JAGS Fall 2019 exercises

Basics of étale and ℓ -adic cohomology

Version October 20, 2019

Note: Italicized text indicates a remark. The b^{th} exercise for lecture *a* will often times be denoted 'exercise *a*.*b*'.

1. Introduction.

(1) Compute the number of points $|X(\mathbf{F}_q)|$ of $X = \operatorname{Gr}(k, n)$ (Grassmannian of k-dimensional linear subspaces in *n*-dimensional affine space) over the finite field \mathbf{F}_q and the corresponding Hasse-Weil zeta function Z(X, t).

Compare with singular cohomology of the complex Grassmannian if you already know how to compute it.

(2) Let *X* be a variety over \mathbf{F}_q . Show that

$$Z(X,t) = \prod_{x \in |X|} \frac{1}{1 - t^{\deg(x)}}.$$

Here the product runs over all closed points *x* of *X*, and deg(*x*) is the degree of the field extension $[\kappa(x) : \mathbf{F}_q]$.

(3) Show that if $Y \subseteq X$ is a closed subvariety and $U = X \setminus Y$ is the complementary open, then $Z(X, t) = Z(Y, t) \cdot Z(U, t).$

$$\exp\left(\sum_{n\geq 1} \operatorname{Tr}(F^n) \frac{t^n}{n}\right) = \frac{1}{\det(1-tF)}$$

(5) Let $X \subseteq \mathbf{P}_{\mathbf{F}_q}^N$ be a projective variety over the finite field \mathbf{F}_q and let $\overline{X} \subseteq \mathbf{P}_{\overline{\mathbf{F}}_q}^N$ be its base change to $\overline{\mathbf{F}}_q$. Let $F: \mathbf{P}_{\overline{\mathbf{F}}_q}^N \longrightarrow \mathbf{P}_{\overline{\mathbf{F}}_q}^N$ be the map defined in homogeneous coordinates by

$$F(x_0:\ldots:x_N)=(x_0^q:\ldots:x_N^q).$$

Show that *F* maps \overline{X} to itself and that its fixed points on \overline{X} are precisely $X(\mathbf{F}_q)$.

(6) Compute the Hasse–Weil zeta function of the circle $X = \{x^2 + y^2 = 1\} \subseteq A_{F_p}^2$ and compare it with the zeta function of $X' = G_{m,F_p}$. Note that X and X' become isomorphic over \overline{F}_p .

2. Morphisms.

(1) For a scheme X an open subscheme $U \subseteq X$ has the property that its geometry is entirely determined by that of X and its underlying topological space $|U| \subseteq |X|$. This feature seems so important for open subschemes that one might imagine it characterizes them. This exercise shows this to be the case.

Let U and X be Noetherian schemes and let $j:U\longrightarrow X$ be a morphism. Suppose that U represents the functor

$$S \mapsto \{f: S \longrightarrow X : f(|S|) \subseteq j(|U|)\}$$

(where $|\cdot|$ represents the underlying topological space). Use Grothendieck's characterization of open embeddings (open embeddings are precisely étale monomorphisms) to show that j is an open embedding.

This observation is also important for defining open subobjects in categories other than schemes (e.g. adic/rigid spaces).

(2) Let *S* be an integral normal scheme and let $f : X \longrightarrow S$ be an étale morphism with *X* connected. Use [Stacks, Tag025P] to show that *X* is integral. Give an example that shows this can fail if *S* is not assumed to be normal (Hint: consider the nodal cubic curve $V(y^2 - x^2(x + 1)) \subseteq A_C^2$ and try drawing a picture for some of its 'covers').

