which we denote by
βx(s/Q), because it depends only on s/Q. We can also define βx by using the
components si of s: if x ∈ Ui, βx(s/Q) = (tni /Q) · si(x). The collection of the
homomorphisms βx defines a homomorphism β : A (Γ(F ))→ F .

The homomorphisms α and β are related by the following Propositions,
which are shown by direct computation:

Proposition 7. Let M be a graded S–module. The composition of the
homomorphisms A (M)→ A (Γ(A (M)))→ A (M) is the identity.

(The first homomorphism is defined by α : M → Γ(A (M)) and the second
is β, applied to F = A (M).)

Proposition 8. Let F be an algebraic sheaf on X. The composition of the
homomorphisms Γ(F )→ Γ(A (Γ(F )))→ Γ(F ) is the identity.

(The first homomorphism is α, applied to M = Γ(F ), while the second one
is defined by β : A (Γ(F ))→ F .)

We will show in n◦ 65 that β : A (Γ(F )) → F is bijective if F is coherent
and that α : M → Γ(A (M)) is C -bijective if M satisfies the condition (TF).

60 The case of coherent algebraic sheaves

Let us show a preliminary result:

Proposition 9. Let L be an algebraic sheaf on X, a direct sum of a finite
number of the sheaves O(ni). Then Γ(F ) satisfies (TF) and β : A (Γ(L ))→ L
is bijective.

It comes down immediately L = O(n), then to L = O. In this case, we
know that Γ(O(p)) = Sp for p ≥ 0, thus we have S ⊂ Γ(O), the quotient
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belonging to C . It follows first that Γ(O) satisfies (TF), then that A (Γ(O)) =
A (S) = O, q.e.d.

(We observe that we have Γ(O) = S if r ≥ 1; on the other hand, if r = 0,
Γ(O) is not even an S–module of finite type.)

Theorem 2. For every coherent algebraic sheaf F on X there exists a
graded S–module M , satisfying (TF), such that A (M) is isomorphic to F .

By the corollary to Theorem 1, there exists an exact sequence of algebraic
sheaves:

L 1 φ−→ L 0 → F → 0,

where L 1 and L 0 satisfy the assumptions of the above Proposition. Let M be
the cokernel of the homomorphism Γ(φ) : Γ(L 1) → Γ(L 0); by Proposition 9,
M satisfies the condition (TF). Applying the functor A to the exact sequence:

Γ(L 1)→ Γ(L 0)→M → 0,

we obtain an exact sequence:

A (Γ(L 1))→ A (Γ(L 0))→ A (M)→ 0.

Consider the following commutative diagram:

A (Γ(L 1)) A (Γ(L 0)) A (M) 0

L 1 L 0 F 0

β β

By Proposition 9, the two vertical homomorphisms are bijective. It follows
that A (M) is isomorphic to F , q.e.d.
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§3 Cohomology of the projective space with
values in a coherent algebraic sheaf

61 The complexes Ck(M) and C(M)

We preserve the notations of nos 51 and 56. In particular, I will denote the
interval {0, 1, . . . , r} and S will denote the graded algebra K[t0, . . . , tr].

Let M be a graded S–module, k and q two integers ≥ 0; we shall define a
group Cqk(M): an element of Cqk(M) is a mapping

(i0, . . . , iq) 7→ m〈i0 . . . iq〉

which associates to every sequence (i0, . . . , iq) of q + 1 elements of I a homo-
geneous element of degree k(q + 1) of M , depending in an alternating way on
i0, . . . , iq. In particular, we have m〈i0 . . . iq〉 = 0 if two of the indices i0, . . . , iq
are equal. We define addition in Cqk(M) in the obvious way. the same with
multiplication by an element λ ∈ K, and Cqk(M) is a vector space over K.

If m is an element of Cqk(M), we define dm ∈ Cq+1
k (M) by the formula:

(dm)〈i0 . . . iq+1〉 =

j=q+1∑
j=0

(−1)jtkij ·m〈i0 . . . îj . . . iq+1〉.

We verify by a direct calculation that d◦d = 0; thus, the direct sum Ck(M) =⊕q=r
q=0 C

q
k(M), equipped with the coboundary operator d, is a complex, whose

q-th cohomology group is denoted by Hq
k(M).

(We note, after [11], another interpretation of the elements of Cqk(M): intro-
duce r + 1 differential symbols dx0, . . . , dxr and associate to every m ∈ Cqk(M)
a ,,differential form” of degree q + 1:

ωm =
∑

i0<...<iq

m〈i0 . . . iq〉dxi0 ∧ . . . ∧ dxiq .

If we put αk =
∑i=r
i=0 t

k
i dxi, we see that we have:

ωdm = αk ∧ ωm,

in other words, the coboundary operation is transformed into the exterior mul-
tiplication by the form αk).

If h is an integer ≥ k, let ρhk : Cqk(M) → Cqh(M) be the homomorphism
defined by the formula:

ρhk(m)〈i0 . . . iq〉 = (ti0 . . . tiq )
h−km〈i0 . . . iq〉.
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We have ρhk ◦ d = d ◦ ρhk and ρlh ◦ ρ
j
k = ρlk if k ≤ h ≤ l. We can thus define a

complex C(M), the inductive limit of the system (Ck(M), ρhk) for k → +∞. The
cohomology groups of this complex are denoted Hq(M). Because cohomology
commutes with inductive limits (cf. [6], Chap. V, Prop. 9.3*), we have:

Hq(M) = lim
k→∞

Hq
k(M).

Every homomorphism φ : M →M ′ defines a homomorphism

φ : Ck(M)→ Ck(M ′)

by the formula: φ(m)〈i0 . . . iq〉 = φ(m〈i0 . . . iq〉), hence, by passing to the limit,
φ : C(M)→ C(M ′); moreover, these homomorphisms commute with boundary
and thus define the homomorphisms

φ : Hqk(M)→ Hqk(M ′) and φ : Hq(M)→ Hq(M ′).

If we have an exact sequence 0 → M → M ′ → M ′′ → 0, we have an exact
sequence of complexes 0→ Ck(M)→ Ck(M ′)→ Ck(M ′′)→ 0, hence an exact
sequence of cohomology:

. . . Hq
k(M ′)→ Hq

k(M ′′)→ Hq+1
k (M)→ Hq+1

k (M ′)→ . . .

The same results for C(M) and Hq(M).

Remark. We shall see later (cf. n◦ 69) that we can express Hq
k(M) in terms

of ExtqS .

62 Calculation of Hq
k(M) for certain modules M

Let M be a graded S–module and m ∈ M a homogeneous element of degree
0. The system of (tki ·m) is a 0-cocycle of Ck(M), which we denote by αk(m)
and identify with its cohomology class. We so obtain a K-linear homomorphism
αk : M0 → H0

k(M); as αh = ρhk ◦ αk if h ≥ k, the αk define by passing to the
limit a homomorphism α : M0 → H0(M).

Let us introduce two more notations:

If (P0, . . . , Ph) are elements of S, we denote by (P0, . . . , Ph)M the submodule

of M consisting of the elements
∑i=h
i=0 Pi · mi with mi ∈ M ; if the Pi are

homogeneous, this submodule is homogeneous.

If P is an element of S and N a submodule of M , we denote by N : P the
submodule of M consisting of the elements m ∈ M such that P ·m ∈ N ; we
clearly have N : P ⊃ N ; if N and P are homogeneous, so is N : P .

Having specified these notations, we have:
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Proposition 1. Let M be a graded S–module and k an integer ≥ 0. Assume
that for all i ∈ I we have:

(tk0 , . . . , t
k
i−1)M : tki = (tk0 , . . . , t

k
i−1)M.

Then:
(a) αk : M0 → H0

k(M) is bijective (if r ≥ 1),
(b) Hq

k(M) = 0 for 0 < q < r.

(For i = 0, the assumption means that tk0 ·m = 0 implies m = 0.)

This Proposition is a special case of a result of de Rham [11] (the de Rham’s
result being also valid even if we do not assume that the m〈i0 . . . iq〉 are homo-
geneous). See also [6], Chap. VIII, ¶4 for a particular case, sufficient for our
purposes.

We now apply Proposition 1 to the graded S–module S(n):

Proposition 2. Let k be an integer ≥ 0, n an arbitrary integer. Then:
(a) αk : Sn → H0

k(S(n)) is bijective (if r ≥ 1),
(b) Hq

k(S(n)) = 0 for 0 < q < r,
(c) Hr

k(S(n)) admits a base (over K) consisting of the cohomology classes

of the monomials tα0
0 . . . tαrr with 0 ≤ αi < k and

∑i=r
i=0 αi = k(r + 1) + n.

It is clear that the S–module S(n) satisfies the assumptions of Proposition
1, which shows (a) and (b). On the other hand, for every graded S–module M ,
we have Hr

k(M) = Mk(r+1)/(t
k
0 , . . . , t

k
r )Mkr; now the monomials

tα0
0 . . . tαrr , αi ≥ 0,

i=r∑
i=0

αi = k(r + 1) + n,

form a basis of S(n)k(r+1) and those for which at least αi is ≥ k form a basis

of (tk0 , . . . , t
k
r )S(n)kr; hence (c).

It is convenient to write the exponents αi in the form αi = k − βi. The
conditions of (c) are then written:

0 < βi ≤ k and

i=r∑
i=0

βi = −n.

