
INTRO TO DEFORMATION THEORY (MAR 3, 2016)

PIOTR ACHINGER

This is a note based on my talk on March 3. I discuss the so-called Yoneda (or ‘func-
tor of points’) philosophy in algebraic geometry, and some basics of deformation theory
(without Schlessinger’s criteria, deformations of schemes, and obstruction classes – these
will hopefully appear later in the seminar). There is plenty of good introductory texts to
deformation theory, see e.g. [FG05] (the first chapter) or the very readable book [Har10].

1. The functor of points approach

We begin with a somewhat philosophical discussion of the Yoneda lemma in category
theory. Let C be category, x an object of C. Consider the contravariant functor hx :
Cop → (Sets) taking an object y to the set HomC(y, x), and a morphism f : y → y′ to the
map HomC(y′, x) → HomC(y, x) given by precomposition with f . Varying x, we obtain
a (covariant!) functor C → Fun(Cop, (Sets)) to the category Fun(Cop, (Sets)) of functors
Cop → (Sets) (with morphisms given by natural transformations of functors), sending x to
hx and a morphism f : x → x′ to the natural transformation HomC(y, x) → HomC(y, x′)
given by postcomposition with f .

Lemma 1.1 (Yoneda). The functor x 7→ hx : C → Fun(Cop, (Sets)) is fully faithful. More
generally, for any functor F : Cop → (Sets) and any object x of C, the map associating
to an element ξ ∈ F (x) the system of maps Hom(y, x) → F (y) sending f : y → x to
F (f)(ξ) ∈ F (y) gives a bijection F (x)→ Hom(hx, F ).

In other words, natural transformations hx → hx′ are in bijection with maps x → x′

in C, and thus C can be treated as a full subcategory of Fun(Cop, (Sets)). The second
assertion states that for a functor F : Cop → (Sets), the restriction of the functor hF :
Fun(Cop, (Sets))op → (Sets) to Cop ⊆ Fun(Cop, (Sets))op is canonically isomorphic to F .

For us, the main point of the Yoneda lemma is as follows. Suppose that F : Cop → (Sets)
is any functor. By Yoneda, it makes sense to ask whether F is an object of C, that is,
whether there exists an object x of C and an isomorphism ι : hx → F (if so, we call F
representable, and x an object representing F ). Indeed, if hx ' F ' hx′ , then x ' x′

by the first assertion of the lemma, so x is well-defined. Moreover, the second assertion
implies that the choice of ι is equivalent to giving an element ξ ∈ F (x). The advantage of
this point of view is that it is often easier to define a functor F : Cop → (Sets) than an
object of C.

This is perhaps still too abstract, so let us give a few case studies of applications of this
philosophy in algebraic geometry. As we will see, sometimes it is impossible to avoid using
this paradigm even when dealing with very concrete questions.
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1.2. Products. Given two C-schemes X and Y , we would like to define X × Y . As a
set, this should be the cartesian product of X and Y , and it is easy to construct X × Y
as a scheme if X and Y are both affine (by taking tensor product of the corresponding
algebras). The construction in the general case involves a non-canonical choice of affine
open coverings of X and Y and gluing. Is is then proved that for any C-scheme Z, there
is a natural bijection Hom(Z,X × Y ) ' Hom(Z,X) × Hom(Z, Y ), given by composition
with the two projections X × Y → X, X × Y → Y .

Let C be the category of C-schemes, and let F : Cop → (Sets) be the functor

F (Z) = Hom(Z,X)× Hom(Z, Y ).

(So F = hX × hY )). The property of X × Y mentioned above implies that we have
hX×Y ' F , so by Yoneda X × Y is uniquely determined by F . So instead of constructing
X × Y in an ad-hoc way, we could have started with F = hX × hY and asked whether
it is representable. The construction of X × Y by patching yields a proof that F is
representable. This discussion applies more generally to products (or more generally –
limits) in an arbitrary category.