- (3) Let $f : X \longrightarrow Y$ be a morphism of varieties over an algebraically closed field k. Let $x \in X(k)$ and let y := f(x). If f is étale at x show that the induced map $\widehat{f}_x : \widehat{O}_{Y,f(x)} \longrightarrow \widehat{O}_{X,x}$ is an isomorphism. Does this remain true if one does not assume that k is algebraically closed? Does it remain true if X and Y are arbitrary schemes?
- (4) Let k be a field of arbitrary characteristic and let E be an elliptic curve over k. Show that the multiplication-by-n map [n] : E → E is étale if and only if char(k) ∤ n.
- (5) Let *k* be a field of arbitrary characteristic and let $G_{m,k}$ denote the usual multiplicative group over *k*. For what *n* is the multiplication-by-*n* map $[n] : G_{m,k} \longrightarrow G_{m,k}$ étale?
- (6) Let SL_{n,Z} be the functor which associates to a ring *R* the set SL_n(*R*) of *n*×*n*-matrices over *R* with determinant 1. Show that SL_{n,Z} is representable and use the infinitesimal lifting criterion to show that SL_{n,Z} → Spec(Z) is smooth.
- (7) Use Example 4.10 of [Mil] to show that the henselization of $\mathbb{Z}_{(p)}$ is the integral closure of $\mathbb{Z}_{(p)}$ in \mathbb{Z}_p . What is the henselization of $k[t]_{(t)}$?
- (8) Use the infinitesimal lifting criterion to prove the following version of Hensel's lemma: let (A, m) be a complete local ring and let X → Spec(A) be smooth (resp. étale)). Show that the map X(A) → X(A/m) is surjective (resp. bijective). Use this to show the normal version of Hensel's lemma: let f(t) ∈ Z_p[t] be a polynomial such that f(t) ∈ F_p[t] is separable, then every root of f(t) has a unique lift to Z_p.
- (9) Let X be a smooth variety over k an arbitrary field. Show that $X(k^{\text{sep}})$ is dense in X (Hint: show that this condition is insensitive to étale morphisms and reduce to $A_k^{\dim(X)}$).
- (10) Let $f : X \longrightarrow Y$ and $g : Y \longrightarrow Z$ be morphisms. Suppose that $g \circ f$ and g are étale. Show that f is étale.
- (11) Let *S* be any scheme over \mathbb{F}_p . Denote by F_S the *absolute Frobenius map* $S \longrightarrow S$ which is the identity on the underlying topological space and is the p^{th} -power map on O_S (i.e. on an affine open $\text{Spec}(R) \subseteq S$ it is the map induced by the map $R \longrightarrow R$ given by $r \mapsto r^p$). We say that *S* is *perfect* if F_S is an isomorphism.

Let $f : X \longrightarrow S$ be an S-scheme. We then define the scheme $X^{(p)}$ by the following cartesian diagram

We then obtain a *relative Frobenius map* $F_{X/S} : X \longrightarrow X^{(p)}$ by declaring its projection to X be F_X and its projection to S be f. We would like to understand $F_{X/S}$ when S is perfect (which we assume in the following).

- a) Compute $X^{(p)}$ and $F_{X/S}$ when $X = \mathbb{A}_S^d$ for some $d \ge 0$.
- b) Use exercise 10. and Grothendieck's characterization of open embeddings to show that if $f: X \longrightarrow S$ is étale then $F_{X/S}$ is an isomorphism.
- c) Combine a) and b) to show that if f is smooth of relative dimension d then $F_{X/S}$ is locally free of rank p^d .
- d) Show that if *X* and *Y* are varieties over an algebraically closed field *k* and $f : X \longrightarrow Y$ is an étale morphism then for all $x \in X(k)$ the induced map $df_x : T_x X \longrightarrow T_{f(y)}Y$ is an isomorphism. Is this true if *k* is not algebraically closed? Is this true for non-closed points? Is this true if *X* and *Y* are arbitrary schemes.
- (12) Let *X* and *Y* be schemes and let $f : X \longrightarrow Y$ be an étale morphism. Let us say that *f* is *locally factorizable* if for all $x \in X$ there exists a neighborhood *U* of *x* and *V* of f(x) such that $f(U) \subseteq V$ and for which there is a factorization

with *j* an open embedding and π a finite étale map. Is every étale morphism locally factorizable?

In other words, the question is whether the étale site of a scheme X has a subcategory \mathscr{C} of simpler objects (open embeddings followed by finite étale) which is sufficient for defining sheaves (in the sense that every object of X_{et} has a refinement by an object of \mathscr{C}).

- (13) Show that if (A, \mathfrak{m}) and (B, \mathfrak{n}) are local rings and $f : (A, \mathfrak{m}) \longrightarrow (B, \mathfrak{n})$ is flat, then it's injective and, in particular, faithfully flat.
- (14) Let $f : X \longrightarrow Y$ be faithfully flat. Show that f is an epimorphism in the category of schemes (Hint: use the exercise 2.13).

3. Étale fundamental group (I).