The second condition, together with βi > 0, implies βi ≤ −n − r; if thus
k ≥ −n− r, the condition βi ≤ k is a consequence of the preceding two. Hence:

Corollary 1. For k ≥ −n− r, Hr
k(S(n)) admits a basis formed of the coho-

mology classes of monomials (t0 . . . tr)
k/tβ0

0 . . . tβrr with βi > 0 and
∑i=r
i=0 βi =

−n.

We also have:
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Corollary 2. If h ≥ k ≥ −n− r, the homomorphism

ρhk : Hq
k(S(n))→ Hq

k(S(n))

is bijective for all q ≥ 0.

For q 6= r, this follows from the assertions (a) and (b) of Proposition 2. For
q = r, this follows from Corollary 1, given that ρhk transforms

(t0 . . . tr)
k/tβ0

0 . . . tβrr into (t0 . . . tr)
h/tβ0

0 . . . tβrr .

Corollary 3. The homomorphism α : Sn → H0(S(n)) is bijective if r ≥ 1
or if n ≥ 0. We have Hq(S(n)) = 0 for 0 < q < r and Hr(S(n)) is a vector
space of dimension

(−n−1
r

)
over K.

The assertion pertaining to α follows from Proposition 2, (a), in the case
when r ≥ 1; it is clear if r = 0 and n ≥ 0. The rest of the Corollary is an
obvious consequence of Corollaries 1 and 2 (seeing that the binomial coefficient(
a
r

)
is zero for a < r).

63 General properties of Hq(M)

Proposition 3. Let M be a graded S–module satisfying the condition (TF).
Then:

(a) There exists an integer k(M) such that ρhk : Hq
k(M) → Hq

h(M) is bijec-
tive for h ≥ k ≥ k(M) and every q.

(b) Hq(M) is a vector space of finite dimension over K for all q ≥ 0.
(c) There exists an integer n(M) such that for n ≥ n(M), α : Mn →

H0(M(n)) is bijective and that Hq(M(n)) is zero for all q > 0.

This is immediately reduced to the case when M is of finite type. We say
that M is of dimension ≤ s (s being an integer ≥ 0) if there exists an exact
sequence:

0→ Ls → Ls−1 → . . .→ L0 →M → 0,

where Li are free graded S–modules of finite type. By the Hilbert syzygy
theorem (cf. [6], Chap. VIII, th. 6.5), this dimension is always ≤ r + 1.

We prove the Proposition by induction on the dimension of M . If it is 0, M is
free of finite type, i.e. a direct sum of modules S(ni) and the Proposition follows
from Corollaries 2 and 3 and Proposition 2. Assume that M is of dimension ≤ s
and let N be the kernel of L0 → M . The graded S–module N is of dimension
≤ s− 1 and we have an exact sequence:

0→ N → L0 →M → 0.
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By the induction assumption, the Proposition is true for N and L0. Applying
the five lemma ([7], Chap. I, Lemme 4.3) to the commutative diagram:

Hq
k(N) Hq

k(L0) Hq
k(M) Hq+1

k (N) Hq+1
k (L0)

Hq
h(N) Hq

h(L0) Hq
h(M) Hq+1

h (N) Hq+1
h (L0),

where h ≥ k ≥ Sup(k(N), k(L0), we show (a), thus also (b), because the Hq
k(M)

are of finite dimension over K. On the other hand, the exact sequence

Hq(L0(n))→ Hq(M(n))→ Hq+1(N(n))

shows that Hq(M(n)) = 0 for n ≥ Sup(n(L0), n(N)). Finally, consider the
commutative diagram:

0 Nn Ln Mn 0

0 H0(N(n)) H0(L0(n)) H0(M(n)) H1(N(n));

α α α

for n ≥ n(N), we have H1(N(n)) = 0; we deduce that α : Mn → H0(M(n)) is
bijective for n ≥ Sup(n(L0), n(N)), which completes the proof of the Proposi-
tion.

64 Comparison of the groups Hq(M) and Hq(X,A (M))

Let M be a graded S–module and let A (M) be the algebraic sheaf on X =
Pr(K) defined by M by the procedure of n◦ 57. We will now compare C(M) with
C ′(U,A (M)), the complex of alternating cochains of the covering U = {Ui}i∈I
with values in the sheaf A (M).

Let m ∈ Cqk(M) and let (i0, . . . , iq) be a sequence of q+1 elements of I. The
polynomial (ti0 . . . tiq )

k belongs obviously to S(Ui0...iq ), with the notations of n◦

57. It follows that m〈i0 . . . iq〉/(ti0 . . . tiq )k belongs to MU , where U = Ui0...iq ,
thus defines a section of A (M) over Ui0...iq . When (i0, . . . , iq) varies, the system
consisting of this sections is an alternating cochain of U with values in A (M),
which we denote by ιk(m). We immediately see that ιk commutes with d and
that ιk = ιh ◦ ρhk if h ≥ k. By passing to the inductive limit, the ιk thus define
a homomorphism ι : C(M)→ C ′(U,A (M)), commuting with d.

Proposition 4. If M satisfies the condition (TF), ι : C(M)→ C ′(U,A (M))
is bijective.
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If M ∈ C , we have Mn = 0 for n ≥ n0, so Ck(M) = 0 for k ≥ n0 and
C(M) = 0. As every S–module satisfying (TF) is C -isomorphic to a module of
finite type, this shows that we can restrict ourselves to the case when M is of
finite type. We can then find an exact sequence L1 → L0 →M → 0, where L1

and L0 are free of finite type. By Propositions 3 and 5 from n◦ 58, the sequence

A (L1)→ A (L0)→ A (M)→ 0

is an exact sequence of coherent algebraic sheaves; as the Ui0...iq are affine open
subsets, the sequence

C ′(U,A (L1))→ C ′(U,A (L0)→ C ′(U,A (M))→ 0

is exact (cf. n◦ 45, Corollary 2 to Theorem 2). The commutative diagram

C(L1) C(L0) C(M) 0

C ′(U,A (L1)) C ′(U,A (L0)) C ′(U,A (M)) 0

ι ι ι

then shows that if the Proposition is true for the module L1 and L0, so it is
for M . We are thus reduced to the special case of a free module of finite type,
then, by the decomposition into direct summands, to the case when M = S(n).

In this case, we have A (S(n)) = O(n); a section fi0...iq of O(n) over Ui0...iq
is, by the sole definition of this sheaf, a regular function on Vi0 ∩ . . . ∩ Viq and
homogeneous of degree n. As Vi0 ∩ . . . ∩ Viq as the set of points of Kr+1 where
the function ti0 . . . tiq is 6= 0, there exists an integer k such that

fi0...iq = P 〈i0 . . . iq〉/(ti0 . . . tiq )k,

P 〈i0 . . . iq〉 being a homogeneous polynomial of degree n + k(q + 1), that is, of
degree k(q+1) in S(n). Thus, every alternating cochain f ∈ C ′(U,O(n)) defines
a system P 〈i0 . . . iq〉 that is an element of Ck(S(n)); hence a homomorphism

ν : C ′(U,O(n))→ C(S(n)).

As we verify immediately that ι ◦ ν = 1 and ν ◦ ι = 1, it follows that ι is
bijective, which completes the proof.

Corollary. ι defines an isomorphism of Hq(M) with Hq(X,A (M)) for all
q ≥ 0.

Indeed, we know that H ′q(U,A (M)) = Hq(U,A (M)) (n◦ 20, Proposition 2)
and that Hq(U,A (M)) = Hq(X,A (M)) (n◦ 52, Proposition 2, which applies
because A (M) is coherent).

Remark. It is easy to see that ι : C(M) → C ′(U,A (M)) is injective even
if M does not satisfy the condition (TF).
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65 Applications

Proposition 5. If M is a graded S–module satisfying the condition (TF), the
homomorphism α : M → Γ(A (M)), defined in n◦ 59, is C -bijective.

We must observe that α : Mn → Γ(X,A (M(n))) is bijective for n sufficiently
large. Then, by Proposition 4, Γ(X,A (M(n))) is identified with H0(M(n));
the Proposition follows thus from Proposition 3, (c), given the fact that the
homomorphism α is transformed by the above identification to a homomorphism
defined at the beginning of n◦ 62, also denoted by α.

Proposition 6. Let F be a coherent algebraic sheaf on X. The graded S–
module Γ(F ) satisfies the condition (TF) and the homomorphism β : A (Γ(F ))→
F defined in n◦ 59 is bijective.

By Theorem 2 of n◦ 60, we can assume that F = A (M), where M is a
module satisfying (TF). By the above Proposition, α : M → Γ(A (M)) is C -
bijective; as M satisfies (TF), it follows that Γ(A (M)) satisfies it also. Applying
Proposition 6 from n◦ 58, we see that α : A (M) → A (Γ(A (M))) is bijective.

Since the composition A (M)
α−→ A (Γ(A (M)))

β−→ A (M) is the identity (n◦

59, Proposition 7), it follows that β is bijective, q.e.d.

Proposition 7. Let F be a coherent algebraic sheaf on X. The groups
Hq(X,F ) are vector spaces of finite dimension over K for all q ≥ 0 and we
have Hq(X,F (n)) = 0 for q > 0 and n sufficiently large.

We can assume, as above, that F = A (M) where M is a module satisfying
(TF). The Proposition then follows from Proposition 3 and the corollary to
Proposition 4.