1.3. Projective spaces. Suppose a newcomer to algebraic geometry wanted to define
the projective space P(V ) of a finite dimensional complex vector space V . As a set, this
should consist of one-dimensional linear subspaces of V , and the problem is to give this
set a natural structure of an algebraic variety. Classically, this is done either by gluing
together a number of affine spaces An (which requires choosing a basis of V ), or a bit
more canonically, using the Proj construction. What is perhaps lacking here is a clear
explanation why this is the correct structure. To add confusion, a line bundle O(1) is
introduced by a rather ad-hoc procedure. Later on, when studying about line bundles
and linear series, one learns that globally generated line bundles yield maps to projective
spaces. If f : X → P(V ) is a map, we get the line bundle L = f ∗O(1), together with a map
p : V ∗ = H0(P(V ),O(1))→ H0(X,L) with the property that for every point x ∈ X, there
exists a ϕ ∈ V ∗ such that p(ϕ) does not vanish at x. In other words, the associated map
V ∗ ⊗ OX → L is a surjective map of sheaves on X. It is easy to see that the association
f 7→ (L, p) is a bijection.

Proposition 1.4. For any scheme X over C, the above construction gives a bijection

Hom(X,P(V ))→ {line bundles L on X together with a surjection V ∗ ⊗ OX → L}.

Note that by duality, surjections V ∗ ⊗ OX → L correspond to maps L → V ⊗ OX

such that for every x ∈ X, the map L ⊗ k(x) → V ⊗ OX ⊗ k(x) = V ⊗ k(x) is injective
(we call this a line subbundle of V ⊗ OX). Thus a map f : X → P(V ) yields a family
of linear subspaces L of V parameterized by the C-points of X, which is a very natural
generalization of the most naive definition of P(V ) as the set of all lines in V .
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What does Yoneda tell us about this situation? Let C be again the category of C-
schemes, and let F : Cop → (Sets) be the functor

FV (X) = {line subbundles of V ⊗ OX}
= {line bundles L on X together with a surjection p : V ∗ ⊗ OX → L}.

Then Proposition 1.4 asserts that we have a natural isomorphism ι : hP(V ) ' FV . By
Yoneda, this shows that FV determines P(V ) uniquely. Moreover, the second assertion
of Yoneda shows that ι corresponds to an element ξ ∈ FV (P(V )), that is, a surjection
V ∗ ⊗ OP(V ) → L onto a line bundle L. This L is just O(1).

This gives the following way of defining P(V ) and O(1). We start with the functor
FV above, and define P(V ) to be any scheme representing FV , i.e., a scheme P together
with an element ξ = (L, p) ∈ FV (P ) such that the associated (by Yoneda) ι : hP → FV
is an isomorphism. Then O(1) is simply the line bundle L, and it comes with a natural
surjection p : V ⊗OP(V ) → O(1). Of course, one still has to prove that F is representable,
but the advantage is that the definition is simple and natural, and all noncanonical choices
are pushed into the proof of representability.

One truly starts to appreciate this approach when trying to define more general spaces.
For example, it is now almost obvious how correctly to define the Grassmannian G(k, V )
of k-dimensional subspaces of V , or the full flag variety Fl(V ) (setting aside the proofs of
representability of the corresponding functors). Moreover, it is clear from our definition
of P(V ) that it is functorial with respect to injective maps V → V ′: we trivially get a
natural transformation FV → FV ′ , and hence a map P(V ) → P(V ′) by Yoneda. Finally,
the generalization of P(V ) to the relative case becomes almost obvious: if S is a scheme
and E a vector bundle on S, we can simply define P(E) as an S-scheme representing the
functor FE(X → S) = {line subbundles of f ∗E}. Again by Yoneda, it comes with a natural
line bundle, the relative O(1).

1.5. Hilbert schemes. To a closed subscheme Z ⊆ Pn one can associate its Hilbert
polynomial χZ ∈ Q[t], which is the unique polynomial satisfying χZ(k) = dim Γ(Z,OZ(k))
for k � 0. If S is connected and Z ⊆ Pn × S is a flat family of closed subschemes of Pn,
then the Hilbert polynomial χZs of Zs = Z ∩ Pn × {s} is independent of s.

Let P ∈ Q[t] be a polynomial taking integer values. The Hilbert scheme HilbnP is a
scheme parameterizing (i.e., whose points are in bijection with) closed subschemes Z ⊆ Pn
with Hilbert polynomial χZ = P . Not only is it unclear whether such a thing exists; the
previous sentence cannot even serve as its definition. But, given our experience from the
previous paragraphs, we eagerly define the functor

Hn
P (X) = {closed subschemes Z ⊆ Pn ×X, flat over X,

and such that χZx = P for all x ∈ X},

and define HilbnP to be a scheme representing the functor Hn
P . Now we can ask: is the

functor Hn
P representable? The answer turns out to be yes, but the proof is not easy. But

at least we can ask an honest question, with answer either yes or no, as opposed to the
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vague ‘does there exist a scheme whose points are in natural bijection with...?’ (we could
take just a disjoint union of points).