- (1) Let $f : X \longrightarrow Y$ and $g : Y \longrightarrow Z$ be such that $g \circ f$ and g are finite étale. Prove that f is finite étale.
- (2) Let S be a scheme and let s̄ be a geometric point of S. Show that if f_i : X_i → S are finite étale covers and u : X₁ → X₂ is an S-morphism such that the induced map u_{*} : F_{s̄}(X₁) → F_{s̄}(X₂) is an isomorphism, then u is an isomorphism.
- (3) Let *S* be a connected scheme and let $X \longrightarrow S$ be a connected finite étale cover. Show that any *S*-morphism $u: X \longrightarrow X$ is an isomorphism.
- (4) Show that if (S₁, s₁) → (S₂, γ₂) is a mapping of connected pointed schemes, then the induced map π₁^{ét}(S₁, s₁) → π₁^{ét}(S₂, s₂) is surjective if and only if for all connected finite étale covers X₂ → S₂ the space S₁ ×_{S₂} X₂ is connected. Find an aanlogue of when a map on fundamental groups is injective.
- (5) Use exercise 3.4, together with exercise 2.2 to show that if (S, s̄) is a pointed scheme with S integral and normal and if U ⊆ S is open, then the induced map π₁^{ét}(U, s̄) → π₁^{ét}(S, s̄) is surjective. Is this true if one doesn't assume that S is normal?
- (6) Classify explicitly the étale covers of $\text{Spec}(\mathbb{Z}_p)$ and use this to compute $\pi_1^{\acute{e}t}(\text{Spec}(\mathbb{Z}_p))$.
- (7) Can you give a description of all the finite étale covers of Spec($\mathbb{Z}[\frac{1}{n}]$) and describe $\pi_1^{\acute{e}t}(\operatorname{Spec}(\mathbb{Z}[\frac{1}{n}]))$ in terms of Gal($\overline{\mathbb{Q}}/\mathbb{Q}$)? In particular, can you describe $\pi_1^{\acute{e}t}(\operatorname{Spec}(\mathbb{Z}))$ (Hint: the Minkowski bound).
- (8) Can you give a description of $\pi_1^{\acute{e}t}(\operatorname{Spec}(\mathbf{C}((t))))$? Can you interpret this geometrically?
- (9) Let π be a profinite group. Is the natural map $\pi \longrightarrow \hat{\pi}$ an isomorphism? Can you give an example?
- (10) Let *p* be a prime and let *K* be a field of characteristic different than *p*. Let $K(\mu_{p^{\infty}})$ be the Galois extension of *K* given by adjoining the roots of $x^{p^n} 1$ for all $n \ge 1$. Show that there is a natural embedding $\chi_p : \text{Gal}(K(\mu_{p^{\infty}})/K) \longrightarrow \mathbb{Z}_p^{\times}$ called the *cyclotomic character*. Is it true that χ_p either has finite image or cofinite image?

4. Étale fundamental group (II).

- (1) Compute $\pi_1^{\acute{e}t}(\operatorname{Spec}(O_{C,x}))$ where *C* is a smooth projective curve over C and $x \in C(C)$. Your answer should involve the projective geometry of *C* itself.
- (2) Try and compute $\pi_1^{\acute{e}t}(\mathbf{A}_{\mathbf{C}}^2 \{0\})$ (this is difficult without some big machinery).
- (3) Try and compute $X = \pi_1^{\acute{e}t}(\mathbf{Z}_p[x, y]/(xy p))$ and understand the relationship between $\pi_1^{\acute{e}t}(X_{\mathbf{Q}_p})$ and $\pi_1^{\acute{e}t}(X_{\mathbf{F}_p})$ (note that X is not proper so that Grothendieck's specialization results don't apply).
- (4) It is a somewhat hard fact that if X is a proper connected variety over an algebraically closed field k and k'/k is an algebraically closed extension, then the natural map π₁^{ét}(X_{k'}) → π₁^{ét}(X) is an isomorphism (e.g. see [Tag0A49,Stacks]—the proof uses ideas that come up in the proof of Grothendiecks' specialization theorem). Show that this result is false for X = A¹/_{F_p} and k' = F_p(T).
- (5) Compute $\pi_1(C)^{(p)}$ where *C* is a smooth proper integral curve over an algebraically closed field *k*, *p* is the characteristic of *k* (which can be zero), and for p > 0 $\pi_1^{\acute{e}t}(C)^{(p)}$ means the maximal pro-prime-to-*p* quotient of $\pi_1^{\acute{e}t}(C)$ (by definition $\pi_1^{\acute{e}t}(C)^{(0)} = \pi_1^{\acute{e}t}(C)$). Note that your proof will use the Riemann existence theorem, the classical computation of the fundamental groups of real surfaces, Grothendieck's specialization results, and the result [Tag0A49,Stacks] cited in exercise 4.4.
- (6) If X is a normal integral scheme and U is an open subset of X, then the map π₁^{ėt}(U) → π₁^{ėt}(X) is surjective (e.g. see [Tag0BQI,Stacks]. Give a counterexample to this claim when X is not normal.

- (7) Let $f \in k[x_0, ..., x_n]$ be a homogenous polynomial. Let $\widetilde{X} := V(f) \subseteq \mathbf{A}_k^{n+1}$ and $X := V(f) \subseteq \mathbf{P}_K^n$. Show that the natural map $\widetilde{X} \longrightarrow X$ induces a surjection $\pi_1^{\acute{e}t}(\widetilde{X}) \longrightarrow \pi_1^{\acute{e}t}(X)$. Can you describe the kernel of this map?
- 5. Étale topology (I).
- 6. Étale topology (II).
- 7. Cohomology of curves and abelian varieties.
- 8. Artin comparison and Artin vanishing.
- 9. Proper base change and nearby cycles.
- 10. Properties of ℓ -adic cohomology.
- 11. Cohomology over finite fields. Lefschetz trace formula and the Weil conjectures.
- 12. Purity and the Riemann hypothesis.

Prerequisites

Schemes and sheaf cohomology, basics of homological algebra.

Bibliography

[Stacks] The stacks project, https://stacks.math.columbia.edu

[Mil] Étale cohomology, J. Milne