Proposition 8. We have Hq(X,O(n)) = 0 for 0 < q < r and Hr(X,O(n))
is a vector space of dimension

(−n−1
r

)
over K, admitting a base consisting of

the cohomology classes of the alternating cocycles of U

f01...r = 1/tβ0

0 . . . tβrr with βi > 0 and
i=r∑
i=0

βi = −n.

We have O(n) = A (S(n)), hence Hq(X,O(n)) = Hq(S(n)), by the corollary
to Proposition 4; the Proposition follows immediately from this and from the
corollaries of Proposition 2.

We note that in particular Hr(X,O(−r− 1)) is a vector space of dimension
1 over K, with a base consisting of the cohomology class of the cocycle f01...r =
1/t0 . . . tr.
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66 Coherent algebraic sheaves on projective varieties

Let V be a closed subvariety of the projective space X = Pr(K) and let F
be a coherent algebraic sheaf on V . By extending F by 0 outside V , we ob-
tain a coherent algebraic sheaf on X (cf. n◦ 39) denoted FX ; we know that
Hq(X,FX) = Hq(V,F ). The results of the preceding n◦ thus apply to the
groups Hq(V,F ). We obtain immediately (given n◦ 52):

Theorem 1. The groups Hq(V,F ) are vector spaces of finite dimension
over K, zero for q > dimV .

In particular, for q = 0 we have:

Corollary. Γ(V,F ) is a vector space of finite dimension over K.

(It is natural to conjecture whether the above theorem holds for all complete
varieties, in the sense of Weil [16].)

Let U ′i = Ui ∩V ; the U ′i form an open covering U′ of V . If F is an algebraic
sheaf on V , let Fi = F (U ′i) and let θij(n) be the isomorphism of Fj(U

′
i ∩ U ′j)

to Fi(U
′
i ∩ U ′j) defined by multiplication by (tj/ti)

n. We denote by F (n) the
sheaf obtained by gluing the Fi with respect to θij(n). The operation F (n)
has the same properties as the operation defined in n◦ 54 and generalizes it; in
particular, F (n) is canonically isomorphic to F ⊗ OV (n).

We have FX(n) = F (n)X . Applying then Theorem 1 of n◦ 55, together
with Proposition 7 from n◦ 65, we obtain:

Theorem 2. Let F be a coherent algebraic sheaf on V . There exists an
integer m(F ) such that we have, for all n ≥ m(F ):

(a) For all x ∈ V , the Ox,V –module F (n)x is generated by the elements of
Γ(V,F (n)),

(b) Hq(V,F (n)) = 0 for all q > 0.

Remark. It is essential to observe that the sheaf F (n) does not depend
solely on F and n, but also on the embedding of V into the projective space X.
More precisely, let P be the principal bundle π−1(V ) with the structural group
K∗; with n an integer, we make K∗ act on K by the formula:

(λ, µ) 7→ λ−nµ if λ ∈ K∗ and µ ∈ K.

Let En = P ×K∗K be the fiber space associated to P and the fiber K, equipped
with the above action; let S (En) be the sheaf of germs of sections of En (cf. n◦

41). Taking into account the fact that ti/tj form a system of transition maps
of P , we verify immediately that S (En) is canonically isomorphic to OV (n)).
The formula F (n) = F ⊗OV (n) = F ⊗S (En) shows then that the operation
F → F (n) depends only on the class of the principal bundle P defined by the
embedding V → X. In particular, if V is normal, F (n) depends only on the class
of linear equivalence of hyperplane sections of V in the considered embedding
(cf. [17]).
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67 A supplement

If M is a graded S–module satisfying (TF), we denote by M \ the graded S–
module Γ(A (M)). We have seen in n◦ 65 that α : M →M \ is C -bijective. We
shall now give conditions for α to be bijective.

Proposition 9. α : M → M \ is bijective if and only if the following
conditions are satisfied:

(i) If m ∈M is such that ti ·m = 0 for all i ∈ I, then m = 0,
(ii) If elements mi ∈ M , homogeneous of the same degree, satisfy tj ·mi =

ti ·mj = 0 for every couple (i, j), there exists an m ∈M such that mi = ti ·m.

Let us show that the conditions (i) and (ii) are satisfied by M \, which will
prove the necessity. For (i), we can assume that m is homogeneous, that is, it is
a section of A (M(n)); in this case, the condition ti ·m = 0 implies that m is zero
on Ui, and since this occurs for all i ∈ I, we have m = 0. For (ii), let n be the
degree of mi; we thus have mi ∈ Γ(A (M(n))); as 1/ti is a section of O(−1) over
Ui, mi/ti is a section of A (M(n− 1)) over Ui and the condition tj ·mi− ti ·mj

shows that these various sections are the restrictions of a unique section m of
A (M(n− 1)) over X; it remains to compare the sections ti ·m and mi; to show
that they coincide on Uj , it suffices to observe that tj(ti ·m −mi) = 0 on Uj ,
which follows from the formula tj ·mi = ti ·mj and the definition of m.

We will now show that (i) implies that α is injective. For n sufficiently large,
we know that α : Mn →M \

n is bijective and we can thus proceed by descending
induction on n. If α(m) = 0 with m ∈Mn, we have tiα(m) = α(ti ·m) = 0 and
the induction assumption, applicable since ti ·m ∈ Mn+1, shows that m = 0.
Finally, let us show that (i) and (ii) imply that α is surjective. We can, as
before, proceed by descending induction on n. If m′ ∈ M \

n, the induction
assumption shows that there exist mi ∈ Mn+1 such that α(mi) = ti · m′; we
have α(tj ·mi−ti ·mj) = 0, hence tj ·mi−ti ·mj = 0, because α is injective. The
condition (ii) then implies that there exists an m ∈ Mn such that ti ·m = mi;
we have ti(m

′ − α(m)) = 0, which shows that m′ = α(m) and completes the
proof.

Remarks. (1) The proof shows that the condition (i) is sufficient and
necessary for α to be injective.

(2) We can express (i) and (ii) as: the homomorphism α1 : Mn → H0
q (M(n))

is bijective for all n ∈ Z. Besides, Proposition 4 shows that we can identify M \

with the S–module
⊕

n∈ZH
0(M(n)) and it would be easy to provide a purely

algebraic proof of Proposition 9 (without using the sheaf A (M)).
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§4 Relations with the functors ExtqS

68 The functors ExtqS

We keep the notations of n◦ 56. If M and N are two graded S-modules, we de-
note by HomS(M,N)n the group of homogeneous S-homomorphisms of degree
n from M to N , and by HomS(M,N) the graded group

⊕
n∈Z HomS(M,N)n;

it is a graded S-module; when M is of finite type it coincides with the S-module
of all S-homomorphisms from M to N .

The derived functors (cf. [6], Chapter V) of the functor HomS(M,N) are
the functors ExtqS(M,N), q = 0, 1, . . .. Let us briefly recall their definition: 1

One chooses a ,,resolution” of M , that is, an exact sequence:

. . .→ Lq+1 → Lq → . . .→ L0 →M → 0,

where the Lq are free graded S-modules and the maps are homomorphisms
(that is, as usual, homogeneous S-homomorphisms of degree 0). If we set
Cq = HomS(Lq, N), the homomorphism Lq+1 → Lq defines by transposition
a homomorphism d : Cq → Cq+1 satisfying d ◦ d = 0; therefore C =

⊕
q≥0 C

q

is endowed with a structure of a complex, and the q-th cohomology group of
C is just, by definition, equal to ExtqS(M,N); one shows that it does not de-
pend on the chosen resolution. As the Cq are graded S-modules and since
d : Cq → Cq+1 is homogeneous of degree 0, the ExtqS(M,N) are S-modules
graded by the subspaces ExtqS(M,N)n); the ExtqS(M,N) are the cohomology
groups of the complex formed by the HomS(Lq, N)n), i.e., are the derived func-
tors of the functor HomS(M,N)n).

Recall the main properties of ExtqS :

Ext0S(M,N) = HomS(M,N); ExtqS(M,N) = 0 for q > r+ 1 if M is of finite
type (due to the Hilbert syzygy theorem, cf. [6], Chapter VIII, theorem 6.5);
ExtqS(M,N) is an S-module of finite type if M and N are both of finite type
(because we can choose a resolution with the Lq of finite type); for all n ∈ Z we
have the canonical isomorphisms:

ExtqS(M(n), N) ≈ ExtqS(M,N(−n)) ≈ ExtqS(M,N)(−n).

The exact sequences:

0→ N → N ′ → N ′′ → 0 and 0→M →M ′ →M ′′ → 0

give rise to exact sequences:

. . .→ ExtqS(M,N)→ ExtqS(M,N ′)→ ExtqS(M,N ′′)→ Extq+1
S (M,N)→ . . .

. . .→ ExtqS(M ′′, N)→ ExtqS(M ′,M)→ ExtqS(M,N)→ Extq−1S (M ′′, N)→ . . .

1When M is not of finite type, the ExtqS(M,N) defined above can differ from the
ExtqS(M,N) defined in [6]: it is due to the fact that HomS(M,N) does not have the same
meaning in both cases. However, all the proofs of [6] are valid without change in the case
considered here: this is seen either directly or by applying Appendix of [6].
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69 Interpretation of Hq
k(M) in terms of ExtqS

Let M be a graded S-module and let k be an integer ≥ 0. Set:

Bqk(M) =
⊕
n∈Z

Hq
k(M(n)),

with the notations of n◦ 61.