It turns out that H := HilbnP is proper over C (i.e. complete, or compact). Recall the
valuative criterion of properness [Har77, II §3]: H is proper if and only if it is of finite
type and for every valuation ring R and f : Spec(Frac(R)) → H, there exists a unique
extension f : Spec(R) → H. Suppose that we know H is of finite type. By definition of
HilbnP , f corresponds to a closed subscheme Z ⊆ PnK with Hilbert polynomial P . Let Z be
the closure of Z in PnR. Then Z is flat over R (REF), and hence χZ = χZ = P . Thus Z
defines the desired f , which is moreover unique.

Exercise 1.6. Apply a similar argument to show that P(V ) is complete if it exists and is of
finite type, arguing with the functor FV alone.

This discussion shows that with our approach, we can prove things about HilbnP (proper-
ness, granted that it is of finite type) without even knowing whether it exists! A different,
much more complicated argument of this sort appeared in Hartshorne’s Ph.D. thesis, where
he proved that HilbnP is always connected. As he remarks in the introduction, the proof
does not use anywhere the difficult fact that Hn

P is representable.

1.7. The functor of points approach. Taking this Yoneda-based aproach a little bit
further, given a scheme X, we can consider the contravariant functor

X : (C− algebras)→ (Sets), X(R) = Hom(SpecR,X),

called the functor of points of X. Using the arrow-reversing equivalence (C− algebras) '
(affine C − schemes)op, we see that the functor X coincides with the restriction of hX :
(C− schemes)op → (Sets) to the full subcategory of affine C-schemes.

Proposition 1.8. The association X 7→ X is fully faithful.

Proof. Let X and Y be C-schemes, and let ϕ : X → Y be a natural transformation.
Cover X =

⋃
Ui, by open affines. Composing with ϕ, we get natural transformations

ϕi : U i → Y . By Yoneda applied to the category of affine schemes, the ϕi yield elements
fi of (Y )(Ui) = Hom(Ui, Y ). For each i, j, let Ui ∩ Uj =

⋃
Uijk be an affine open cover of

the double intersection. Then again by Yoneda, the restrictions of fi and fj to each Uijk
coincide, and thus the fi glue to a unique morphism f : X → Y . �

In the previous paragraphs, we used Yoneda to identify a scheme X with the correspond-
ing functor hX : (Schemes)op → (Sets). Using the above proposition, we can identify X
with its functor of points X : (C − algebras) → (Sets). The clear advantage of the latter
is that it does not even mention the word scheme. So one could define various schemes
without even knowing the definition of a scheme, for example

Pn(A) = {direct summands of An of rank one}.
We have thus realized the category of schemes as a full subcategory of the category of

functors (C − algebras) → (Sets). One can now wonder whether there is a criterion for
such a functor to be a scheme. The answer is yes, and the criterion uses the notion of a
Zariski sheaf. I discuss this briefly below, feel free to skip this.
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Definition 1.9. (1) Let A be a C-algebra. A Zariski cover of A is a family {A →
Ai}i∈I of C-algebra morphisms, where each Ai = A[1/fi] for some fi ∈ A generating
the unit ideal of A.

(2) A functor F : (C − algebras) → (Sets) is a Zariski sheaf if for every C-algebra A
and for every Zariski cover {A→ Ai}i∈I , the diagram

F (A)→
∏
i∈I

F (Ai) ⇒
∏
i,j∈I

F (Aij),

where Aij = Ai ⊗A Aj = A[1/(fifj)], is an equalizer. (Recall that a diagram
A → B ⇒ C of sets is called an equalizer if A → B is injective with image equal
to the set of all elements of B whose images in C under the two maps B → C are
equal).

(3) Let Fi, F : (C − algebras) → (Sets) be Zariski sheaves, ϕi : Fi → F natural
transformations. We say that the ϕi are jointly surjective if for every field K, the
map

⊔
Fi(K)→ F (K) is surjective.