We thus obtain a graded group, isomorphic with the q-th cohomology group
of the complex

⊕
n∈Z Ck(M(n)); this complex can be given a structure of an

S-module, compatible with the grading by setting

(P ·m)〈i0 · · · iq〉 = P ·m〈i0 · · · iq〉, if P ∈ Sp and m〈i0 · · · iq〉 ∈ Cqk(M(n));

as the coboundary operator is a homogeneous S-homomorphism of degree 0, it
follows that the Bqk(M) are themselves graded S-modules.

We put

Bq(M) = lim
k→∞

Bqk(M) =
⊕
n∈Z

Hq(M(n)).

The Bq(M) are graded S-modules. For q = 0 we have

B0(M) =
⊕
n∈Z

H0(M(n)),

and we recognize the module denoted by M \ in n◦ 67 (when M satisfies the
condition (TF)). For each n ∈ Z, we have defined in n◦ 62 a linear map α :
Mn → H0(M(n)); we verify immediately that the sum of these maps defines a
homomorphism, which we denote also by α, from M to B0(M).

Proposition 1. Let k be an integer ≥ 0 and let Jk be the ideal (tk0 , . . . , t
k
r ) of

S. For every graded S-module M , the graded S-modules Bqk(M) and ExtqS(Jk,M)
are isomorphic.

Let Lqk, q = 0, . . . , r be the free graded S-module with a base consisting of
the elements e〈i0 · · · iq〉, 0 ≤ i0 < i1 < . . . < iq ≤ r of degree k(q+ 1); we define

an operator d : Lq+1
k → Lqk and an operator ε : L0

k → Jk by the formulas:

d(e〈i0 · · · iq+1〉) =

j=q+1∑
j=0

(−1)jtkij · e〈i0 · · · îj · · · iq+1〉,

ε(e〈i〉) = tki .

Lemma 1. The sequence of homomorphisms:

0→ Lrk
d−→ Lr−1k → . . .→ L0

k
ε−→ Jk → 0

is an exact sequence.
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For k = 1, this result is well known (cf. [6], Chapter VIII, §4); the general
case is shown in the same way (or reduced to it); we can also use the theorem
shown in [11].

Proposition 1 follows immediately from the Lemma, if we observe that the
complex formed by the HomS(Lqk,M) and the transposition of d is just the
complex

⊕
n∈Z Ck(M(n)).

Corollary 1. Hq
k(M) is isomorphic to ExtqS(Jk,M)0.

Indeed, these groups are the degree 0 components of the graded groups
Bqk(M) and ExtqS(Jk,M).

Corollary 2. Hq(M) is isomorphic to limk→∞ ExtqS(Jk,M)0.

We easily see that the homomorphism ρhk : Hq
k(M)→ Hq

h(M) from n◦ 61 is
transformed by the isomorphism from Corollary 1 to a homomorphism from

ExtqS(Jk,M)0 to ExtqS(Jh,M)0

induced by the inclusion Jh → Jk; hence the Corollary 2.

Remark. Let M be a graded S-module of finite type; M defines (cf. n◦ 48)
a coherent algebraic sheaf F ′ on Kr+1, thus on Y = Kr+1 − {0} and we can
verify that Hq(Y,F ′) is isomorphic to Bq(M).

70 Definition of the functors T q(M)

Let us first define the notion of a dual module to a graded S-module. Let M
be a graded S-module; for all n ∈ Z, Mn is a vector space over K, whose dual
vector space we denote by (Mn)′. Set

M∗ =
⊕
n∈Z

M∗n, with M∗n = (M−n)′.

We give M∗ the structure of an S-module compatible with the grading; for all
P ∈ Sp, the mapping m 7→ P ·m is a K-linear map from M−n−p to M−n, so
defines by transposition a K-linear map from (M−n)′ = M∗n to (M−n−p)

′ =
M∗n+p ; this defines the structure of an S-module on M∗. We could also define
M∗ as HomS(M,K), denoting by K the S-graded module S/(t0, . . . , tr).

The graded S-module M∗ is called the module dual to M; we have M∗∗ = M
if every Mn is of finite dimension over K, which holds if M = Γ(F ), F being a
coherent algebraic sheaf on X, or if M is of finite type. Every homomorphism
φ : M → N defines by transposition a homomorphism from N∗ to M∗. If the
sequence M → N → P is exact, so is the sequence P ∗ → N∗ → M∗; in other
words, M∗ is a contravariant and exact functor of the module M . When I is a
homogeneous ideal of S, the dual of S/I is exactly the ,,inverse system” of I, in
the sense of Macaulay (cf. [9], n◦ 25).
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Let now M be a graded S-module and q an integer ≥ 0. In the preceding
n◦ , we have defined the graded S-module Bq(M); the module dual to Bq(M)
will be denoted by T q(M). We thus have, by definition:

T q(M) =
⊕
n∈Z

T q(M)n, with T q(M)n = (Hq(M(−n)))′.

Every homomorphism φ : M → N defines a homomorphism from Bq(M)
to Bq(N), thus a homomorphism from T q(N) to T q(M); thus the T q(M) are
contravariant functors of M (we shall see in n◦ 72 that they can expressed very
simply in terms of ExtS). Every exact sequence:

0→M → N → P → 0

gives rise to an exact sequence:

. . . Bq(M)→ Bq(N)→ Bq(P )→ Bq+1(M)→ . . . ,

thus, by transposition, an exact sequence:

. . . T q+1(M)→ T q(P )→ T q(N)→ T q(M)→ . . . .

The homomorphism α : M → B0(M) defines by transposition a homomor-
phism α∗ : T 0(M)→M∗.

Since Bq(M) = 0 for q > r, we have T q(M) = 0 for q > r.

71 Determination of T r(M).

(In this n◦ , and in the following, we assume that we have r ≥ 1; the case r = 0
leads to somehow different, and trivial, statements).

We denote by Ω the graded S-module S(−r− 1); this is a free module, with
a base consisting of an element of degree r + 1. We have seen in n◦ 62 that
Hr(Ω) = Hr

k(Ω) for k sufficiently large, and that Hr
k(Ω) admits a base over K

consisting of a single element (t0 . . . tr)
k/t0 . . . tr; the image in Hr(Ω) of this

element will be denoted by ξ; ξ is thus a basis of Hr(Ω).

We will now define a scalar product 〈h, φ〉 between elements h ∈ Br(M)−n
and φ ∈ HomS(M,Ω)n, M being an arbitrary graded S-module. The element φ
can be identified with an element of HomS(M(−n),Ω)0, that is, with a homo-
morphism from M(−n) to Ω; it thus defines, by passing to cohomology groups,
a homomorphism from Hr(M(−n)) = Br(M)−n to Hr(Ω), which we also de-
note by φ. The image of h under this homomorphism is thus a scalar multiple
of ξ, and we define 〈h, φ〉 by the formula:

φ(h) = 〈h, φ〉ξ.
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For every φ ∈ HomS(M,Ω)n, the function h 7→ 〈h, φ〉 is a linear form on
Br(M)−n, thus can be identified with an element ν(φ) of the dual of Br(M)−n,
which is T r(M)n. We have thus defined a homogeneous mapping of degree 0

ν : HomS(M,Ω)→ T r(M),

and the formula 〈P · h, φ〉 = 〈h, P · φ〉 shows that ν is an S-homomorphism.

Proposition 2. The homomorphism ν : HomS(M,Ω)→ T r(M) is bijective.

We shall first prove the Proposition when M is a free module. If M is a
direct sum of homogeneous submodules Mα, we have:

HomS(M,Ω)n =
∏
α

HomS(Mα,Ω)n and T r(M)n =
∏
α

T r(Mα)n.

So, if the proposition holds for the Mα, it holds for M , and this reduces the case
of free modules to the particular case of a free module with a single generator,
that is, to the case when M = S(m). We can identify HomS(M,Ω)n with
HomS(S, S(n − m − r − 1))0, that is, with the vector space of homogeneous
polynomials of degree n − m − r − 1. Thus HomS(M,Ω)n has for a base the

family of monomials tγ00 . . . tγrr with γi ≥ 0 and
∑i=r
i=0 γi = n −m − r − 1. On

the other hand, we have seen in n◦ 62 that Hr
k(S(m − n)) has for a base (if

k is large enough) the family of monomials (t0 . . . tr)
k/tβ0

0 . . . tβrr with βi > 0

and
∑i=r
i=0 βi = n −m. By setting βi = γ′i + 1, we can write these monomials

in the form (t0 . . . tr)
k−1/t

γ′0
0 . . . t

γ′r
r , with γ′i ≥ 0 and

∑i=r
i=0 γ

′
i = n −m − r − 1.

Comparing the definition of 〈h, φ〉, we observe that the scalar product

〈(t0 . . . tr)k−1/t
γ′0
0 . . . t

γ′r
r , t

γ0
0 . . . tγrr 〉

is always zero, unless γi = γ′i for all i, in which case it is equal to 1. This means

that ν transforms the basis of tγ00 . . . tγrr to the dual basis of (t0 . . . tr)
k−1/t

γ′0
0 . . . t

γ′r
r ,

thus is bijective, which shows the Proposition in the case when M is free.