(4) Let A be a C-algebra, I ⊆ A an ideal. Then D(I) is the following subfunctor of
Hom(A,−):

D(I)(B) = {ϕ : A→ B : ϕ(I)B = B}.
A morphism D → Hom(A,−) of functors (C− algebras)→ (Sets) is called an open
subset if D ' D(I) for some ideal I. More generally, for any F : (C− algebras)→
(Sets), a subfunctor D ⊆ F is called an open subfunctor if for every C-algebra A
and every Hom(A,−)→ F , the preimage of D in Hom(A,−) is an open subset.

(5) Let Fi, F : (C − algebras) → (Sets) be Zariski sheaves, ϕi : Fi → F natural
transformations. We say that the ϕi are jointly surjective if for every field K, the
map

⊔
Fi(K)→ F (K) is surjective. We say that the ϕi are an open covering of F

is they are jointly surjective and each Fi is an open subfunctor of F .

Proposition 1.10. A functor F : (C − algebras) → (Sets) is a scheme if and only if F
is a Zariski sheaf and there exists C-algebras Ri and ξi ∈ F (R) inducing an open covering
Hom(Ri,−)→ F .

Thus, in principle, one could take the above proposition as the definition of a scheme. A
clear benefit is that we can avoid using locally ringed spaces, and that some constructions
are easier to carry out. For example, it is easy to prove using the above proposition that
fiber products of schemes always exist. Of course, to do algebraic geometry on a scheme
X, one really needs the locally ringed space, but for some applications (group schemes, for
example) the functor of points is more elegant.

2. Infinitesimal geometry

In the previous section we observed that we can safely replace a scheme X with its
functor of points X : (C − algebras) → (Sets). If x ∈ X is a C-point, we can study X
locally around x by studying the functor

Xx : (local C− algebras with residue field C)→ (Sets),
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A 7→ {f : Spec(A)→ X : f(closed point) = x}.
More generally, the above definition makes sense for any F : (C− algebras)→ (Sets) and
any x ∈ F (C). In case F = X is a scheme, this functor remembers only the local ring
OX,x.

Proposition 2.1. Let f : Spec(OX,x) → X be the canonical map, A a local ring with
residue field C, g : Spec(A) → X a map sending the closed point to x. Then there exists
a unique local homomorphism OX,x → A such that the induced h : Spec(A)→ Spec(OX,x)
satisfies h ◦ f = g. In particular Xx ' Hom(OX,x,−).

Proof. Obvious! �

In infinitesimal geometry, one replaces local algebras with Artinian local algebras. Recall
that a C-algebra A is Artinian if dimCA = 0. Let Art denote the category of local Artinian
C-algebras. As before, if X is a scheme and x ∈ X a C-point, we can study the functor

X̂x : Art→ (Sets), X̂x(A) = {f : Spec(A)→ X : f(closed point) = x}.

This functor only depends on the completion ÔX,x = lim OX,x/m
n+1
x , treated as a topolog-

ical ring endowed with the inverse limit topology.

Proposition 2.2. Let f : Spec(ÔX,x)→ X be the canonical map, A a an Artinian local C-
algebra, g : Spec(A)→ X a map sending the closed point to x. Then there exists a unique

local and continuous homomorphism ÔX,x → A such that the induced h : Spec(A) →
Spec(OX,x) satisfies h ◦ f = g. In particular Xx ' Homcont(ÔX,x,−).

Note however that ÔX,x is usually not an object of Art, but only an inverse limit of such.
This motivates the definition below.

Definition 2.3. We call a functor F : Art → (Sets) pro-representable if F ' Hom(A,−)
for a complete local C-algebra A such that A/mn

A is in Art for all n.

Later, we will review Schlessinger’s criteria for pro-representability, the infinitesimal
version of Proposition 1.10.