Let us now pass to the general case. We choose an exact sequence

L1 → L0 →M → 0

where L0 and L1 are free. Consider the following commutative diagram

0 HomS(M,Ω) HomS(L0,Ω) HomS(L1,Ω)

0 T r(M) T r(L0) T r(L1).

ν ν ν ν

The first row of this diagram is an exact sequence, by the general properties of
the functor HomS ; the second is also exact, because it is dual to the sequence

Br(L1)→ Br(L0)→ Br(M)→ 0,
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which is exact by the cohomology exact sequence of Bq and the fact that
Br+1(M) = 0 for any M . On the other hand, the two vertical homomorphisms

ν : HomS(L0,Ω)→ T r(L0) and ν : HomS(L1,Ω)→ T r(L1)

are bijective, as we have just seen. It follows that

ν : HomS(M,Ω)→ T r(M)

is also bijective, which completes the proof.

72 Determination of T q(M).

We shall now prove the following theorem, which generalizes Proposition 2:

Theorem 1. Let M be a graded S-module. For q 6= r, the graded S-
modules T r−q(M) and ExtqS(M,Ω) are isomorphic. Moreover, we have an exact
sequence:

0→ ExtrS(M,Ω)→ T 0(M)
α∗−−→M∗ → Extr+1

S (M,Ω)→ 0.

We will use the axiomatic characterization of derived functors given in [6],
Chap. III, §5. For this, we first define new functors Eq(M) in the following
manner:

For q 6= r, r + 1, Eq(M) = T r−q(M),

For q = r, Er(M) = Ker(α∗),

For q = r + 1, Er+1(M) = Coker(α∗).

The Eq(M) are additive functors of M , enjoying the following properties:

(i) E0(M) is isomorphic to HomS(M,Ω).

This follows from Proposition 2.

(ii) If L is free, Eq(L) = 0 for q > 0.

It suffices to verify this for L = S(n), in which case it follows from n◦ 62.

(iii) To every exact sequence 0 → M → N → P → 0 there is associated a
sequence of coboundary operators dq : Eq(M)→ Eq+1(P ) and the sequence:

. . . Eq(P )→ Eq(N)→ Eq(M)
dq−→ Eq+1(P )→ . . .

is exact.
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The definition of dq is obvious if q 6= r − 1, r: this is the homomorphism from
T r−q(M) to T r−q−1(P ) defined in n◦ 70. For q = r−1 or r, we use the following
commutative diagram:

T 1(M) T 0(P ) T 0(N) T 0(M) 0

0 P ∗ N∗ M∗ 0.

α∗ α∗ α∗ α∗

This diagram shows immediately that the image of T 1(M) is contained in
the kernel of α∗ : T 0(P ) → P ∗, which is just Er(P ). This defines dr−1 :
Er−1(M)→ Er(P ).

To define dr : Ker(T 0(M) → M∗) → Coker(T 0(P ) → P ∗), we use the
process from [6], Chap. III, Lemma 3.3: if x ∈ Ker(T 0(M)→M∗), there exists
y ∈ P ∗ and z ∈ T 0(N) such that x is the image of z and that y and z have the
same image in N∗; we then set dr(x) = y.

The exactness of the sequence

. . .→ Eq(P )→ Eq(N)→ Eq(M)
dq−→ Eq+1(P )→ . . .

follows from the exactness of the sequence

. . . T r−q(P )→ T r−q(N)→ T r−q(M)→ T r−q−1(P )→ . . .

and from [6], loc. cit.

(iv) The isomorphism from (i) and the operators dq from (iii) are ,,natural”

This follows immediately from the definitions.

As the properties (i) to (iv) characterize the derived functors of the functor
HomS(M,Ω), we have Eq(M) ≈ ExtqS(M,Ω), which proves the Theorem.

Corollary 1. If M satisfies (TF), Hq(M) is isomorphic to the vector space
dual to Extr−qS (M,Ω)0 for all q ≥ 1.

In fact, we know that Hq(M) is a vector space of finite dimension, whose
dual is isomorphic to Extr−qS (M,Ω)0.

Corollary 2. If M satisfies (TF), the T q(M) are graded S-modules of finite
type for q ≥ 1, and T 0(M) satisfies (TF).

We can replace M by a module of finite type without changing the Bq(M),
thus T q(M). The Extr−qS (M,Ω) are then S-modules of finite type, and we have
M∗ ∈ C , hence the Corollary.
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§5 Applications to coherent algebraic
sheaves

73 Relations between functors ExtqS and ExtqOx

Let M and N be two graded S-modules. If x is a point of X = Pr(K), we
have defined in n◦ 57 the Ox-modules Mx and Nx; we will find relation between
ExtqOx(Mx, Nx) and graded S-module ExtqS(M,N).

Proposition 1. Suppose that M is of finite type. Then:

(a) The sheaf A (HomS(M,N)) is isomorphic to the sheaf HomO(A (M),A (N)).

(b) For all x ∈ X, the Ox-module ExtqS(M,N)x is isomorphic to the Ox-module
ExtqOx(Mx, Nx).

First define a homomorphism ιx : HomS(M,N)x → HomOx(Mx, Nx). An
element of first module is a fraction ϕ/P , with ϕ ∈ HomS(M,N)n, P ∈ S(x),
P is homogeneous of degree n; if m/P ′ is an element of Mx, ϕ(m)/PP ′ is an
element of Nx which does not depend on ϕ/P and m/P ′, and the function
m/P ′ → ϕ(m)/PP ′ is a homomorphism ιx(ϕ/P ) : Mx → Nx; this defines ιx.
After Proposition 5 of n◦ 14, HomOx(Mx, Nx) can be identified with:

HomO(A (M),A (N))x;

this identification transforms ιx into:

ιx : A (HomS(M,N))x → HomO(A (M),A (N))x,

and we easily verify that the family of ιx is a homomorphism

ι : A (HomS(M,N))→ HomO(A (M),A (N)).

When M is a free module of finite type, ιx is a bijection. Indeed, it suffices
to regard M = S(n), for which it is obvious.

If now M is any graded S-module of finite type, choose a resolution of M :

...→ Lq+1 → Lq → ...→ L0 →M → 0

where Lq are free of finite type, and consider a complex C formed byHomS(Lq, N).
The cohomology groups of C are ExtqS(M,N); or else if we denote by Bq and
Zq the submodules of Cq formed respectively by the coboundaries and cocycles,
we have the exact sequences:

0→ Zq → Cq → Bq+1 → 0
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and
0→ Bq → Zq → ExtqS(M,N)→ 0.

As the functor A (M) is exact, the sequences

0→ Zqx → Cqx → Bq+1
x → 0

and
0→ Bqx → Zqx → ExtqS(M,N)S → 0

are also exact.

But after preceding consideration Cqx is isomorphic to HomOx(Lqx, Nx); the
ExtqS(M,N)x are isomorphic to cohomology groups of a complex formed by the
HomOx(Lqx, Nx) and, because the Lqx are clearly Ox-free, we get back the defi-
nition of ExtqOx(Mx, Nx), which shows (b). For q = 0 preceding considerations
show that ιx is bijection, so ι is an isomorphism, so (a) holds.

74 Vanishing of cohomology groups Hq(X,F (−n)) for n→
+∞

Theorem 1. Let F be a coherent algebraic sheaf on X and let q be an integer
≥ 0. The following conditions are equivalent:

(a) Hq(X,F (−n)) = 0 for n large enough.

(b) Extr−qOx
(Fx,Ox) = 0 for all x ∈ X.

After Theorem 2 of n◦ 60, we can suppose that F = A (M), where M is a
graded S-module of finite type, and by the n◦ 64 Hq(X,F (−n)) is isomorphic
to Hq(M(−n)) = Bq(m)−n, so condition (a) is equivalent to

T q(M)n = 0

for n large enough, that is to say T q(M) ∈ C . After Theorem 1 of n◦ 72 and
the fact that M? ∈ C as M is of finite type, this last condition is equivalent to
Extr−qS (M,Ω) ∈ C ; as Extr−qS (M,Ω) is a S-module of finite type,

Extr−qS (M,Ω) ∈ C

is equivalent to Extr−qS (M,Ω)x = 0 for all x ∈ X, by Proposition 5 of n◦ 58.

Finally the Proposition 1 shows that Extr−qS (M,Ω)x = Extr−qOx
(Mx,Ωx) and as

Mx is isomorphism to Fx and Ωx is isomorphic to O(−r − 1)x, so to Ox, this
completes the proof.

For announcing Theorem 2, we will need the notion of dimension of an Ox-
module. Recall ([6], Chap VI) that Ox-module of finite type P is of dimension
≤ p if there is an exact sequence of O-modules:

0→ Lp → Lp−1 → ...→ L0 → P → 0,
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where each Lp is free (this definition is equivalent to [6], because all projective
Ox-modules of finite type are free (cf [6], Chap VIII, Th. 6.1.’).

All Ox-modules of finite type are of dimension ≤ r, by Hilbert’s syzygy
theorem. (cf. [6], Chap VIII, Th. 6.2’).

Lemma 1. Let P be an Ox-module of finite type and let p be an integer ≥ 0.
The following two conditions are equivalent:

(i) P is of dimension ≤ p.

(ii) ExtmOx(P,Ox) = 0 for all m > p.

It is clear that (i) implies (ii). We will show that (ii) implies (i) by induction
decreasing on p. For p ≥ r the lemma is trivial, because (i) is always true. Now
pass from p + 1 to p; let N be any Ox-module of finite type. We can find an
exact sequence 0 → R → L → N → 0, where L is free of finite type (because
Ox is Noetherian). The exact sequence:

Extp+1
Ox

(P,L)→ Extp+1
Ox

(P,N)→ Extp+2
Ox

(P,R)

shows that Extp+1
Ox

(P,N) = 0, so we have Extp+2
Ox

(P,L) = 0 by condition (ii),

and Extp+2
Ox

(P,R) = 0 as dimP ≤ p + 1 by the induction hypothesis. As this
property characterizes the modules of finite dimension ≤ p, the lemma is proved.

By combining Lemma with Theorem 1 we obtain:

Theorem 2. Let F be a coherent algebraic sheaf on X, and let p be an
integer ≥ 0. The following two conditions are equivalent:

(i) Hq(X,F (−n)) = 0 for all n large enough and 0 ≤ q < p.

(ii) For all x ∈ X the Ox-module Fx is of dimension ≤ r − p.

75 Nonsingular varieties

The following results play essential role in extension of the ’duality theorem’
[15] to an arbitrary case.

Theorem 3. Let V be a nonsingular subvariety of projective space Pr(K).
Suppose that all irreducible components of V have the same dimension p. Let
F be a coherent algebraic sheaf on V , such that for all x ∈ V , Fx is a free
module over Ox,V . Then we have Hq(V,F (−n)) = 0 for all n large enough and
0 ≤ q < p.

After Theorem 2, it remains to show that Ox,V considered as Ox-module is of
dimension ≤ r−p. Denote by gx(V ) the kernel of the canonical homomorphism
ε : Ox → Ox,V ; since the point x is simple over V , we know (cf. [18], th 1)
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that this ideal is generated by r − p elements f1, ..., fr−p, and the theorem of
Cohen-Macaulay (cf. [13], p. 53, prop 2) shows that we have

(f1, ..., fi−1) : fi = (f1, ..., fi−1) for 1 ≤ i ≤ r − p.

Denote by Lq a free Ox-module which admits a base of elements e < i1...iq >
corresponding to sequence (i1, ..., iq) such that

1 ≤ i1 < l2 < ... < iq ≤ r − p;

for q = 0, take L0 = Ox and define:

d(e〈i1...iq〉) =

q∑
j=1

(−1)jfi,je〈i1, ...̂ij ...iq〉

d(e〈i〉) = fi

After [6], Chap. VIII, prop 4.3, the sequence

0→ Lr−p
d−→ Lr−p−1

d−→ ...
d−→ L0

εx−→ Ox,V → 0

is exact, which shows that dimOx(Ox,V ) ≤ r − p, QED.

Corollary. We have Hq(V,OV (−n)) = 0 for n large enough and 0 ≤ q < p.

Remark. The above proof applies more generally whenever the ideal gx(V )
admits a system of r − p generators, that is, if the variety V is a local complete
intersection at all points.

76 Normal Varieties

Lemma 2. Let M be a Ox module of finite type and let f be a noninvertible
element of Ox, such that the relation fm = 0 implies m = 0 if m ∈M . Then the
dimension of the Ox-module M/fM is equal to the dimension of M increased
by one.

By assumption, we have an exact sequence 0 → M
α−→ M → M/fM → 0,

where α is multiplication by f . If N is a Ox-module of finite type, we have an
exact sequence:

...→ ExtqOx(M,N)
α−→ ExtqOx(M,N)→ Extq+1

Ox
(M/fM,N)→ Extq+1

Ox
(M,N)→ ...

Denote by p the dimension of M . By taking q = p + 1 in the preceding
exact sequence, we see that Extp+2

Ox
(M/fM,N) = 0, which (by [6], Chap. VI,

2) implies that dim(M/fM) ≤ p + 1. On the other hand, since dimM = p we
can choose N such that ExtpOx(M,N) 6= 0; by taking q = p in the above exact
sequence, we see that
Extp+1

Ox
(M/fM,N) can be identified with cokernel of

ExtpOx(M,N)
α−→ ExtpOx(M,N)′
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as the last homomorphism is nothing else that multiplication by f and that f
isn’t invertible in the local ring Ox. If follows from [6], Chap. VIII, prop. 5.1’
that this cokernel is 6= 0, which shows that dimM/fM ≥ p+ 1 and finishes the
proof.

We will now show a result, that is related with ’the Enriques-Severi lemma’
of Zariski [19]:

Theorem 4. Let V be an irreducible, normal subvariety of dimension ≥ 2,
of projective space Pr(K). Let F be a coherent algebraic sheaf on V , such that
for all x ∈ V , Fx is a free module over Ox,V . Then we have H1(V,F (−n)) = 0
for n large enough.

After Theorem 2, it remains to show that Ox,V , considered as Ox-module is
of dimension ≤ r − 2. First choose an element f ∈ Ox such that f(x) = 0 and
that the image of f in Ox,V is not zero; this is possible because dimV > 0. As
V is irreducible, Ox,V is an integral ring (domain), and we can apply Lemma 2
to the pair (O, f); we then have:

dim Ox,V = dim Ox,V /(f)− 1, with (f) = fOx,V .

As Ox,V is an integrally closed ring, all prime ideals pα of the principal ideal
(f) are minimal (cf. [12] p.136, or [9], n◦ 37), and none of them is equal to the
maximal ideal m of Ox,V (if not we would have dimV ≤ 1). So we can find an
element g ∈ m, not belonging to any of pα; this element g is not divisible by 0
in the quotient ring Ox,V /(f); we denote by g̃, a representation of g in Ox. We
see that we can apply Lemma to the pair Ox,V /(f), g̃); we then have:

dim Ox,V /(f) = dim Ox,V /(f, g)− 1.

But by Hilbert’s syzygy theorem, we have dim Ox,V /(f, g) ≤ r, so dim Ox,V ≤
r − 1 and dim Ox,V ≤ r − 2 QED.

Corollary. We have H1(V,OV (−n)) = 0 for n large enough.

Remarks.

(1) The reasoning made before is classic in theory of syzygies. Cf. W. Gröbner,
Moderne Algebraische Geometrie, 152.6 and 153.1.

(2) If the dimension of V is > 2, we can have dim Ox,V = r − 2. This is
in particular the case when V is a cone which hyperplane section W is a
normal and irregular projective variety (i.e., H1(W,OW ) 6= 0).
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77 Homological characterization of varieties k-times of first
kind

Let M be a graded S-module of finite type. We show by a reasoning identical
to that of Lemma 1:

Lemma 3 dim ≤ k if and only if ExtqS(M,S) = 0 for q > k.

As M is graded. we have ExtqS(M,Ω) = ExtqS(M,S)(−r−1), so the previous
condition is equivalent to ExtqS(M,Ω) = 0 for q > k. Given Theorem 1 of n◦

72, we conclude:

Proposition 2.

(a) For dimM ≤ r it is necessary and sufficient that Mn → H0(M(n)) is
injective for all n ∈ Z.

(b) If k is an integer ≥ 1, for dimM ≤ r− k it is necessary and sufficient that
α : Mn → H0(M(n)) is bijective for all n ∈ Z, and that Hq(M(n)) = 0 for
0 < q < k and all n ∈ Z.

Let V be a closed subvariety of Pr(K), and let I(V ) be an ideal if homoge-
neous polynomials, which are zero on V .

Denote S(V ) = S/I(V ), this is a graded S-module whose associated sheaf is
OV . We say2 that V is a variety “k-times of first kind” of Pr(K) if the dimension
of S-module S(V ) is ≤ r − k. It is obvious that α : S(V )n → H0(V,OV (n)) is
injective for all n ∈ Z, so all varieties are 0-times of first kind. Using preceding
proposition to M = S(V ), we obtain:

Proposition 3. Let k be an integer ≥ 1. For a subvariety V to be a k-
times of first kind, it is necessary and sufficient that the following conditions
are satisfied for all n ∈ Z:

(i) α : S(V )n → H0(V,OV (n)) is bijective.

(ii) Hq(V,OV (n)) = 0 for 0 < q < k.

(The condition (i) can also be expressed by saying that linear series cut on
V by forms of degree n is complete, which is well known.)

By comparing with Theorem 2 (or by direct reasoning), we obtain:

Corollary. If V is k-times of first kind, we have Hq(V,OV ) = 0 for 0 <
q < k and, for all x ∈ V , the dimension of Ox-module Ox,V is ≤ r − k.

2Cf. P. Dubreil, Sur la dimension des idéaux de polynômes, J . Math. Pures App., 15,
1936, p. 271-283. See also W . Gröbner, hloderne Algebraische Geometrie, §5.
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Ifm is an integer≥ 1, denote by ϕm the embedding of Pr(K) into a projective
space of convenient dimension, given by the monomials of degree m (cf. [8],
Chap. XVI, 6, or n◦ 52, proof of Lemma 2). So the preceding corollary admits
following converse:

Proposition 4. Let k be an integer ≥ 1, and let V be a connected and closed
subvariety of Pr(K). Suppose that Hq(V,OV ) = 0 for 0 < q < k, and that for
all x ∈ V the dimension of Ox-module Ox,V is ≤ r − k.
Then for all m large enough, ϕm(V ) is a subvariety k-times of first kind.