2.4. Tangent vectors to the Picard scheme. One thing we can study using F = X̂x

alone is tangent vectors at x. Recall that a tangent vector at x is a linear map v :
mx/m

2
x → C. Consider the map v : ÔX,x → C[ε]/(ε) sending f ∈ OX,x to f(x) + v((f −

f(x)) mod m2
x) · ε. This map is a ring homomorphism, and the association v 7→ v is a

bijection. Thus F (C[ε]/(ε2)) is the tangent space to X at x.
To illustrate this, let us compute the tangent space to the Picard variety at 0. Let X be

a smooth projective variety, Pic(X) the set of isomorphism classes of line bundles on X.
Tensor product gives Pic(X) the structure of an abelian group, the Picard group of X. It
turns out that Pic(X) has a natural scheme structure as well. Using the philosophy from
the previous section, we can define Pic(X) as a functor by

Pic(X)(A) = Pic(X × Spec(A))/Pic(SpecA).
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We divide by Pic(A) because a line bundle on X × Spec(A) which is pulled back from
Spec(A) is trivial along all fibers of X × Spec(A) → Spec(A) and hence does not give an
interesting family of line bundles on X parameterized by points of Spec(A) This functor
turns out to be representable, but we don’t need to know this to compute its tangent space.

Let 0 ∈ Pic(X) be the point corresponding to the trivial line bundle OX . The tangent

space to Pic(X) at 0 is by definition P̂ic(X)0(C[ε]/(ε2)), which is the set of isomorphism
classes of line bundles on X[ε] := X × SpecC[ε]/(ε2) whose restriction to X is trivial. Let
L be such a line bundle, together with an identification L/εL = OX , then L sits inside a
short exact sequence

0→ OX
a−→ L

b−→ OX → 0.

We treat L as an OX-module via OX → OX [ε] sending f to f + 0ε. This extension yields a
class vL ∈ Ext1(OX ,OX) = H1(X,OX). On the other hand, given an extension as above,
we get a natural action of OX [ε] on L by ε = a ◦ b. This gives a bijection between the
tangent space to Pic(X) at 0 and the group H1(X,OX).

3. Functors of Artin rings

Let k be a field. We denote by Artk the category of Artinian local k-algebras with residue
field k, where morphisms f : A→ A′ are ring homomorphisms making the diagram

A

��
f

��

k

??

��

k

A′

??

commute. The algebra k[ε] := k[ε]/(ε2) will be our favorite example of an object of Artk.
It is often called the ring of dual numbers.

Definition 3.1. (1) A deformation functor is a functor F : Artk → Set such that F (k)
has one element.

(2) The tangent space of a deformation functor F is the set TF = F (k[ε]).

Examples 3.2. (1) For a k-scheme X, let F be the functor

F (A) = ker(Pic(X ⊗ A)→ Pic(X)),

where X ⊗ A = X ×Spec k SpecA by abuse of notation. We proved in §2.4 that
TF = H1(X,OX).

(2) Let X be a scheme over k, A an object of Artk. By a deformation of X to A we

mean a flat A-scheme X̃ together with an isomorphism X̃⊗k ' X. In other words,
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a deformation of X to A is a cartesian square

X̃

��

Xoo

��
SpecA Spec koo

where the left vertical map is flat. Consider the functor

DefX : Artk → Set, A 7→ {deformations of X to A}.

This is a deformation functor. We will see later that if X is smooth over k, there is
a natural isomorphism T DefX ' H1(X,TX) where TX is the tangent sheaf of X.

(3) Let Λ = k[[x1, . . . , xn]]/I for some proper ideal I. Thus Λ is a complete local k-
algebra with residue field k, and while it is not Artinian, it is a projective limit of
objects of Artk: Λ = lim Λ/mn

Λ. Consider the functor F (A) = Hom(Λ, A) (mor-
phisms in the category of local k-algebras with residue field k). This is a deformation
functor with tangent space TF ' (mΛ/m

2
Λ)∗, the usual Zariski tangent space of Λ.

A deformation functor of this form will be called pro-representable.
(4) Let Z be a k-scheme, z ∈ Z(k) a k-point. Consider the functor F : Artk → Set

sending an algebra A to the set of morphisms SpecA→ Z such that the diagram

Spec k
z //

��

Z

SpecA

<<

commutes. This is a deformation functor, in fact isomorphic to the functor Hom(ÔZ,z,−)
(morphisms of local k-algebras endowed with a morphism to k). Thus if Z is noe-
therian and k(z) = k, the functor F is pro-representable. The tangent space TF is
of course the tangent space to Z at z.

3.3. Why should TF be a vector space? The above examples suggest that often the set
TF has a natural structure of a vector space over k. We observe first that the field k always
acts on TF in a natural way: for λ ∈ k, let mλ : k[ε]→ k[ε] be the morphism sending ε to
λ ·ε. This is an action of the multiplicative monoid of k on k[ε], and TF = F (k[ε]) inherits
this structure by functoriality. Trying to define a natural addition map TF × TF → TF ,
we are quickly led to the following question. Consider the morphism

α : k[ε1]×k k[ε2] −→ k[ε], εi 7→ ε.
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Note that fiber product over k is the categorical product in the category Artk. Applying
F , we obtain a diagram

F (k[ε1]×k k[ε2])
F (α)

//

��

F (k[ε])

F (k[ε1])× F (k[ε2]) TF

TF × TF
?

66

We see that if F commuted with the fiber product in question, we would get a map
a : TF × TF → TF , a natural candidate for the addition map.

Lemma 3.4. Suppose that F commutes with fiber products of the form (−)×k k[ε]. Then
the maps F (mλ) : TF → TF (λ ∈ k) together with the map a : TF × TF → TF define a
k-vector space structure on TF .

Proof. Left as an exercise. �

4. Formal smoothness

Let f : X → Y be a locally finitely presented map of schemes. Recall that f is smooth
if it is flat and Ω1

X/Y is locally free of rank equal to the relative dimension of X over Y . If
Y = Spec k for an algebraically closed field k, this just means that X is regular.

For us, the following criterion of smoothness (similar in spirit to the valuative criteria of
separatedness and properness) will be more useful than the definition.

Proposition 4.1. A locally finitely presented morphism f : X → Y is smooth if and only
if, for every surjection A′ → A whose kernel I is a nilpotent ideal, end every commutative
square of solid arrows

SpecA //

��

X

f

��
SpecA′ //

;;

Y

there exists a dotted arrow making the diagram commute.

Proof. We will only prove the⇒ implication (cf. [Har10, Proposition 4.4]). We can assume
that Y = SpecS, X = SpecR for a finitely presented S-algebra R. Choose a surjection
P → R from a polynomial algebra P over S in finitely many variables, and let J be its
kernel.

We can also assume that I2 = 0 by considering inductively the sequence of surjections

A′ = A′/In → A′/In+1 → . . .→ A′/I = A,

each with square-zero kernel.
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Consider the diagram of solid arrows with exact rows below

0 // J

h
��

// P

g
��

// R

��

// 0

0 // I // A′ // A // 0.

Since P is a free algebra over S, there exists an S-algebra map g making the square on the
right commute. Let h : J → I be its restriction to J . Then h induces h : J/J2 → I/I2 = I.
On the other hand, since f is smooth, J/J2 is the first term in short exact sequence

0→ J/J2 → ΩP/S ⊗S R→ ΩR/S → 0

where the term on the right ΩR/S is projective. Thus the sequence splits, and there exists

an extension u : ΩP/S⊗SR→ I of h. Now the composition ΩP/S → I yields an S-derivation
v : P → I. Let g′ : P → A′ be the map g′(x) = g(x) − v(x). Then one can check easily
that g′ is a homomorphism and g′(J) = 0. Thus g′ descends to a homomorphism R→ A′,
which gives a desired map SpecA′ → X. �

This motivates the following definition.

Definition 4.2. Let τ : F → G be a natural transformation between deformation functors.
We say that τ is smooth if for every surjection A′ → A in Artk, and every commutative
square of solid arrows

Hom(A,−) //

��

F

τ

��
Hom(A′,−) //

::

G

there exists a dotted arrow making the diagram commute, or in other words (by Yoneda),
if the map

F (A′) −→ F (A)×G(A) G(A′)

is surjective. A deformation functor F is called smooth if the map to the trivial functor
G(A) = {∗} is smooth, that is, if F (A′)→ F (A) is surjective for every surjection A′ → A.

Using a version of the above proposition, one can show that a morphism Λ′ → Λ for
Λ,Λ′ as in REF gives a smooth morphism Hom(Λ,−) → Hom(Λ′,−) if and only if Λ '
Λ′[[y1, . . . , yr]] for some r ≥ 0, and that a morphism of varieties f : X → Y is smooth if and

only if, for every closed point x ∈ X, the associated map Hom(ÔX,x,−) → Hom(ÔY,y,−)
is a smooth morphism of deformation functors.
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