Because V is connected, we have H0(V,OV ) = K. So, if V is irreducible,
it’s evident (if not, H0(V,OV ) contains a polynomial algebra and is not of finite
dimension over K); if V is reducible, all elements f ∈ H0(V,OV ) induce a
constant on each of irreducible components of V , and this constants are the
same, because of connectivity of V .

By the fact that dim Ox,V ≤ r − 1, the algebraic dimension of each of irre-
ducible components of V is at least equal to 1. So it follows that

H0(V,OV (−n)) = 0

for all n > 0 (because if f ∈ H0(V,OV (−n)) and f 6= 0, the fkg with g ∈ S(V )nk
form a vector subspace of H0(V,OV ) of dimension > 1).

That being said, denote by Vm the subvariety ϕm(V ); we obviously have:

OVm(n) = OV (nm).

For m large enough the following conditions are satisfied:

(a) α : S(V )nm → H0(V,OV (nm)) is bijective for all n ≥ 1.

This follows from Proposition 5 of n◦ 65.

(b) Hq(V,OV (mn)) = 0 for 0 < q < k and for all n ≥ 1.

This follows from Proposition of n◦ 65.

(c) Hq(V,OV (nm)) = 0 for 0 < q < k and for all n ≤ −1.

This follows from Theorem 2 of n◦ 74, and hypothesis made on Ox,V .

On the other hand, we have H0(V,OV ) = K, H0(V,OV (nm)) = 0 for all
n ≤ −1, and Hq(V,OV ) = 0 for 0 < q < k, by the hypothesis. It follows that
Vm satisfies all the hypothesis of Proposition 3, QED.

Corollary. Let k be an integer ≥ 1, and let V be a projective variety with-
out singularities, of dimension ≥ k. For V being birationally isomorphic to a
subvariety k-times of first kind of a convenient projective space, it is necessary
and sufficient that V is connected and that Hq(V,OV ) = 0 for 0 < q < k.

The necessity is evident, by Proposition 3. To show sufficiency, it suffices to
remark that Ox,V is of dimension ≤ r− k (cf. n◦ 75) and to apply the previous
proposition.
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78 Complete intersections

A subvariety V of dimension p of projective space Pr(K) is a complete inter-
section if the ideal I(V ) of polynomials zero at V admits a system of r − p
generators P1, ..., Pr−p; in this case, all irreducible components of V have the
dimension p, by the theorem of Macaulay (cf. [9], n◦ 17). It is known, that
this variety is p-times of first kind, which implies that Hq(V,OV (n)) = 0 for
0 < q < p, as we have just seen. We will determine Hp(V,OV (n)) as a function
of degree m1, ...,mr−p of homogeneous polynomials P1, ..., Pr−p.

Let S(V ) = S/I(V ) be a ring of projective coordinates of V . By theorem 1
of n◦ 72 all it is left, is to determine the S-module Extr−pS (S(V ),Ω). We have a
resolution, analogous to that of n◦ 75: we take Lq the graded free S-module, ad-
mitting for a base the elements e〈i1, ..., iq〉, corresponding to sequences (i1, ..., iq)
such that 1 ≤ i1 < i2 < ... < iq ≤ r − p and of degree

∑q
j=1mj ; for L0 we take

S. We set:

d(e〈i1, ..., iq〉) =

q∑
j=1

(−1)iPije〈i1...îj ...iq〉

d(e〈i〉) = Pi.

The sequence 0 → Lr−p
d−→ ...

d−→ L0 → S(V ) → 0 is exact ([6], Chap.
VIII, Prop. 4.3). It follows that the ExtqS(S(V ),Ω) are the cohomology groups
of the complex formed by the HomS(Lq,Ω); but we can identify an element of
HomS(Lq,Ω)n with a system f〈i1, ...iq〉, where the f〈i1, ..., iq〉 are homogeneous
polynomials of degree mi1 + ...+miq +n−r−1; after this identification is made,
the operator of coboundary is given by usual formula:

(df)〈i1...iq+1〉 =

q∑
j=1

(−1)jPijf〈i1...îj ...iq+1〉.

The theorem of Macaulay implies that we are in conditions of [11], and we ob-
tain that ExtqS(S(V ),Ω) = 0 for q 6= r−p. On the other hand, Extr−pS (S(V ),Ω)n
is isomorphic to a vector subspace of S(V ) formed by homogeneous elements
of degree N + n, where N =

∑r−p
i=1 mi − r − 1. Using Theorem 1 of n◦ 72 we

obtain:

Proposition 5. Let V be a complete intersection, defined by the homoge-
neous polynomials P1, ..., Pr−p of degrees m1, ...,mr−p.

(a) The function α : S(V )n → H0(V,OV (n)) is bijective for all n ∈ Z.

(b) Hq(V,OV (n)) = 0 for 0 < q < p and all n ∈ Z.

(c) Hq(V,OV (n)) is isomorphic to a dual vector space to H0(V,OV (N − n)),
with N =

∑r−p
i=1 mi − r − 1.

We see that in particular Hp(V,OV ) is zero if N < 0.
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§6 The characteristic function and
arithmetic genus

79 Euler-Poincare characteristic

Let V be a projective variety and F a coherent algebraic sheaf on V . Let

hq(V,F ) = dimKH
q(V,F ).

We have seen (n◦ 66, Theorem 1) that hq(V,F ) are finite for all integer q
and zero for q > dimV . So we can define an integer χ(V,F ) by:

χ(V,F ) =

∞∑
q=0

(−1)q hq(V,F ).

This is the Euler-Poincare characteristic of V with coefficient in F .

Lemma 1. Let 0→ L1 → ...→ Lp → 0 be an exact sequence, with Li being
finite dimensional vector spaces over K, and homomorphisms Li → Li+1 being
K-linear. Then we have:

p∑
q=1

(−1)q dimKLq = 0.

We proceed by induction on p. The lemma is evident if p ≤ 3. If L′p−1 is the
kernel of Lp−1 → Lp, we have two exact sequences:

0→ L1 → ...→ L′p−1 → 0

0→ L′p−1 → Lp−1 → Lp → 0.

Applying induction hypothesis to each sequence, we see that
∑p−2
q=1 (−1)qdimLq+

(−1)p−1dimL′p−1 = 0, and

dimL′p−1 − dimLp−1 + dimLp = 0,

which proves the lemma.

Proposition 1. Let 0→ A → B → C → 0 be an exact sequence of coherent
algebraic sheaves on a projective variety V , with homomorphisms A → B and
B → C being K-linear. Then we have:

χ(V,B) = χ(V,A ) + χ(V,C ).

By Corollary 2 of Theorem 5 of n◦ 47, we have an exact sequence of coho-
mology:

...→ Hq(V,B)→ Hq(V,C )→ Hq+1(V,A )→ Hq+1(V,B)→ ...
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Applying Lemma to this exact sequence of vector spaces we obtain the
Proposition.

Proposition 2. Let 0 → F1 → ... → Fp → 0 be an exact sequence
of coherent algebraic sheaves on a projective variety V , with homomorphisms
Fi → Fi+1 being algebraic. Then we have:

p∑
q=1

(−1)q χ(V,Fq) = 0.

We proceed by induction on p. The proposition is a particular case of Propo-
sition 1 if p ≤ 3. If we define F ′p−1 to be the kernel of Fp−1 → Fp, the sheaf
F ′p−1 is coherent algebraic because Fp−1 → Fp is an algebraic homomorphism.
So we can applicate the induction hypothesis to two exact sequences

0→ F1 → ...→ F ′p−1 → 0

0→ F ′p−1 → Fp−1 → Fp,

and the Proposition follows.

80 Relation with characteristic function of a graded S-
module

Let F be a coherent algebraic sheaf on the space Pr(K). We write χ(F ) instead
of χ(Pr(K),F ). We have:

Proposition 3. χ(F (n)) is a polynomial of n of degree ≤ r.

By Theorem 2 of n◦ 60, there exists a graded S-module M of finite type,
such that A (M) is isomorphic to F . Applying the Hilbert’s syzygy theorem to
M we obtain an exact sequence of graded S-modules:

0→ Lr+1 → ...→ L0 →M → 0,

where Lq are free of finite type. Applying the functor A to this sequence, we
obtain an exact sequence of sheaves:

0→ L r+1 → ...→ L 0 → F → 0,

where each L q is isomorphic to a finite direct sum of shaves O(ni). The propo-
sition 2 implies that χ(F (n)) is equal to an alternating sum of χ(L 0(n)), which
brings us to case of the sheaf O(ni). Now it follows from n◦ 62 that we have
χ(O(n)) =

(
n+r
r

)
, which is a polynomial on n of the degree ≤ r. This implies

the Proposition.

Proposition 4. Let M be a graded S-module satisfying condition (TF), and
let F = A (M). For all n large enough, we have χ(F (n)) = dimKMn.
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We know (by n◦ 65) that for n large enough, the homomorphism α : Mn →
H0(X,F (n)) is bijective, and Hq(X,F (n)) = 0 for q > 0. So we have:

χ(F (n)) = h0(X,F (n)) = dimKMn.

We use a well known fact, that dimKMn is a polynomial of n for n large
enough. This polynomial, which we denote by PM is called the characteristic
function of M . For all n ∈ Z we have PM (n) = χ(F (n)), and in particular for
n = 0, we see that the constant term of PM is equal to χ(F ).

Apply this to M = S/I(V ), I(V ) being a homogeneous ideal of S of poly-
nomials which are zero on a closed subvariety V of Pr(K). The constant term
of PM is called in this case the arithmetic genus of V (cf. [19]). Since on the
other hand we have A (M) = OV , we obtain:

Proposition 5. The arithmetic genus of a projective variety V is equal to

χ(V,OV ) =

∞∑
q=0

(−1)qdimKH
q(V,OV ).

Remarks.

(1) The preceding Proposition makes evident the fact, that the arithmetic genus
is independent of an embedding of V into a projective space, since it’s true
for Hq(V,O).

(2) The virtual arithmetic genus (defined by Zariski in [19]) can also be re-
duced to Euler-Poincare characteristic. We return to this question later, by
Riemann-Roch theorem.

(3) For the reason of convenience, we have adopted the definition of arithmetic
genus different from the classical one (cf. [19]). If all irreducible compo-
nents of V have the same dimension p, two definitions are related by the
following formula: χ(V,OV ) = 1 + (−1)ppa(V ).

81 The degree of the characteristic function

If F is a coherent algebraic sheaf on an algebraic variety V , we call the support
of F , and denote by Supp(F ), the set of points x ∈ V such that Fx 6= 0. By
the fact that F is a sheaf of finite type, this set is closed. If we have Fx = 0,
the zero section generates Fx, then also Fy for y in neighborhood of x (n◦ 12,
Proposition 1), which means that the complement of Supp(F ) is open.

Let M be a graded S-module of finite type, and let F = A (M) be a sheaf
defined by M on Pr(K) = X. We can determine Supp(F ) from M in the
following manner:
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Let 0 =
⋂
αM

α be a decomposition of 0 as an intersection of homogeneous
primary submodules Mα of M . Mα correspond to homogeneous primary ideals
pα (cf. [12], Chap. IV). We suppose that this decomposition is ’the shortest
possible’, i.e. that non of Mα is contained in an intersection of others. For
all x ∈ X, each p defines a primary ideal pαx of a local ring Ox, and we have
pαx = O if and only if x is not an element of a variety V α defined by an ideal pα.
We have also 0 =

⋂
αM

α
x in Mx, and we verify easily that we thereby obtain a

primary decomposition of 0 in Mx. The Mα
x correspond to primary ideals pαx ;

if x /∈ V α, we have Mα
x = Mx, and if we restrict ourself to consider Mα

x such
that x ∈ V α, we obtain ’the shortest possible decomposition’ (cf. [12], Chap
IV, th 4.). We conclude that Mx 6= 0 if and only if x is an element of V α, thus
Supp(F ) =

⋃
α V

α.

Proposition 6. If F is a coherent algebraic sheaf on Pr(K), the degree of
χ(F (n)) is equal to the dimension of Supp(F ).

We proceed by induction on r. The case r = 0 is trivial. We can suppose
that F = A (M), where M is a graded S-module of finite type. Using notation
introduced below, we have to show that χ(F (n)) is an polynomial of degree
q = Sup dim V α.

Let t be a linear homogeneous form, which do not appear in any of proper
prime ideals pα. Such a form exists because the field K is infinite. Let E be a
hyperplane of X with equation t = 0. Consider the exact sequence:

0→ O(−1)→ O → OK → 0,

where O → OE is a restriction homomorphism, while O(−1) → O is a ho-
momorphism f 7→ tf . Applying tensor product with F , we obtain an exact
sequence:

F (−1)→ F → FE → 0, with FE = F ⊗O OE .

On Ui, we can identify F (−1) with F , and this identification transforms
the homomorphism F (−1) → F defined above to the multiplication by t/ti.
Because t was chosen outside pα, t/ti don’t belong to any prime ideal of Mx =
Fx if x ∈ Ui, and the preceding homomorphism is injective (cf. [12], p. 122, th.
7, b”)). So we have an exact sequence:

0→ F (−1)→ F → FE → 0,

from which, for all n ∈ Z the exact sequence:

0→ F (n− 1)→ F (n)→ FK(n)→ 0.

Applying Proposition 1, we see that:

χ(F (n))− χ(F (n− 1)) = χ(FE(n)).
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But the sheaf FE is a coherent sheaf of OE-modules, which means that it
is a coherent algebraic sheaf on E, which is a projective space of dimension
r − 1. Moreover Fx,E = 0 means that the endomorphism of Fx defined by
multiplication by t/ti is surjective, which leads to Fx = 0 (cf. [6], Chap VIII,
prop 5.1’). It follows that Supp(FK) = E ∩ Supp(F ), and because E does
not contain any of varieties V α, if follows by a known fact, that the dimension
of Supp(FE) is equal to q − 1. By the induction hypothesis χ(FE(n)) is a
polynomial of degree q− 1. As this difference is prime to the function χ(F (n)),
the latter is a polynomial of degree q.

Remarks.

(1) Proposition 6 was well known for F = O/I , I being a coherent sheaf of
ideals. Cf. [9] n◦ 24.

(2) The above proof does not use Proposition 3 and shows it once again.
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p. 9-26.

103



BIBLIOGRAPHY BIBLIOGRAPHY

[16] A. Weil, Foundations of Algebraic Geometry, Colloq. XXIX.

[17] A. Weil, Fibre-spaces in Algebraic Geometry (Notes by A. Wallace),
Chicago Univ., 1952.

[18] O. Zariski, The concept of a simple point of an abstract algebraic variety,
Trans. Amer. Math. Soc., 62, (1947), p. 1-52.

[19] O. Zariski, Complete linear systems on normal varieties and a generaliza-
tion of a lemma of Enriques-Severi, Ann. of Math., 55, (1952), p. 552-592.

104


	Introduction
	Sheaves
	Operations on sheaves
	Definition of a sheaf
	Sections of a sheaf
	Construction of sheaves
	Glueing sheaves
	Extension and restriction of a sheaf
	Sheaves of rings and sheaves of modules
	Subsheaf and quotient sheaf
	Homomorphisms
	The direct sum of two sheaves
	The tensor product of two sheaves
	The sheaf of germs of homomorphisms

	Coherent sheaves of modules
	Definitions
	Main properties of coherent sheaves
	Operations on coherent sheaves
	Coherent sheaves of rings
	Change of ring
	Extension and restriction of a coherent sheaf

	Cohomology of a space with values in a sheaf
	Cochains of a covering
	Simplicial operations
	Complexes of cochains
	Passing to a finer covering
	Cohomology groups of X with values in a sheaf F
	Homomorphisms of sheaves
	Exact sequence of sheaves: the general case
	Exact sequence of sheaves: the case of X paracompact
	Cohomology of a closed subspace

	Comparison of cohomology groups of different coverings
	Double complexes
	The double complex defined by two coverings
	Applications


	Algebraic Varieties  – Coherent Algebraic Sheaves on Affine Varieties
	Algebraic varieties
	Spaces satisfying condition (A)
	Locally closed subsets of an affine space
	Regular functions
	Products
	Definition of the structure of an algebraic variety
	Regular mappings, induced structures, products
	The field of rational functions on an irreducible variety

	Coherent algebraic sheaves
	The sheaf of local rings on an algebraic variety
	Coherent algebraic sheaves
	Sheaf of ideals defined by a closed subvariety
	Sheaves of fractional ideals
	Sheaf associated to the total space of a vector bundle

	Coherent algebraic sheaves on affine varieties
	Affine varieties
	Some preliminary properties of irreducible varieties
	Vanishing of certain cohomology groups
	Sections of a coherent algebraic sheaf on an affine variety
	Cohomology groups of an affine variety with values in a coherent algebraic sheaf
	Coverings of algebraic varieties by open affine subsets

	Correspondence between modules of finite type and coherent algebraic sheaves
	Sheaf associated to a module
	Module associated to an algebraic sheaf
	Projective modules and vector bundles


	Coherent Algebraic Sheaves on Projective Varieties
	Projective varieties
	Notations
	Cohomology of subvarieties of the projective space
	Cohomology of irreducible algebraic curves

	Graded modules and coherent algebraic sheaves on the projective space
	The operation F(n)
	Sections of F(n)
	Graded modules
	The algebraic sheaf associated to a graded S-module
	First properties of the functor A(M)
	The graded S–module associated to an algebraic sheaf
	The case of coherent algebraic sheaves

	Cohomology of the projective space with values in a coherent algebraic sheaf
	The complexes Ck(M) and C(M)
	Calculation of Hqk(M) for certain modules M
	General properties of Hq(M)
	Comparison of the groups Hq(M) and Hq(X, A(M))
	Applications
	Coherent algebraic sheaves on projective varieties
	A supplement

	Relations with the functors ExtSq
	The functors ExtSq
	Interpretation of Hqk(M) in terms of ExtSq
	Definition of the functors Tq(M)
	Determination of Tr(M).
	Determination of Tq(M).

	Applications to coherent algebraic sheaves
	Relations between functors ExtSq and ExtOxq
	Vanishing of cohomology groups Hq(X,F(-n)) for n +
	Nonsingular varieties
	Normal Varieties
	Homological characterization of varieties k-times of first kind
	Complete intersections

	The characteristic function and arithmetic genus
	Euler-Poincare characteristic
	Relation with characteristic function of a graded S-module
	The degree of the characteristic function


	Bibliography

